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1. Introduction 
A unique component of the CO-NM REPS project is the incorporation of a “dynamical 
modeling framework”, with the goal of carrying out a preliminary proof-of-concept 
study to investigate how forecasts from a high-resolution, rapidly-updating numerical 
weather prediction (NWP) model might inform various aspects of extreme 
precipitation estimation. A numerical modeling framework such as this one, 
leveraging high-resolution model data continuous in space and time, and with 
considerable additional model data provided via hourly forecast cycles from a state-
of-the-art NOAA weather forecast model, has not been not been employed in previous 
PMP studies, and its potential benefits and limitations are examined here.  This 
component of the CO-NM REPS project is also referred to as “Task 3”. 
 
As described in earlier volumes of this report, scientific understanding of physical 
processes responsible for extreme precipitation events has advanced significantly 
since the NOAA HMRs were created. Dynamical numerical weather models in 
particular have served to advance the state of knowledge regarding precipitation 
processes; such models solve the fundamental physical equations of atmosphere and 
thus generate precipitation according to the environment provided, offering 
continuity in space and time in the model output. These fundamental aspects of 
dynamical models could conceivably alleviate the need for many spatial, temporal, 
physical assumptions (e.g., storm transposition, storm templates, moisture 
maximization, etc.) used in the PMP estimation process. The availability of reliable, 
high-resolution model data in data-sparse regions of complex, high-elevation 
topography is another considerable potential benefit.  
 
The state of Colorado has considered the use of high-resolution regional modeling in 
PMP estimation before. As part of the State of Colorado Department of Natural 
Resources Project “Development of New Methodologies for Determining Extreme 
Rainfall,” Cotton et al. (2003) details the use of a convective-storm-resolving 
mesoscale model for six historical heavy precipitating cases over Colorado. A total of 
27 simulations were performed, varying both model parameters and physical land-
surface states, and synoptic patterns were moved relative to the underlying terrain. 
Maximum precipitation produced by all simulations was then statistically manipulated 
for various depth-area-duration (DAD) events (using Hershfield parameters and kriging 
techniques) to make PMP estimates. Conclusions of this work were that while the 
modeling served as a useful demonstration of concept, simulation errors in position, 
timing, and event evolution were too significant, and the data produced too limited, 
to provide useful quantitative PMP estimates.  
 
For this study, many of problems facing the study detailed in the Cotton et al. (2003) 
report have benefited from significant advances in technology and the science of 
forecast modeling heavy rainfall. The main resource used by CO-NM REPS Task 3 is a 
5-year archive of model forecasts from a state-of-the-art, hourly-updated, 3-km 
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horizontal grid spacing NWP system developed by the National Oceanic and 
Atmospheric Administration (NOAA). Of primary interest is whether this dynamical 
model-based framework offers enough benefit to be considered for future iterations 
of extreme precipitation estimation by the dam safety and flood risk management 
communities. Secondary interests for the demonstration carried out in the present 
CO-NM REPS project include whether or not the existing 5-year model dataset can 
provide useful information regarding the frequency, variability, and intensity of 
extreme precipitation and support existing PMP estimation methods and/or specific 
parts of the traditional PMP estimation process.  
 
The NWP system used in this study, the High-Resolution Rapid Refresh (HRRR) model, 
is run operationally for the U.S. National Weather Service (NWS), and serves a large 
variety of user needs. Daily users of the HRRR forecasts for decision-making include 
NWS forecasters, severe weather forecasters, aviation strategic and tactical planners, 
quantitative precipitation forecasters, renewable energy planners and market traders, 
and fire weather forecasters. While current high-resolution numerical model data is 
limited by computation costs, in the future, it is conceivable that supercomputing 
resources will be large enough, and high-resolution NWP systems will be sufficiently 
inexpensive, to allow larger numbers of simulations that might better serve PMP and 
regional extreme precipitation estimation.  

2. Data and Methods 

2.1. Hourly Updating Numerical Weather Prediction System: The 

High-Resolution Rapid Refresh 
The NOAA Earth System Research Laboratory (ESRL) Global Systems Division (GSD) has 
developed a 13-km horizontal grid spacing NWP model called the Rapid Refresh (RAP; 
Benjamin et al. 2016). The RAP is an hourly cycled system, run every hour. The RAP 
first became operational at the National Centers for Environmental Prediction (NCEP) 
on 1 May 2012 (RAPv1, run out to 18 forecast hours), with the most recent upgrade at 
NCEP on 23 August 2016 (RAPv3, run out to 21 hours). An additional upgrade (RAPv4) 
is currently planned for spring 2018. The RAP replaced the earlier Rapid Update Cycle 
(RUC; Benjamin et al. 2004) as NOAA’s operational rapidly-updating forecast system. 
Beginning in 2010, a nested version of the RAP on a three-km horizontal grid has also 
been run hourly over the CONUS in experimental mode at GSD; this nested version of 
the RAP is called the High-Resolution Rapid Refresh (HRRR) (Smith et al. 2008). The 
HRRR became operational at NCEP on 30 Sep 2014 (HRRRv1, run hourly out to 15h), 
with an upgrade to the next version of the HRRR on 23 August 2016 (HRRRv2, run 
hourly out to 18 h). HRRRv3 implementation is planned for spring 2018.  
 
The RAP and HRRR model domains are shown in Figure 1. Both systems use a 
community-supported data assimilation system, the Gridpoint Statistical Interpolation 
(GSI) package.  
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Figure 1. Map of North America showing the computation domains of the RAPv3 and 
RAPv4 (white), RAPv1 and RAPv2 (red), and HRRR (green) models. 
 
The data assimilation scheme, which uses a hybrid three-dimensional 
ensemble/variational approach (Hu et al. 2017), uses observations from a variety of 
platforms to create an initial condition for the model forecast. At the end of the 
ensemble/variational data assimilation, a hydrometeor analysis (Benjamin et al. 2016) 
is carried out based primarily upon satellite and surface-based ceilometer 
observations. Within the RAP, radar reflectivity observations are brought in through a 
diabatic digital filter initialization (DDFI) procedure (Peckham et al. 2016); the 
diabatic portion of the filter introduces latent heating during the DFI period, with the 
magnitude of the latent heating related to observed radar reflectivity.  
 
The HRRR assimilates radar reflectivity observations on its 3-km grid in a similar way, 
but with several important differences. First, the HRRR assimilates radar reflectivity 
observations over the hour leading up to the model initialization time through the 
execution of a one-hour “pre-forecast”. Secondly, while the HRRR uses a similarly-
formulated relationship between radar reflectivity and latent heating, the latent 
heating varies with 15-minute reflectivity observations rather than being held 
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constant for the full hour. The ensemble/variational data assimilation step occurs 
after this one-hour “pre-forecast”. This technique permits a much more realistic 
hydrometeor structure within the HRRR at the start of the full forecast.  
 
The NWP component of the RAP and the HRRR is the community-supported Weather 
Research and Forecasting (WRF) model, in particularly the Advanced Research WRF 
(WRF-ARW; Skamarock et al. 2008). For more details on the RAP and HRRR 
configuration, including physical parameterizations used within WRF, the reader is 
referred to Benjamin et al. (2016).  
 
After the initial implementation of the HRRR in 2014, forecasters noted biases in 
several aspects of HRRRv1 performance. Most obviously, the HRRRv1 featured a high 
bias in coverage of convective precipitation. It was also discovered that the HRRRv1 
had a warm and dry bias in the daytime planetary boundary layer (PBL) over much of 
the domain, particularly in the eastern CONUS. It was hypothesized that these biases 
were linked by a mechanism described in the feedback cycle outlined in Fig. 10 of 
Benjamin et al. (2016). Insufficient cloud cover in the HRRRv1 was leading to overly 
deep mixing and too-deep PBLs, especially in the summertime, and an excess of 
incoming solar irradiance. This excessive low-level mixing tended to overcome 
convective inhibition too readily, producing false alarm convection in the model.  
 
In order to alleviate the biases in the initial version of the operational HRRR, 
development took place particularly in the model physics parameterizations. Since 
the HRRR obtains its initial and boundary conditions from the RAP, development 
efforts within the RAP system also had an impact on HRRR forecast performance. One 
of the foremost changes implemented in HRRRv2 was an increase of the “wilting 
point” within cropland regions in the RUC LSM, effectively allowing continued 
transpiration from irrigated crops and increasing low-level relative humidity; the 
effects of this change were most pronounced over the agriculture-rich Great Plains of 
the US. Another major adjustment was allowing the RRTMG radiation scheme to 
interact with boundary layer clouds within the MYNN PBL scheme, having the net 
effect of increasing low-level cloudiness and reducing solar irradiance reaching the 
surface. A secondary low-level cooling effect comes from attenuation from 
climatological aerosol loading within the Thompson aerosol-aware microphysics 
scheme. These changes are described in more detail by Benjamin et al. (2016).  
 
Within the HRRR DA, a number of changes were made to address the warm/dry bias in 
the HRRRv1. Hybrid ensemble-variational data assimilation, having been shown to 
greatly improve forecasts of upper-level wind and other variables within the 13km 
RAP (Hu et al. 2017), was implemented in the HRRR beginning with HRRRv2. Focusing 
more specifically on the model biases, PBL “pseudo-innovations” (Benjamin et al. 
2016) were introduced for surface temperature (in addition to surface dewpoint) in 
order to extend the influence of surface observations in the vertical in well-mixed 
situations. In addition, assimilation of 2m temperature and dewpoint observations was 
modified to be more consistent (accounting for the difference in height between the 
typical 2m height of sensors and the lowest model level, near 8m AGL).  
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The net result of these DA and model physics modifications is shown in Figure 2. 
These statistics are derived from a month-long retrospective test during the period 15 
July – 15 August 2014, and comparison is against the real-time HRRRX running at 
ESRL/GSD. Verification is against CONUS METAR observations (standard daily weather 
observations). Boxes on these curves represent one standard error (Weatherhead et 
al. 1998). As shown in Figure 2, 2m temperature RMSE is reduced by up to 40 percent 
during the afternoon and early evening hours, with less improvement during the late 
night and early morning hours. Mean 6-h forecast 2m temperature biases at 00 UTC 
are reduced from over +1.5 to about +0.3 degrees, with similarly large improvement 
earlier in the afternoon and later in the evening. Even more striking improvements 
are evident in the 2m dewpoint temperature verification: mean daytime dry biases of 
approximately -1.5 degrees are reduced to a moist bias of approximately +0.3 
degrees. 10m wind speed biases are similarly reduced, particularly in the early 
evening period. Forecast improvements are much more muted during a month-long 
winter retrospective test (not shown).  
 

 
Figure 2. Verification of HRRRv1 vs. HRRRv2, against CONUS METAR observations, 
during the period 15 Jul - 15 Aug 2014. The blue curve indicates the HRRRv1, and the 
red curve indicates the HRRRv2, with one standard error indicated by the boxes. 
 
Several cases of simulated radar reflectivity forecast differences between the HRRRv1 
and HRRRv2 are shown in Figure 3. These cases are taken from the summer of 2015, 
when the HRRRv2 was running in the HRRR-X but the HRRRv1 was still running 
operationally. On 4 June 2015, the HRRR forecasted a large false alarm mesocale 
convective system (MCS) over central Kansas by 00 UTC 5 June, while the HRRR-X 
successfully forecasted only small, isolated convective cells in this region. Once 
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again, on 21 June 2015, the operational HRRR forecasted the development of a small 
MCS in Kansas, but the HRRR-X successfully forecasted the absence of storms over this 
region. On 12-13 July 2015, the HRRR-X produced a more realistically-organized MCS 
over Minnesota, with a northeast-southwest oriented leading convective line, while 
the operational HRRR forecasted a much more poorly organized system with extensive 
false alarm convection to the west of the MCS. These improvements were all 
implemented in the operational HRRR on 23 August 2016.  
 

 
Figure 3. Simulated radar reflectivity forecasts from (bottom row) the experimental 
HRRRv2 and (middle row) the operational HRRRv1, compared against MRMS 
observations (top row) during 2015. 
 
The second version of the HRRR exhibited a different set of biases. In particular, 
forecasters noted a continued tendency for the model to excessively quickly erode 
low-level cloud cover. A high bias in simulated radar reflectivity and precipitation in 
the first few hours of the HRRR forecasts was also noted. Due to these noted issues, 
the focus of the HRRRv3 upgrade is upon improved retention of low clouds, and 
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reducing a short-lead-time high precipitation / simulated radar reflectivity bias, as 
well as improved 2m temperature / dewpoint diurnal cycles in summertime.  
 
Data assimilation changes in the HRRRv3 were motivated by observed short-range 
forecast biases present in the HRRRv2. In particular, the high bias in precipitation 
during the first few hours of the forecast motivated a reduction in the strength of the 
latent heating applied in the RAP DFI within regions of high observed three-
dimensional radar reflectivity. Figure 4 shows simulated composite radar reflectivity 
forecasts as verified against the multi-radar, multi-sensor (MRMS) analysis product, 
for a month-long retrospective test during July 2016, compared against the real-time 
HRRRX (HRRRv2). As can be seen in Figure 4, CSI for both the 25 and 35 dBZ 
thresholds are increased during the first 6-8 h of the forecast, while the bias in both 
thresholds is drastically reduced.  
 
Focusing on the cloud retention problem, the RAP and HRRR cloud analysis was 
modified to specify a high value of cloud water and cloud ice droplet number 
concentration (0.00001 g/kg for water, and 0.001 g/kg for ice), thereby ensuring 
clouds are initialized with small droplets and reducing fallout in the first few hours of 
the model forecast. This led to a substantial improvement in the retention of low-
level clouds, particularly in the winter period (Figure 5 shows a comparison of RAP 
forecasts with and without this change; the same code is applied in HRRR). An 
additional change, arising from observation sensitivity experiments described by 
James and Benjamin (2017), is the consistent treatment of cloud building based on 
both surface METAR ceilometer data and satellite observations, limiting the height of 
cloud building from these observations to be below 1200 m AGL; this helps to reduce 
a high relative humidity bias in short-range forecasts in the low- to mid-levels (e.g., 
see Fig. 18 of James and Benjamin 2017).  
 
In the realm of model physics, significant updates were made to several model physics 
schemes. Within the RUC LSM, a new mosaic approach to snow cover was adopted, 
more accurately accounting for patchy, thin snow cover, and improving low-level 
temperature forecasts in certain situations. In addition, real-time vegetation 
greenness fraction, derived from polar-orbiting satellites carrying the Visible Infrared 
Imaging Radiometer Suite (VIIRS) instrument, was incorporated into the RUC LSM, 
accounting for anomalous departures from the normal seasonal cycle of vegetation 
greenness. The use of VIIRS data paves the way for the use of other VIIRS products 
within the real-time RAP/HRRR NWP suite. 
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Figure 4. Composite radar reflectivity forecasts from the HRRRv2 (red) and HRRRv3 
(blue) verified against MRMS observations. Results are from a month-long 
retrospective HRRRv2 test during July 2016, compared against the real-time HRRRX. 
Shown are CSI (top row) and bias (bottom row), for the 25 dBZ threshold (left) and 
the 35 dBZ threshold (right).  
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Figure 5. Cloud ceiling forecasts from the RAP, without (top row) and with (bottom 
row) specifying a high value of cloud water and cloud ice number concentration in 
the cloud analysis. 
 
Improvements were made to several other key parameterization schemes within the 
HRRR for the implementation of the HRRRv3, including the Thompson microphysics 
scheme and the MYNN PBL scheme. An improved representation of subgrid-scale 
clouds is now used in MYNN, and an eddy-diffusivity mass flux scheme is employed to 
improve the parameterization of mixing under different stability scenarios. Many of 
the improvements to the MYNN PBL scheme stemmed from extensive evaluation and 
testing during a field campaign in the Columbia River Gorge (the Second Wind 
Forecast Improvement Project WFIP2; reference?). Finally, a new hybrid vertical 
coordinate was implemented within the RAP and the HRRR, reducing the amount of 
terrain-related numerical noise in the model as compared against a terrain-following 
coordinate (Klemp 2011).  
 
Figure 6 and Figure 7 present verification of HRRR forecasts against METARs over the 
CONUS during two month-long retrospective tests of the HRRRv3 code, as compared 
against the HRRRv2. Improvements during the summertime (July 2016; Figure 6) are 
muted, but statistically significant for most variables during the morning hours. More 
substantial gains are seen in the winter retrospective test (January 2017; Figure 7).  
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Figure 6. Verification of HRRRv2 vs. HRRRv3, against CONUS METAR observations, 
during the period 1 - 31 Jul 2016. The blue curve indicates the HRRRv3, and the red 
curve indicates the HRRRv2, with one standard error indicated by the boxes. 

 

 
Figure 7. Verification of HRRRv2 vs. HRRRv3, against CONUS METAR observations, 
during the period 1- 31 Jan 2017. The blue curve indicates the HRRRv3, and the red 
curve indicates the HRRRv2, with one standard error indicated by the boxes. 
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2.2. HRRR precipitation forecasts and their use in precipitation 

estimation 
NOAA-ESRL has performed extensive verification of HRRR precipitation forecasts with 
respect to the National Centers for Environmental Prediction (NCEP) Stage-IV 
precipitation analysis, hereafter “Stage-IV” (Nelson et al. 2016). Stage-IV is 
considered the “official” quantitative precipitation estimate (QPE) for validation of 
NOAA numerical weather prediction models. Stage-IV is produced for the contiguous 
United States at ~4.7-km grid spacing and accumulation periods of 1, 6 and 24 h. 
Forecasters at 12 River Forecast Centers (RFCs) combine precipitation estimates from 
NWS doppler radar, manually quality controlled point observations, and a 
climatological precipitation analysis to produce a best estimate of precipitation over 
their respective areas of responsibility. The final Stage-IV analysis is a mosaic of these 
12 manually augmented grids. The use and weighting of various precipitation 
datasets, and the rigor with which quality control measures are applied to 
observations, all vary from one RFC to another, and even from one forecaster to 
another within an RFC. Due to inherent shortcomings with the Stage-IV methodology 
in complex terrain of the western US, as discussed later in this section, general 
conclusions about HRRR precipitation forecast performance will be based on 
comparison to Stage-IV east of 105 degrees west longitude. 
 
Numerical weather prediction models, including the HRRR, provide QPF in real-time, 
and these forecasts can be compared against the various QPE products, including 
Stage IV. The HRRR is used extensively in operational QPF, particularly since its 
operational implementation at NCEP in Sep 2014. HRRR QPF has been evaluated in an 
increasing number of peer-reviewed studies (e.g., Ikeda et al. 2013, Pinto et al. 2015, 
Bytheway et al. 2017). As described in the previous section, a second version of the 
HRRR was implemented operationally in August 2016, with a third version slated for 
implementation in May 2018; here we provide a brief overview of QPF performance by 
the HRRRv3. As mentioned above, comparison is performed with Stage-IV over the 
eastern US, where the QPE dataset is more trusted. Figure 8 shows the variation in 
forecast skill with forecast lead time from HRRR forecasts during the warm season. 
The HRRR exhibits a near-neutral frequency bias for light to moderate precipitation 
amounts, and some overforecasting of heavy precipitation, particularly for thresholds 
exceeding 25 mm per 6 h (Figure 8). This high frequency bias (i.e., exceedances of a 
threshold are forecast more often than they occur in the Stage-IV analysis) is most 
evident at lead times of less than 6 h, and moderates to a near neutral bias by 
forecast hour 12. Spatial and temporal forecast errors steadily increase with 
increasing lead time, although subjective examination of individual cases suggests 
these displacement errors are more random than systematic, particularly for intense 
convective events. Considering these factors, it was chosen to use HRRR forecasts for 
lead times of 6-12 h to estimate heavy and extreme precipitation occurrence. 
 
The spatial distribution of HRRR 6-7h forecast biases for light precipitation compared 
against Stage-IV during the four summers of 2014-2017 is shown in Figure 9. The 
evolution of the precipitation biases in the eastern US during the four summers of 
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2014-2017 reveals a general moist bias in 2015 and 2016, with a closer to optimal bias 
evident in 2017. For a heavier precipitation threshold (0.25 inch in 6 hours; Figure 
10), additional regional structure is seen in the biases when the HRRR forecasts are 
compared against Stage-IV. In particular, a moist bias in the southeastern US and 
southern plains present in 2014-2016 is greatly reduced in 2017, while the HRRR 
continues to forecast the exceedance of this threshold less frequently than the Stage-
IV over the northern high plains. Similar maps can be created for higher precipitation 
thresholds which are more relevant for this project; however, these maps become 
extremely noisy due to the relative rarity of heavy precipitation events at any single 
model gridpoint.  
 

 
Figure 8. Bias of HRRR QPF vs. Stage-IV QPE by forecast hour, for the year 2016. Four 
different precipitation thresholds are shown: 0.01 inch / 6 h (black), 0.25 inch / 6 h 
(blue), 1 inch / 6 h (green), and 3 inch / 6 h (red). 
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Figure 9. Ratio of frequency of 0.01 inch in 6 hours occurrence in the HRRR (lead 
time 6-7h) compared to the Stage-IV for (top left) summer 2014, (top right) summer 
2015, (bottom left) summer 2016, and (bottom right) summer 2017. Yellow/orange 
shading indicates the HRRR forecasts light precipitation less frequently than it is 
present in Stage-IV analyses, and green/blue shading indicates the HRRR forecasts 
light precipitation more frequently than it is present in Stage-IV analyses.  
 
HRRR performance for individual precipitation events, which is critical for NWS 
forecasters and other users, has been extensively evaluated against Stage-IV in 
regions where the QPE product is relatively more trusted. A recent catastrophic 
flooding event, Hurricane Harvey in August 2017, provided an excellent opportunity to 
evaluate HRRR forecasts of an extreme precipitation event. Figure 11 shows a 
comparison of HRRR 48-h QPF versus Stage-IV for the same period (the Experimental 
HRRR extends out to 48-h forecast length twice a day).  
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Figure 10. As in Figure 9, but for 0.25 inch in 6 hours. 
 
As can be seen in Figure 11, the HRRR successfully forecasted the occurrence of 
greater than 20 inches of rain in 48 h in extreme southeastern Texas in association 
with this event, with excellent agreement in the location, shape, and orientation of 
the region of heaviest rainfall with the Stage-IV QPE. A heavy rain event in more 
complex terrain is shown in Figure 12, from the Sep 2013 flood along the east slope of 
the Colorado Front Range. As is seen in Figure 12, there is a large amount of run-to-
run variability in the HRRR performance for this case. However, a key advantage of 
the hourly-updating HRRR is that there are multiple opportunities for the model to 
successfully forecast the event. This is particularly advantageous in the context of 
this study, where the goal is precipitation estimation instead of precipitation 
forecasting, and all forecast hours of all forecast cycles can be considered as 
physically-bounded potential precipitation scenarios.  
 
The focus of this study is on “probable maximum precipitation”, or, in a probabilistic 
framework, extreme precipitation frequency. When estimating precipitation 
frequency over the complex terrain of the western United States, there are a number 
of advantages to using HRRR model forecasts as an alternative, or to augment point 
observations and precipitation analysis products. The spatial coverage of point 
observations in CO and NM is modest at best near urban centers, and poor over high 
terrain, and rural desert and plains regions. Some automated sites report 
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precipitation accumulation hourly, but most manual observations are taken at 24-h 
intervals ending at times that are inconsistent from one site to another. 
 

 
Figure 11. 48-h precipitation from 12 UTC 26 Aug - 12 UTC 28 Aug 2017, as captured 
by (left) the Experimental HRRR QPF initialized at 12 UTC on 26 and 27 Aug 2017, and 
(right) MRMS radar-only QPE for the same time period. The black line is the observed 
storm track of Hurricane Harvey, and the green line is the HRRR forecasted track.  

 

 
Figure 12. 12-h precipitation from 00-12 UTC 12 Sep 2013 in northern Colorado (black 
lines are county lines), as captured by (left) the Stage-IV QPE, and (right) four 
different initialization times of the Experimental HRRR (21, 22, 23, and 00 UTC from 
left to right). 
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HRRR provides precipitation forecasts on a 3x3-km grid, at intervals from 1 to 15 h 
(successive forecasts can also be combined to produce longer accumulation intervals, 
and although unavailable for use in this project, 15-minute precipitation data is also 
produced in real time). Despite some smoothing of steep terrain to maintain 
numerical stability in HRRR, forecast grids include elevations as high as 4300 m over 
the Colorado Front Range. 
 
Although Stage-IV is considered an industry-standard precipitation analysis-of-record 
in the National Weather Service, there are a number of deficiencies in this dataset 
that can be mitigated or completely avoided through use of HRRR forecasts. 
Horizontal grid spacing in Stage-IV tails behind that of several operational numerical 
weather prediction models, including HRRR. Grid spacing in HRRR is 3 km, versus 4.7 
km in the Stage-IV, thus use of HRRR yields a ~2.5 times increase in the number of 
grid points over a given area. Perhaps the largest disadvantage of Stage-IV is spatial 
inconsistency, which includes inconsistency in the availability, weighting and manual 
quality control of input datasets. The initial background for Stage-IV is typically a 
combination of radar-derived quantitative precipitation estimates, inverse-distance 
weighted analyses of point observations, and long-term climatological precipitation 
analyses. Radar coverage is poor over many areas of CO and NM, particularly in the 
San Juan Mountains of southwest CO, where the lowest tilt of the nearest radar site 
(Grand Junction) is centered more than 3000 m above ground level. Quality control of 
point observation data, although in many cases a straightforward endeavor, is a 
subjective process with no explicit agency-wide guidelines. Finally, the use of long-
term, mean climatological precipitation analyses (e.g., the Parameter-elevation 
Relationships on Independent Slopes Model, or PRISM) to improve precipitation 
representation in complex terrain is subject to large error when all or part of a 
particular precipitation event exhibits an atypical precipitation-altitude relationship. 
 
Not only are all of the Stage-IV input datasets subject to uncertainty and 
methodological shortcomings, but there exist differences of opinion between River 
Forecast Centers (RFCs) and individual forecasters regarding their use and appropriate 
weighting. For example, one RFC with an area of responsibility in the study region has 
a local policy of ignoring radar precipitation estimates during an arbitrarily defined 
winter season -- a policy that is not in place at neighboring offices. The resulting 
mosaic of quantitative precipitation estimates from multiple RFCs contains 
unphysical, near-zero-order discontinuities along RFC boundaries (Figure 13). HRRR 
forecasts contain no such discontinuities and are only subject to errors/biases in the 
physical parameterization of precipitation. While these biases are known to exist 
(e.g., Figure 8), recent subjective and objective validation of model forecasts and 
precipitation analyses by the National Weather Service indicates that HRRR forecasts 
over complex western US terrain perform nearly as well as Stage-IV (and better than 
some alternative precipitation analyses) relative to point observations (Figure 14). 
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Figure 13. Ratio of HRRR 6-12-h QPF to Stage-IV QPE during the cool season 2012-2017 
over Colorado. Note the major discontinuity following the continental divide in far 
northern and far southern Colorado. 
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Figure 14. Scatter diagrams for (a) Stage-IV, here interpolated to 2.5-km resolution 
for the real-time “URMA” analysis product; (b) and (c) two types of Multi-Radar 
Multi-Sensor precipitation analyses; (d) HRRR 0-6-h forecasts; and (e) HRRR 12-18-h 
forecasts, relative to point observations for the 3-day period ending 1200 UTC 26-Dec 
2017. Diagonal, dashed red line indicates a perfect forecast or analysis. Image 
courtesy NWS Western Region Headquarters. 

2.3. Analysis of historical HRRR model data for REPS project 
NOAA-ESRL maintains a local archive of several two-dimensional HRRR forecast grids, 
including accumulated precipitation, that begins in early 2012 and continues to the 
present day. For this study, we analyzed forecasts for a 5-year period from 24 January 
2012 to 23 January 2017. The HRRR model data archive contains forecasts from the 
experimental HRRR configuration, or “HRRRX”. The HRRRX is subject to frequent 
model changes, with model improvements occurring on a more continual basis, as 
opposed to the three discrete operational implementations of the HRRRv1, v2, and 
v3. The HRRRX is also subject to frequent irregular outages, with the dataset being 
about 75 percent complete. The completion rate is less for longer lead times, and for 
forecasts combined to derive longer precipitation accumulation intervals. Full 15h 
forecasts are initialized every hour when the data are available.  
 
As is shown in Figure 15, bias characteristics vary with season and year. However, 
changes due to HRRR version changes appear to be of the same magnitude as seasonal 
variations in the bias. Differences between 6-h and 12-h bias characteristics can be 
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attributed to the influence of model data assimilation at the initialization time 
(having a stronger influence on the forecasts at 6 h than at 12 h).  
 

 
Figure 15. HRRR QPF eastern US bias as compared against Stage-IV from Jan 2012 - 
Jan 2017, for 0.25 inches in 6 h. The blue and green curves indicate 0-6-h and 6-12-h 
bias, respectively. 
 
Evaluation of HRRR precipitation forecasts relative to Stage-IV precipitation analyses 
was performed using time-matched HRRR and Stage-IV grids for a subset of this 
period. Due to frequent data outages, the time-matched joint dataset covers only a 
small subset of possible forecasts. However, no systematic missing times of day or 
times of year were noted, and thus despite a reduced sample size, we consider this 
dataset representative of the full 5-year period. Although we note a number of issues 
with the Stage-IV dataset, our conclusions about HRRR performance relative to a 
Stage-IV “truth” are based on results for the eastern United States, where radar 
coverage is more uniform, point observations are more frequent in space and time, 
and thus fewer unphysical discontinuities appear in the Stage-IV grids. Long-term and 
case study examination of HRRR forecasts by external groups (e.g., the University of 
Utah) indicate that our conclusions about HRRR forecasts relative to Stage-IV analysis 
in the eastern United States are also broadly representative of HRRR performance in 
the West. 

2.4. Using HRRR model data and model outputs for extreme 

precipitation study estimates 
In this section, we provide an overview of the datasets used in this analysis, followed 
by a description of the methodology used to investigate the “probable maximum 
precipitation” question. Finally, we present our results from this study.  

2.4.1 Data Descriptions and Sources 
The primary dataset used in this study is the 5-year archive of HRRRX forecasts. This 
model dataset is currently housed on external hard drives attached to a desktop 
computer within NOAA/GSD, and thus public access to the HRRRX data is challenging. 
To this point, data requests have been handled on a case-by-case basis, but limited 
manpower precludes provision of model data in some cases. Public availability of 
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archived HRRR forecasts remains a problem for NOAA as a whole, with no publicly 
available archive of the operational HRRR yet hosted by NCEP due to the large file 
size (particularly for the 3D files) in conjunction with the hourly update cycle. An 
early attempt at an archive of HRRR and HRRRX forecasts has been undertaken by a 
small team at the University of Utah (Blaylock et al. 2017), but questions remain 
regarding the sustainability of the effort and quantity of data that could be hosted.  
 
The other major dataset used within this study is the Stage-IV QPE, which is publicly 
available. For this project, we analyzed the Stage-IV for the same period as the 
HRRRX record. The Climate Prediction Center (CPC) 24-h precipitation product was 
also briefly examined in order to assess the representativeness of the 5-year period of 
study to the actual 30-year climate.  

2.4.2 Methodology 
For the analysis results presented in this report, we took several complementary 
approaches. Our primary effort was mining the HRRRX model data archive to obtain 
QPF from every hourly run over the 5-year period of record. A probability distribution 
function (PDF) of QPF for different time durations can thus be derived for each model 
grid point. One of our main goals within the project was to communicate the value of 
this derived 3-km spatial structure for the overall project goals towards the sponsors 
and the other tasks, and to explore ways of presenting the model data and deriving 
quantities that can be compared with values understood by the other two tasks.  
 
The construction of the QPF “PDF” at each 3-km model grid point essentially 
represents a “poor-mans” ensemble. Since the PDF is constructed by considering 
HRRRX simulations initialized every hour, the model dataset contains multiple 
realizations of each event. Each of these realizations (varying by forecast lead time) 
comprise one possible outcome of the meteorological situation, similarly to the way a 
forecast ensemble represents a discrete number of possible outcomes.  
 
We acknowledge that a 5-year period of record is much too short a period to expect 
to capture precipitation extremes at the time ranges forecasted by the HRRR model 
(i.e., 1 h to 15h). However, since lighter precipitation events are relatively common, 
the model dataset still contains valuable information about the spatial variation of 
the frequency of light precipitation as compared to the frequency of heavier 
precipitation. We might expect the PDF at each model grid point to be more reliable 
and representative of the longer-term climatology at lighter (i.e., more common) 
precipitation thresholds.  
 
A secondary component of the project was to provide derived information from the 
HRRRX QPF dataset which could directly inform decisions regarding the validity of 
assumptions playing a role in the decision-making process for the other two tasks. 
This aspect of our effort was largely dictated by the interest of the other two tasks. 
We insisted upon first understanding (at a basic level) the intended uses of the HRRR 
information, and ensuring that this usage was scientifically reasonable.  
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3. Analysis and Findings 
In this section, we present the results of our analysis of the 5-year HRRRX QPF 
dataset.  

3.1. Raw Maximum Precipitation 
Our first task within the study was to examine the maximum precipitation predicted 
within the HRRRX during the 5-year period of record at each grid point. Given the 
short period of record, it is not anticipated that the maximum precipitation occurring 
for a given threshold represents anywhere close to the “theoretical maximum” that 
PMP seeks to obtain, but it was an illustrative exercise. Figure 16 shows the 5-year 
maximum from the HRRRX dataset. While substantial small-scale noise is present 
within the model dataset, significant regional variations are also present. 
 

 
Figure 16. Maximum precipitation (mm) within the 5-year HRRRX model dataset 
occurring for (left) 1 h, (center) 2 h, and (right) 3 h durations. 
 
As we would expect, higher maximum precipitation totals occur in eastern Colorado, 
and in eastern and southern New Mexico, where elevations are generally lower and 
moisture availability is greater. Five-year maximum, 1-h precipitation reaches around 
30-50 mm over much of the eastern plains of Colorado and New Mexico, but closer to 
10-15 mm in much of western Colorado. Maximum precipitation increases with longer 
time duration, as expected.  
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Figure 17. Maximum 48-h precipitation within the 5-year HRRRX dataset. See text for 
details on this calculation.  
 
Calculations can also be performed for other time durations, although constructing 
maxima for durations longer than the duration of a single HRRR forecast becomes 
more complicated. The other tasks within the project requested maxima for the 2-day 
duration; Figure 17 shows this result from the HRRRX model dataset. This quantity 
was derived by summing up HRRRX forecasts initialized 6-h apart (at 00, 06, 12, and 
18 UTC), for a total of 48 h duration. Due to the frequency of missing HRRRX 
forecasts, and the compounding problem of requiring 48 h of consecutive 6-h HRRR 
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forecasts, the record is only ~30 percent complete, thus limiting the utility of this 
calculation.  
 
Given the small-scale noise evident in the 5-year maximum grid (due to the small 
sample size), we also investigated calculating other percentiles from the PDFs at each 
gridpoint in order to more accurately capture spatial patterns. Figure 18 shows the 
spatial smoothing that can be obtained by looking at the 99th percentile 6-h 
precipitation value as contrasted with the absolute maximum for the 5-year period. 
Much more coherent spatial structure is seen for the 99th percentile, with major 
terrain features emerging much more strongly, and even significant spatial structure 
over the high plains of eastern Colorado and New Mexico. Applying a Gaussian 
smoother to the 99th percentile grid produces an even more coherent grid (Figure 
18c).  
 
As referenced in the previous section, the dominant strength of the HRRR model 
dataset is its ability to represent realistic spatial structure in the long-term 
climatology. Ultimately, we believe the QPF PDFs derived from the model dataset 
offer much more valuable information than merely the 5-year maximum precipitation 
grid. To illustrate this, Figure 19 shows the frequency (in terms of probability of 
exceedance during the 5 year period) of two different precipitation intensity 
thresholds: 1 mm in 12 h (very light precipitation) and 10 mm in 12 h (moderate 
precipitation). The spatial structures of these probability maps (Figure 19a,b) are 
strikingly different from one another. In Figure 19a, it can be seen that light 
precipitation is very common over the higher terrain areas, particularly along the 
continental divide in northern Colorado, while light precipitation is relatively rare 
over lower elevation regions. However, Figure 19b reveals that moderate 
precipitation intensities are rarer over the higher terrain in northern Colorado, while 
precipitation of this intensity is much more common over the high plains in eastern 
Colorado and New Mexico. The differences can be visualized by taking a ratio of the 
two probabilities (Figure 19c), with a gradient apparent from higher ratios (e.g., light 
precipitation is common, but heavier precipitation rarer) in northern and western 
Colorado, to lower ratios (e.g., heavier convective precipitation is more common) in 
southeastern New Mexico.  
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Figure 18. HRRR 3-9-h QPF (a) maximum, (b) 99th percentile, and (c) 99th percentile 
smoothed with a Gaussian filter for the Jan 2012 to Jan 2017 period. 

 

 
Figure 19. Probability of (a) 1 mm and (b) 10 mm precipitation, and (c) ratio of (a) to 
(b) over the study region, based on HRRR 3-15-h QPF from Jan 2012 to Jan 2017. 

3.2. Comparison to Other Precipitation Datasets 
Questions were raised early in the project regarding the degree to which the weather 
during the 5-year period of record resembled the longer-term climatology. To address 
this question, we used data from the Climate Prediction Center (CPC) daily 
precipitation analysis. Figure 20 shows a comparison of the annual average 
precipitation, as well as the 24-h maximum precipitation, during the entire 50+ year 
record of the CPC data against the 5 years of the HRRRX archive. As anticipated, 
there are minor differences in the annual average precipitation patterns when we 
consider only the 5 years of record of the HRRRX model dataset. The 2012-2016 period 
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was somewhat wetter in the higher terrain of central and northern Colorado, and 
somewhat drier in southern New Mexico and southeastern Colorado, than the long-
term climatology indicates. More major differences are seen in the maximum 24h 
precipitation comparison; we would not expect the 5-year maximum to be anywhere 
close to the maximum from the 50+ year record. This comparison illustrates that we 
cannot directly use the 5-year maximum and expect it to resemble the PMP value, 
and also demonstrates that conclusions drawn from the 5-year period may be 
somewhat dependent on anomalous climatological conditions during those 5 years 
when compared with the longer-term average.  
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Figure 20. Comparison of mean annual precipitation and 24h max precipitation from 
the CPC unified precipitation dataset for (left) the entire period of record (1948-
2011), (center) the 5 years of the HRRR model dataset, and (right) the difference 
between the two). 
 
Figure 21 shows a comparison between the maximum 6-h precipitation from the 
Stage-IV analysis and the maximum from the HRRRX model dataset over Wyoming, 
Colorado, and New Mexico. As described in section b above, there are issues with the 
construction of the Stage-IV analysis over complex terrain, which likely contributes to 
some unrealistic boundaries in this analysis (for example, the international border). 
However, qualitatively the datasets agree reasonably well. At the very least, we can 
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conclude that the HRRRX model dataset values are not unreasonable. Comparison 
with other precipitation durations is not possible, since the Stage-IV analysis is a 6-h 
product.  
 

 
Figure 21. Maximum 6-h precipitation from (left) Stage-IV and (right) the HRRRX 
model dataset for the 5-year period of record. The HRRRX model data considered are 
accumulations between forecast hours 6 and 12. The data are time-matched 
(excluding times when the HRRRX was missing during the 5y period). 

3.3. Climatological Analysis 
In response to requests from the other tasks within the project, we undertook some 
pseudo-climatological analysis based upon the 5 years of HRRRX forecasts. We present 
these results in this section of the report. Figure 22 shows a map of the mean annual 
precipitation from the HRRRX model dataset, constructed from 6-12-h forecasts. Note 
that the estimate is somewhat low due to HRRRX outages during precipitation events. 
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The spatial structure of the annual mean from the 5 years is quite reasonable, and in 
agreement with previous studies: the heaviest annual totals are apparent in regions of 
high terrain. There is also a general eastward gradient in annual precipitation on the 
high plains, in agreement with other studies. 

 

 
Figure 22. Mean annual precipitation from the HRRR model dataset (constructed from 
6-12-h forecasts; the estimate is low due to missing data). 
 
Task 1 was also interested in seeing the monthly variation in mean precipitation from 
the HRRRX model dataset, in order to inform their spatial mapping of precipitation. 
Figure 23 shows the 5-year mean monthly precipitation from the HRRRX model 
dataset. Expected seasonal patterns emerge in these maps, with orographic 
influences dominating wintertime precipitation, and tropical moisture availability 
dominating in the warm season. Precipitation in the central plains peaks in May and 
June, likely due to the presence of Gulf moisture in addition to synoptic scale 
disturbances and cold fronts. Precipitation in western New Mexico and southwestern 
Colorado shows a strong later summer peak in connection with the North American 
Monsoon.  
 
One additional question raised by the Task 1 consultants was the dominance of rain 
versus snow in higher elevation regions of Colorado and New Mexico. The consultants 
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were seeking information on whether snow could be neglected within Colorado and 
New Mexico for different precipitation durations for which they were attempting to 
determine PMP. The HRRRX model dataset was queried to obtain guidance on this 
question; results are shown in Figure 24. This figure shows the ratio between the 5-
year maximum snow-water-equivalent (for different durations) to the 5-year 
maximum total precipitation (for those same durations) from the HRRRX model 
dataset. Values below 1.0 (colors other than red) indicate that the maximum 
precipitation occurred in the form of rain at that location and for that duration. Red 
regions indicate that the maximum precipitation occurred in the form of snow. For 
the 1-h duration, there are very few regions where the maximum precipitation 
occurred in the form of snow; these are limited to a few isolated regions in far 
northern Colorado. For the 3-h and 6-h durations, occurrence of the maximum 
precipitation in the form of snow becomes significantly more widespread, indicating 
that it may be important to take snow into consideration in the derivation of a PMP 
value. Even for 6-h durations, though, the maximum precipitation occurs in the form 
of rain everywhere in the state of New Mexico.  
 

 
Figure 23. Mean monthly precipitation from the HRRR model dataset (constructed 
from 6-12-h forecasts). 
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Figure 24. Ratio of 5-year maximum snow water equivalent (SWE) to 5-year-maximum 
precipitation from the HRRR model dataset for (left) 1-h, (center) 3-h, and (right) 6-
h durations. Red colors indicate that the maximum precipitation during these 5 years 
occurred in the form of snow.  

3.4. Elevation Analysis 
One interesting avenue of research that was pursued with the HRRRX model dataset is 
the relationship between precipitation and topographic elevation within various 
precipitation datasets. A preliminary evaluation was conducted for the Stage-IV QPE 
and HRRRX QPF during the 5-year period of record, and the long-term Parameter-
elevation Regressions on Independent Slopes Model (PRISM) dataset, over the Front 
Range of northern Colorado and the San Juan Range of southwestern Colorado. Figure 
25 shows results from the two regions. When normalized relative to values at 2500 m 
(to adjust for sample size differences between the datasets), Stage-IV QPE and HRRRX 
QPF show very similar increases in mean cold-season precipitation with increasing 
elevation. The results are similar for the warm season (not shown). A key implication 
here is that since both a manually augmented analysis and dynamical model forecast 
show a similar overall precipitation structure, it is reasonable to use the model 
forecast to augment the analysis-based climatology in regions where Stage-IV is prone 
to systematic issues (e.g., RFC boundaries, limited surface observation and radar 
coverage). The 30-year PRISM climatology shows a much steeper increase in 
precipitation with respect to elevation, although this difference can be largely 
attributed to higher resolution (~800 m vs. 3 km) and the use of a regression model to 
predict high-elevation precipitation where there often insufficient nearby observing 
sites to properly condition the regression for local climate effects. 
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Figure 25. Precipitation-altitude relationship for the Front Range and San Juan 
Mountain regions of Colorado, in the HRRR 6-12-h QPF, Stage-IV QPE, and the PRISM 
climatological precipitation datasets, showing similar changes in total precipitation 
for the HRRR forecasts and Stage-IV analysis in both regions. 

3.5. General Numerical Model Utility for Historical Event Analysis 
While the HRRR-based analyses and precipitation estimation prototypes comprised the 
central activity in Task 3’s primary goal to demonstrate the use of dynamical 
numerical weather models for the CO-NM REPS project, some additional work was 
performed using a more general instance of the WRF model (the same model core 
used by the HRRR model). This additional work was largely done in collaboration with 
Task 1, with the overarching goal of obtaining additional information to supplement 
the existing analyses of historical storms.  
 
As brief background and context for the simulations performed here, it is worth again 
noting that as computational power and numerical weather forecasting models have 
sufficiently improved over the past decade or so, it became generally possible to 
simulate “PMP storms” explicitly. Convection-permitting models are necessary to 
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simulate heavy precipitation, especially at sub-daily scales, as sufficiently high 
resolution (generally ≤4 km) permits explicit simulation of deep convection (e.g., 
Prein et al. 2015). Studies that have taken on this general approach for the specific 
application of PMP estimation include Abbs (1999), who used the CSU Regional 
Atmospheric Modeling System (RAMS) at 7-km grid spacing in an early attempt to 
address PMP with a dynamic weather model by simulating an extreme storm event in 
Australia. Other methods have been developed such as the atmospheric boundary 
condition shifting (ABCS) method by Ishida et al. (2015) to ensure that strongest 
moisture flux impacts a given watershed directly. Many studies have sought to 
downscale various reanalysis datasets to reconstruct major historic storms (sometimes 
with moisture maximization applied) to estimate PMP (Ohara et al. 2011; Ishida et al. 
2015a; Chen and Hossain 2016; Tan 2010). The historical event modeling done for the 
CO-NM REPS project and discussed below also falls into the general reanalysis-
downscaling class of possible dynamical model methods for PMP event investigation. 
 
Specific storms of interest for CO-NM REPS were initially selected by Task 1’s 
assessment of:  

1. Importance in existing (previous) PMP values,  
2. Lack of observations from which to derive robust storm patterns and 

magnitudes, and  
3. Uncertainty in the previous analysis results from the USACE/USBR/NWS 
4. Uncertainty in the previous basemap utilized by AWA to accurately capture the 

spatial distribution 
5. Limited surface observation data for rainfall analysis and storm maximization 

 
Thus, four historical events were initially investigated according to the above criteria:  

1. Rattlesnake, Idaho 1909 
2. Savageton, WY 1924 
3. Penrose, CO 1921 
4. Ward District, CO 1894 

 
And three additional cases were added at the end of the project at the request of the 
CO and NM project sponsors, again according to similar criteria as above:  

1. Elbert/Cherry Creek, CO 1935 
2. Opal, WY 1990 
3. Virslyvia, NM 1922 

3.5.1 Model set-up 
The historical event model simulations employ the Advanced Research Weather 
Research and Forecasting (WRF-ARW) modeling system, Version 3.7.1 (Skamarock et 
al. 2008). The model domains use 3- or 4-km grid spacing and 54 vertical levels; the 
small grid spacing (variable between 3- and 4-km dependent upon computational 
resources) affords the omission of convective parameterization and sufficiently 
resolves flow in and around fine-scale terrain features. Initial and lateral boundary 
conditions are provided by 6-hourly 20th Century Reanalysis version 2c (20CRv2c) data 
(Compo et al. 2011; and 
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https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html) Other 
relevant model physics choices include: Thompson microphysics (Thompson et al. 
2008); Yonsei University (YSU; Hong et al. 2006) planetary boundary layer, Monin-
Obukhov surface layer, Dudhia shortwave radiation (Dudhia 1989), Rapid Radiative 
Transfer Model (RRTM; Mlawer et al. 1997) longwave radiation scheme, and the Noah 
land surface model (Ek et al. 2003). Note that for cases involving additional 
experimentation and more simulations (e.g., 1924 Savageton) physical 
parameterization variation and sensitivity experiments were also performed. 
 
As one might expect for very old cases, the 20CR ensemble members displayed 
considerable synoptic meteorological variability across the events, and the number of 
simulations performed for each event varied between four and sixteen simulations 
depending on how much spread was found between the WRF ensemble members. The 
original plan was to execute four separate simulations (initialized using four different 
members of the 20CR ensemble) for each event. Provided a strong enough signal in 
the large-scale initial condition environment to produce significant precipitation, this 
number of simulations was thought to provide some indication (though hardly 
exhaustive) of variability/sensitivity to the different initial conditions employed. If 
there a lot of model spread was found across the WRF simulations for a particular 
event, or if the model output looked very different from the existing Task 1 historical 
SPAS analysis, then additional simulations beyond the standard initial four were 
performed. 

 
Figure 26. Example of omega (vertical velocity, shaded quantity where cool colors 
represent upward motion) across randomly-selected 20CRv2c (i.e., the initial 
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condition dataset) members (numbers denote member numbers 03, 06,…, 26 of 
20CRv2c). This is an example meant to demonstrate that the 20CR dataset provides 
ample spread in synoptic weather conditions to account for uncertainty in historical 
environmental conditions. 

3.5.2 Utility of Historical Simulations  
A specific example of the results and ultimate utility of one historical event case 
study is provided below. For additional detail and the results of other simulations, 
please refer to Volume II (Task 1) and Mahoney et al. (2018; included as Appendix A 
below as well).  
 
For each event, individual member model output was provided to AWA/Task 1, along 
with an “ensemble max” precipitation grid. The ensemble max grid retains the 
maximum event-total precipitation produced at each gridpoint and thus demonstrates 
how intense the event was simulated to be, gridpoint by gridpoint, across all event 
ensemble members.  
 

3.5.2.1. Example case study: Rattlesnake, Idaho 1909 
The Rattlesnake, Idaho 1909 flood was the result of a week-long series of inland-
penetrating atmospheric rivers (ARs). ARs are synoptic-scale weather systems that are 
inherently more predictable and better-represented by numerical models relative to 
small-scale convective storms. The combination of a large-scale, intense atmospheric 
feature that is more likely to be well-represented in the 20CR, plus steep orography in 
Idaho where the AR penetrated inland offers increased potential for successful 
numerical model simulation of extreme precipitation relative to more weakly-forced 
and/or non-orographically focused precipitation events.  
 
Indeed, for this case, a small ensemble (four simulations) offered immediate 
consistency among themselves and agreed closely with available historical 
observations (Figure 27, Figure 28). Task 1 incorporated the model output fields into 
their PMP calculation methods after confirming that the model output provided useful 
spatial pattern information when applied as an improved precipitation basemap (from 
which PMP estimation begins). The WRF simulations also helped to inform rain-snow 
delineation to identify regions with snow (which is less relevant to PMP). There was 
discussion of the use of single deterministic simulation data (and the benefit of 
internal physical consistent) vs. ensemble diagnostics (spread, ensemble max) for this 
case. However, since spread was generally low, these topics were left for future 
research consideration.  
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Figure 27. (left, 4-panel) WRF simulated storm-total precipitation (inches, as in color 
bar at right) for 1909 Rattlesnake, Idaho flood from four individual WRF simulations. 
(right) Ensemble maximum value from all four model runs combined precipitation 
(inches, as in color bar at right). 

 
Figure 28. (left) Existing SPAS analysis produced by Task 1 prior to obtaining WRF 
model results (inches, as in color bar at bottom) for 1909 Rattlesnake, Idaho flood. 
(right) WRF ensemble maximum storm-total precipitation from all four model runs 
(inches, as in color bar at right). Red boxes denote approximately same area. 
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Figure 29. (left) Times series of one individual ensemble member’s precipitation 
(inches) at a maximum grid point for 1909 Rattlesnake, Idaho flood; location denoted 
by star at right. (right) Storm-total precipitation from single WRF member (inches as 
shaded by color bar at bottom right). Time series provided merely as an example of 
temporal distribution information available from this type of model application. 
The 1909 Rattlesnake, Idaho WRF simulations demonstrated that reconstruction of 
major historical events via numerical modeling may beneficially supplement existing 
storm analyses and also improve spatial and temporal assumptions (e.g., Fig. 29) 
made with very limited observational data. This event (compared with others) 
suggests that the utility of WRF simulations may be proportional to role of topography 
in controlling rainfall spatial pattern and magnitude. This hypothesis requires further 
testing.  
 
Details on the rest of the historical simulations are omitted from the report at this 
time, as the work continues to be both a) in progress, and b) subject to outstanding 
important questions regarding interpretation and usability. Ongoing and future work 
will need to approach this specific dynamical model application of simulating 
historical storms with a more structured and exhaustive experimental design in order 
to establish the most appropriate application of results. For example, in some 
instances, such as the 1909 Rattlesnake example above, the most appropriate 
application may be to use simulated storm characteristics such as spatial and 
temporal distribution patterns with the aim of improving existing analyses. However, 
for cases where model simulations did not yield the expected, historical observation-
indicated precipitation event, the model data might instead be considered as 
evidence of erroneous observational data. Criteria (ideally objective, and perhaps 
based on ensemble skill or spread statistics) should be established by more rigorous 
testing in future work.  
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Finally, it is important to emphasize that the application of dynamical model methods 
and resulting data is not without its own set of challenges and subjectivities. Even in 
the relatively straightforward reanalysis-downscaling simulations performed here, 
there remains substantial subjectivity in model set-up, ensemble size, analysis 
approach, and more. Additional work is needed to compare intrinsic uncertainties 
from historical point observations/data-limited observational analysis outright vs. 
dynamical model simulations forced by historical reanalyses.  
  
Other dynamical model PMP applications and methods such as moisture maximization, 
boundary condition shifting, and climate model downscaling can offer numerically-
constrained PMP estimates, but (given that model data are combined with complex 
and somewhat subjective moisture- and storm-maximizing PMP processes), these 
often introduce even more significant subjectivities, limitations, and caveats. Such 
approaches may offer utility for limited-area, site-specific studies in particular 
instances, but the development and pursuance thereof may not ultimately offer as 
much long-term value toward achieving an objective, NWP-generated upper-bound of 
precipitation. Additional possible future paths and recommendations for investment 
of time and NWP resources are discussed in the future work section.  

4. Dynamical Model Applications Used by Tasks 1 and 

2  
The primary objective of Task 3 was to demonstrate ways in which a dynamical 
weather model-based framework might benefit future iterations of PMP, or more 
generally, extreme precipitation estimation. However, additional interests include 
whether or not the existing 5-year model dataset could provide useful information 
regarding the frequency, variability, and intensity of extreme precipitation in ways 
that might support existing PMP estimation methods and/or specific parts of the 
traditional PMP/extreme precipitation frequency estimation process. To this end, 
considerable testing, evaluation, and collaboration took place between the three 
Tasks.  
 
As detailed in Volume II, Task 1 used HRRR model for the adjustment of precipitation 
frequency climatologies to represent rainfall-only values (Vol. II, Sect. W), and WRF 
dynamical model case studies for improved spatial patterns in SPAS basemaps for the 
Rattlesnake, ID November 1909 (SPAS 1274), Ward District, CO May 1894 (SPAS 1614) 
storms , and Penrose, CO 1921 (SPAS 1294) (Vol. II, Sect. P).  
 
As detailed in Volume III, Task 2 used the HRRR model for specific storm data to 
supplement a variety of spatial precipitation patterns used to develop watershed 
precipitation-frequency relationships using stochastic storm generation methods (Vol. 
III, Sect 3.4). A total of 5 storm dates were provided from the HRRR forecast model 
dataset, from which Task 2 developed 56 MEC and 304 Local Storm spatial patterns, 
which helped to increase the sample size in the suite of storms used in the stochastic 
storm generation process.  
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As Task 3 was by definition a prototype demonstration of the potential utility of 
dynamical model data, there was a considerable learning curve between the tasks to 
all understand the needs and potential of the various groups and tools. As all of the 
consultants became increasingly familiar with one another’s challenges and 
capabilities, exchanges and collaborations such as those listed above become 
possible. However, by the project’s completion, model products and applications that 
would have potentially been useful to Tasks 1 and 2 became increasingly apparent. 
Tasks 1 and 2 provided specific input for how Task 3 tools and/or data could be 
leveraged in the future, including:  
 

● Task 1: 
o Refine WRF reanalysis to re-create past extreme events  
o Continue analysis of HRRR output to define rain only regions and high 

elevation rainfall relationships 
o Investigate assumptions regarding saturated atmosphere in the storm 

adjustment process 
o Investigate assumptions of increasing moisture in a storm and when that 

changes the storm’s dynamics (e.g. using a model to evaluate the 1.50 
upper limit of the IPMF) 

o Utilize HRRR output to better quantify/understand application of 
transposition limits 

o Generate model-based storm center mass curves and/or regional storm 
center mass curves to aid/bolster temporal distribution analysis (5min 
and 1hr) 

o Generate model-based local and general storm ARFs by region to 
compare to SPAS and/or other studies 

o Perform additional seasonal analysis (rain/snow/total precipitation) and 
climatologies to compare against PRISM/NOAA 

● Task 2:  
o Use a dynamical modeling framework to better quantify changes (in time 

and space) in the in-place moisture maximization factor (IPMF) 
procedure associated with the PMP methodology used by Task 1.  

o Longer duration precipitation accumulation periods (i.e. 48-hour, as 
opposed to HRRR’s 18-hour operational forecast length) to help resolve 
high-elevation decreases in precipitation. 

o Creation of hourly virtual “stations” for use in observation-based storm 
precipitation-reconstructions for use in our Move-the-Earth process for 
ascertaining areal precipitation frequency estimates. 

o Storm specific temperature & freezing level height time series for use in 
creating representative templates for hydrologic modeling. 

o Create high-resolution, model precipitation fields with a longer period of 
record.  
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5. Conclusions  
The work completed under CO-NM REPS Task 3 demonstrates the potential utility of 
high-resolution dynamical model data to support extreme precipitation estimation for 
dam safety risk assessment applications. While the short temporal period of HRRR 
coverage imposes a severe limitation on the degree to which maximum precipitation 
model output can be used outright in this study, model demonstrations summarized 
here highlight potential benefits to dynamical modeling frameworks, including:  
 

● High-resolution (in space and time), spatially continuous precipitation 
estimation 

● Data produced by solving physical equations of the atmosphere (vs. 
interpolation, interpretation of limited observations), reducing reliance on 
spatial, temporal, physical assumptions (e.g., storm transposition, storm 
templates, moisture maximization, etc.) 

● Coverage in remote, data-sparse regions locations lacking observations (of 
particular benefit in regions of complex and/or high-elevation topography) 

● Explicit model representation of precipitation type (snow, rain, hail) 
● Reconstruction of major historical events via numerical modeling may 

supplement existing storm analyses, improve spatial and temporal assumptions 
made with very limited observational data 

● Straightforward methods for quantification of uncertainty 

6. Future Research and Development  
The Task 3 dynamical model prototype exercises illuminated multiple potential 
directions for future efforts. Three “tiers” are presented in order of increasing degree 
of the approximate investment likely to be required. Note that all ideas presented 
would benefit from (i.e., their success might rely heavily on) the production of a long-
term, frozen model, high-resolution dynamical-model produced reanalysis or 
reforecast dataset as described in more detail in “Tier III”.  
 
Tier I: Use existing model data to support specific requests for model-generated 
products by Task 1- and Task 2-type approaches.  
 
Future studies could consider adding a dynamical modeling component in which the 
types of model data analysis and sharing that have occurred for CO-NM REPS would be 
part of the study from its inception (e.g., providing basemaps, storm patterns, case 
studies, etc.) To assess how a generic dynamical-modeling-type of effort might be 
improved for future studies, Task 1 and Task 2 provided input regarding what types of 
model capabilities, tools, or products that would have been useful to have had for 
CO-NM REPS. Specific responses from each respective task are documented in Section 
III.F, above.  
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Tier II: Hybrid approach using existing model data in combination with longer-term 
observations to maximize space-for-time relationships 
 
The main strength of the HRRR dataset within the CO-NM REPS framework was the 
fine temporal and spatial resolution of the precipitation forecasts, despite the short 
period of “record”. The limited (5-year) period of record means that the far tail of 
the precipitation probability density function (PDF; i.e., very rare events) is less 
robust. However, it is hypothesized that 5 years is sufficient to define the PDF for 
more frequent events. Thus, we can derive a reasonable PDF at each model gridpoint 
(at least for precipitation thresholds that are relatively common). For points where 
there exist high-quality, long-term rain gauge observations, a PDF can be derived 
which better represents less frequent events. By parameterizing both model and 
observed PDFs, regression relationships can be calculated between the parameters of 
observed PDFs (generally for a single accumulation interval, e.g., 24 hours), and those 
of model PDFs. These relationships can then be applied elsewhere in the model grid, 
effectively extending the model PDFs out to very rare events, and enabling 
calculation of extreme precipitation recurrence intervals on the entire model grid. 
Similar methods could be used to calculate long-term area or basin-average PDFs, by 
applying observation-based corrections to model forecast area- and basin-average 
PDFs. 
 
Tier III: Generation of a longer-term, high-resolution dynamical model dataset in 
combination with advanced statistical post-processing  
 
There is mounting desire across many user groups and sectors of the meteorological 
community for long-term, high-resolution reanalysis/reforecast data (e.g., Hamill et 
al. 2013). CO-NM REPS Task 3 work has highlighted the utility of model data at high 
space and time resolution for the applications of dam safety and flood risk 
management, but can only prototype potential capabilities given the short 5-year 
period of record. While deterministic, high-resolution model data and analysis are 
highly valued for skillful intensity estimates that are continuous in space and time, 
there has also been a notable recognition among some key Federal agencies of the 
weaknesses of a single-value, deterministic extreme precipitation estimation 
approach (i.e., PMP). This has led to a notable shift toward probabilistic, risk-
informed decision-making frameworks for infrastructure design by some agencies and 
decision-making bodies in the dam safety community (e.g., Reclamation, Nuclear 
Regulatory Commission). NWP applications for PMP may also be best suited for a 
framework that more generally improves the estimation of heavy precipitation 
potential/likelihood at various decision-making thresholds. Therefore, an annual 
exceedance probability (AEP)-based framework that optimally combines high-
resolution, spatially and temporally continuous data with a long period of coverage 
should be investigated to comprehensively address the question of how NWP can best 
serve the dam safety and flood risk decision-making communities.  
 
There are many ways in which such an effort might be undertaken; we list below a 
collection of possible suggested starting points:  
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1. Survey and confirm with end users how model data would be optimally used 
(e.g., confirm decision-making thresholds, how model information would be 
brought into existing/future decision-making process, etc.).  

2. Generate a historical, high-resolution model reanalysis and/or reforecast 
dataset. For example, one might consider: 

a. 20CRv3 forcing (1/4-degree resolution, more than 80 members. Would 
want to test use of ensemble mean vs. ensemble max/min/individual 
members).  

b. 1 cycle per day, include extra (~3 – 6) hours to allow for spin-up (e.g., 
Trapp et al. 2011). 

c. 1860s to present. 
d. HRRR-based compute benchmarking suggests ~0.5million core hours per 

year of simulation time (i.e., 150y = 75 million core hours) for a single 
24-hour forecast once per day for full continental US (smaller domains 
could be run, e.g., just the Western US). 

e. Could also consider adaptive grid modeling framework (e.g., MPAS at 
https://mpas-dev.github.io/) to expend computational resources only in 
specific locations or instances (e.g., occurrence of significant 
precipitation); reduction or elimination of operational-grade data 
assimilation could/should also be eliminated to avoid both increased 
computational cost as well as inconsistent data input across a long 
period of record (as observational data sources change). 

f. Provided that computational resources allow, an ensemble approach is 
recommended with members defined by different initial condition 
members, stochastic perturbations to the environment and/or model 
physics, or a combination of the above. 

3. Use advanced statistical methods to: 
a. Enhance calculation of probabilities (increase effective period of record, 

extend to longer return periods) based on regional/historical similarities 
(e.g., Scheuerer and Hamill 2015). 

b. Create point-to-areal/watershed-average values.  
c. Consider running a dynamical hydrologic modeling system (e.g., WRF-

Hydro model) using historical reforecast inputs.  
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