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ABSTRACT 

A Three-dimensional Spectral Prediction Equation 

by 

T. J. Simons 

A generalization of the two-dimensional spectral forecast equations 

is suggested, whereby the atmospheric flow field in horizontal and verti- 

cal directions is represented in terms of orthogonal functions, which are 

eigenfunctions of certain differential operators in the three-dimensional 

equations. The technique is applied to the quasi-geostrophic potential 

vorticity equation. 

The quasi-geostrophic potential vorticity is related to the stream 

function of the horizontal wind by a three-dimensional Laplacian in which 

the vertical derivative is modified by the standard static stability of 

the atmosphere. The orthogonal functions are chosen to be characteristic 

functions of this quasi-Laplacian operator for a given variation of static 

stability with height. The resulting spectral form of the potential vor- 

ticity equation is very similar to that of the barotropic vorticity equa- 

tion. 



Introduction 

The complete numerical weather prediction equations cannot be solved 

exactly due to the nonlinear character of the equations. Thus, the meteoro- 

logical literature is concerned with either solutions to the linearized 
- 

equations or solutions by finite-difference techniques. Although the set 

of complete dynamical equations governing the motions of the atmosphere 

is now being solved by high-speed computers, there is no doubt that the 

large-scale motions of the atmosphere are described rather well by much 

simpler forms of the equations. In fact, when this was realized the modern 

developments in dynamic meteorology were initiated. Thus the historical 

studies of the stability properties of the linearized equations are based 

on some form of the quasi-geostrophic approximation which was up to recent 

.years also a basic element of the numerical prediction models. 

Although the nonlinear prediction equations are usually solved by 

finite-difference techniques in all three coordinate directions, this is 

not necessarily the best way. Time and again there have been suggestions 

in the literature proposing to replace the finite differences by one or 

another form of analytical function. In the early years of numerical fore- 

casting, Eady (1952) and Eliassen (1952) introduced the two-parameter models 

in which the vertical layered structure of the atmosphere was rejected in 

favor of a representation in terms of given functions of the vertical coor- 

dinate. A few attempts have been made to extend this representation to 

more parameters but a satisfactory solution has not yet been proposed. On 

the other hand, useful horizontal representations of atmospheric variables 

in terms of orthogonal polynomials have been introduced in numerical meteo- 

rology by Silberman (1954) and later by Lorenz (1960) and Platzman (1960). 

The polynomials are chosen to be characteristic functions of the horizontal 

Laplace operator occurring in the quasi-geostrophic relationship between 

vorticity and height field. 

The purpose of this paper is to extend the above ideas by represen- 

ting the atmosphere in both horizontal and vertical directions in terms of 

orthogonal polynomials which are chosen in a logical manner. The technique 

is applied to the quasi-geostrophic potential vorticity equation which be- 

came very popular in early numerical prediction studies and recently has 



heating, the equations governing the motions in the atmosphere conserve 

the total vorticity and the total energy of the atmosphere. It is here 

required that the simplified equations arc consistent in this respect. 

'ihe horizontal wind can I,c writtcrl n s  the sum of a nondivergent 

and an irrotational component 

where J, is a stream function and x a velocity potentia1,lk is the vertical 
unit vector and V is the horizontal gradient operator. As usual, pressure 

is used as the vertical coordinate. If 5 and D denote the vertical com- 

ponent of vorticity and the horizontal divergence, respectively, then 

from (1) 
-.-.- -. - .  - 

The horizontal equations of motion may be transformed into the 

vorticity equation and the divergence equation. A well-known simplified 

form of the divergence equation is the following quasi-geostrophic 

approximation 

where fo is a constant value of the Coriolis parameter f = 251 sin I$, If 
in addition the vorticity equation is truncated to the form 

where J represents the Jacobian operator, then these equations satisfy the 

consistency requirements mentioned above. 

The atmosphere is assumed to be always in quasi-hydrostatic balance 

and thus the vertical equation of motion reduces to 



values. This has an important consequence. A l l  the terms i n  (9) are  

re la ted  t o  the height f i e l d  according t o  (5) and ( 7 ) .  Ilowever, the 

standard value of the s t a t i c  s t a b i l i t y  is indcpcndcnt of  the streamfield 

as defined by (10) while thc  first two terms of (9) w i  11 depend on the  

stream f i e l d  only. T h i s  implies t ha t  the stream function and the s t a t i c  

s t a b i l i t y  are  e f fec t ive ly  uncoupled. 

Now l e t  us define 

Then from (2),  (4), and (6) we obtain 

With (S), (7), and (10) we may wri te  (9) as 

where we defined 

Different ia t ing (13) with respect  t o  pressure, noting (11) , and adding 

(12), we f ind  the  predic t ion equation f o r  the stream function 

This is the quasi-geostrophic potent ia l  vo r t i c i t y  equation, which has 

become very popular i n  dynamic meteorology, and has been discussed recent ly  

by Ph i l l ips  (1963). 

The purpose of t h i s  paper is t o  f ind  a v e r t i c a l  representation of 

the dependent var iables  $ and o which w i l l  s a t i s f y  the  system of Eqs. (11) 

t o  (15) i n  a logical  manner. In  mathematical terms we seek the  eigen- 

solutions of the  v e r t i c a l  derivative-operator i n  (15) f o r  given boundary 

conditions a t  the  top and bottom of the model atmosphere. The usual 

assumption is  t h a t  o = 0 a t  top and bottom. By (13) t h i s  imposes the 



t o  extrapolate (15) i n  time. We w i l l ,  however, derive a s e r i e s  represen- 

t a t i o n  f o r  the  ve r t i c a l  motion which is a t  l e a s t  consistent  with the 

l inear ized forms of both (12) and (13). I t  is  c l ea r  from (15) and (16) 

t h a t  the  eigenfunctions a r e  dependent on the ve r t i c a l  var ia t ion of S(p). 

I f  S could be taken t o  be constant thcn 9 could be represented by a s e r i e s  

of cosines and w could be writ ten as a se r i e s  of s ines .  I t  w i l l  be shown 

i n  the following t ha t  a d i f fc rcn t  d i s t r ibu t ion  of S i s  more appropriate. 

3 .  Standard S t a t i c  S t ab i l i t y  

The s t a b i l i t y  parameter S defined by (14) may be writ ten i n  terms 

of the  lapse r a t e  of temperature y - - a T / a z  by v i r t ue  of the  hydrosta t ic  

equation 

I t  i s  seen t ha t  S i s  inversely proportional t o  the s t a t i c  s t a b i l i t y  

(yd - y) and hence S w i l l  be cal led the s t a t i c  " ins tabi l i ty" .  We w i l l  

now consider the  standard value of t h i s  s t a t i c  i n s t a b i l i t y  t o  be used 

i n  (15). 

Observations show tha t  the  large-scale s t a t i c  s t a b i l i t y  (yd - y) 

tends t o  decrease with height i n  the  middle troposphere, then increases 

sharply a t  tropopause l eve l ,  and becomes nearly constant with height i n  

the  stratosphere.  I t  may be seen immediately from (19) t h a t  the  var ia t ion  

of the  s t a t i c  i n s t a b i l i t y  S is qu i te  d i f fe ren t .  Gates (1961) has measured 

the  mean ve r t i c a l  d i s t r ibu t ion  of various s t a t i c  s t a b i l i t y  parameters f o r  

January and July  averaged over 45 United Sta tes  radiosonde s t a t i ons .  The 

values of S obtained by averaging the  January and Ju ly  values a r e  repre- 

sented by the  points i n  Fig. l a .  The var ia t ion with height is  seen t o  be 

nearly l i nea r  up t o  a ce r ta in  level  which may be taken t o  represent the 

tropopause. Above the tropopause the  s t a t i c  s t a b i l i t y  (y - y) and the  
d 

temperature a re  quasi-constant and thus from (19) 

where pt denotes the tropopause level .  



Then from (21) 

By definition, the mathematical top is rc;~chcd for S = 0, that is for z = 1. 

- -. If pl denotes this uppcr bound;iry, thcn  I'ronl f 23)  

.. -..---- - ... .- 

Fig. 2s shows the variation with height of yd - y and the physical and 

mathematical upper boundary for pt = 175 mb and so = 85 mb2secZ/m2. By 

definition, y - y = 10°C/km for p = pt and thus from (19) we have - . . - --. d -- - -- 
s = 1.7 mb2sec2/m2 using the standard atmosphere temperature of 218°K t 
in the stratosphere. The values of so, st, and pt are based on Fig. la. 

From equation (22) then 

and hence from (25) 

It may be noted here that the model is completely determined by the values 

of s and pt. It would seem that the tmpopause level as suggested by 
0 

Gates' data is rather high. Fig. 2b shows a model with the tropopause 

level closer to that of the standard atmosphere. The value of so is the 

same as in Fig. 2a but pt = 225 mb and so from (19) with yd - y = 10°C/km 

we get s = 2.8 mb2sec2/m2. Then from (22) and (25) 
t 

The same figure also includes a more unstable configuration based on the 

value s = 100 mb2sec2/m2. For that case 
0 



then (30) and (31) become 

a lt 
X -  

ax = i, fo r  X - 0, L 

I Equation (33) i s  Bessells  equation of order zero. The appropriate p a r t i -  

cular  solut ion is Bessel 's function of the f i r s t  kind of order zero 

'Ihis function is  re la ted t o  the Bessel function of order one as follows 

Clearly, the boundary condition a t  x = 0 is  s a t i s f i e d .  With (36) the  

remaining boundary condition becomes 

'Ihe eigenvalues a r e  given by the i n f i n i t e  s e r i e s  of posi t ive  roots  of 
1 

(37). Thus Am = - x i f  xm are  the  zeros of  the Bessel function of order 2 m 
one. The f i r s t  eigenvalue Xo = 0.  The corresponding eigenfunctions a re  

The functions Qm are  orthogonal on the in te rva l  (0,2) with weight function 

x. By using (33) t o  (38) one may derive 



then from (36) and (40) 

and from (44) . . - -  --- - 

. - --- - -  
- - -- - -  -- - -  - - -- I -, . .L- - - 

t ... . -- --The functions Xm a r e  zeM f o r  z = 1 and a l s o  f o r  z = -0 which follows --  -- 
-- from (37) .  I t  w i l l  be shown i n  the  next sec t ion  t h a t  t h e  functions Xm a r e  

the required eigensolutions f o r  the  v e r t i c a l  motion. Here it may be noted 

t h a t  the  following orthogonali ty r e l a t i o n s  hold. F i r s t ,  it can be shown 

r_easlily,---e-g., by partial -integration +f i 4 1 j  -and m e  of - ( r l S )  and4f47] ;- --- 

t h a t  

I t  fallows from (41) and (47) t h a t  

and from (46) and (48) t h a t  
--- --.-. . . . .. . 

The first few polynomials a r e  shown i n  Fig. 4 p l o t t e d  agains t  a l i n e a r  

height sca le .  

5. Spectral  Predict ion Equation 

.The predic t ion equation w i l l  first be wr i t t en  i n  non-dimensional 

form. Defining u E s i n  4 where ( i s  l a t i t u d e  and taking R-I as  time u n i t ,  

where Q i s  the  speed of t h e  e a r t h ' s  ro ta t ion ,  and taking t h e  radius of t h e  

ea r th  as u n i t  of  length, w e  get  f 2 2n s i n  9 = 2p and (27) becomes 



! i+?ns were checked by computing the orthogonality relationship (41 ) . 
'1:lble 2 shows the first few interaction coefficients. Clearly the inter- 

actions bear some resemblance to those of cosine functions, the major 

~nteractions occurring for k = m + j. 
The computation of the nonlinear t e n  in the spectral prediction 

cquation may be somewhat simplified. Noting that Jmjk = J and 
mkj 

I 
-y 6 a = -I and recalling the definition (57) we may write (58) as 

Y ~ S  

where 

, F = - 
Barn 

FaBm and so the product PaBm IyGB is symmetric in a and 6. 

Pi.irther I = 0 for a = S. Hence the double sum may be written 
va6 

:k.- to the symmetry of Jdj, the double sum in (62) may also be reduced 

eo a suegnation of the form 

~.cjce, however, that here the diagonal terms (j = k) do not disappear. 

Eq. (61) satisfies to predict the stream field. The vertical motion 

li,ay then be computed from the diagnostic equations (12) or (13). In 

~!)ndimensional form the vorticity equation becomes 



and t h e  ad iaba t i c  equation 

Now l e t  the  v e r t i c a l  motion be represented by the  s e r i e s  

where Xm(z) i s  given by (45) and hence i s  zero f o r  2.0 and z=1,  thus 

s a t i s f y i n g  t h e  v e r t i c a l  boundary condit ions.  Note a l s o  t h a t  Xo (z) = 0 

according t o  (45) s ince  A o = 0.  Subst i tu t ing t h e  expansions (55) and 

(65) i n t o  (63), applying t h e  orthogonali ty re la t ionsh ips  (54), (41), and 

i n  p a r t i c u l a r  (49) , we obta in  

where 

For completeness we may derive the  s p e c t r a l  form of  (64). Using t h e  

orthogonali ty r e l a t i o n s  (48) and (50) we obtain 

where 

where the  function Hagm is  obtained by a p a r t i a l  in tegra t ion  a f t e r  

applying (46). Eqs. (68) and (69) may, of course, be obtained d i r e c t l y  



For ac tual  computations t h e  s c r i c s  w j l l  bc t r u n c a t e d  t o  a f i n i t e  s e t .  

However, following Platzman (1960) wc CiJll show t h a t  (74)  i s  s t i l l  

s a t i s f i e d  if al l  componcnts of' thcx s c t  arc: irlcludcd i n  thc double sum 

i n  (61) and (62) . 'Ihus tllc. rc  lilt i or~sl~ i 1, (71 ) is used as a check on 

time-truncation e r r o r s .  

6. Conclus'ion 

Three-dimensional atmospheric flow f i e l d s  may be represented i n  

terms of orthogonal polynomials which are  c h a r a c t e r i s t i c  functions f o r  

c e r t a i n  d i f f e r e n t i a l  operators occurring i n  t h e  fo recas t  equations. In 

the  present  paper the  orthogonal functions a re  chosen t o  be eigenfunctions 

of  the  three-dimensional quasi-Laplacian operator  i n  the  po ten t i a l  vor- 

t i e i t y  equation. Thus t h e  functions representing the  v e r t i c a l  v a r i a t i o n  

o f  the  flow f i e l d  a re  determined by the  va r ia t ion  of  the  standard s t a t i c  

s t a b i l i t y  with height .  A simple re la t ionsh ip  between the  s t a b i l i t y  para- 

meter and pressure is suggested by observations and has been used i n  t h i s  

paper. Another s e t  of eigenfunctions might be found f o r  a d i f f e r e n t  

va r ia t ion  of s t a t i c  s t a b i l i t y  with height .  However, t h e  approximation 

used is  thought t o  be s a t i s f a c t o r y  f o r  describing t h e  large-scale  atmos- 

pher ic  motions. Moreover, a more accurate descr ip t ion of t h e  standard 

s t a t i c  s t a b i l i t y  is  not j u s t i f i e d  i n  view of the  approximations made i n  

deriving t h e  quasi-geostrophic po ten t i a l  v o r t i c i t y  equation. 

The s p e c t r a l  form of the  po ten t i a l  v o r t i c i t y  equation is  present ly  

being used i n  a study of barot ropic  and ba roc l in ic  i n s t a b i l i t y  i n  the  

atmosphere. The main object ives  of  t h a t  study are :  (1) comparison of 

l i n e a r  and nonlinear i n s t a b i l i t y ,  (2) evaluation of the influence of the  

i n i t i a l  form of the  per turbat ion on i ts  growth-rate, and (3) t h e  r e l a t i o n  

between s t a b i l i t y  c h a r a c t e r i s t i c s  and t runcat ion of the  s e r i e s  represen- 

t a t i o n  f o r  t h e  flow f i e l d  with respect  t o  the  hor izonta l  and the  v e r t i c a l .  

The spec t ra l  predic t ion equation derived i n  t h i s  paper is  p a r t i c u l a r l y  

well-suited f o r  t h i s  kind of study. 



The author wisl~es to tlratlk Dr. i'crdinand Bacr for his guidance 

" during the course of t h i s  research. 
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