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by
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ABSTRACT

A generalization of the two-dimensional spectral forecast equations
is suggested, whereby the atmospheric flow field in horizontal and verti-
cal directions is represented in terms of orthogonal fﬁnctions, which are
eigenfunctions of certain differential operators in the three-dimensional
equations. The technique is applied to the quasi-geostrophic potential
vorticity equation.

The quasi-geostrophic potential vorticity is related to the stream
function of the horizontal wind by a three-dimensional Laplacian in which
the vertical derivative is modified by the standard static stability of
the atmosphere. The orthogonal functions are chosen to be characteristic
functions of this quasi-Laplacian operator for a given variation of static
stability with height. The resulting spectral form of the potential vor-
ticity equation is very similar to that of the barotropic vorticity equa-

tion.



1. Introduction

The complete numerical weather prediction equations cannot be solved
exactly due to the nonlinear character of the equations. Thus, the meteoro-
logical literature is concerned with either solutions to the linearized
equations or solutions by finite-difference techniques. Although the set
of complete dynamical equations governing the motions of the atmosphere
is now being solved by high-speed computers, there is no doubt that the
large-scale motions of the atmosphere are described rather well by much
simpler forms of the equations. In fact, when this was realized the modern
developments in dynamic meteorology were initiated. Thus the historical
studies of the stability properties of the linearized equations are based

on some form of the quasi-geostrophic approximation which was up to recent

-years also a basic element of the numerical prediction models.

Although the nonlinear prediction equations are usually solved by
finite-difference techniques in all three coordinate directions, this is
not necessarily the best way. Time and again there have been suggestions
in the literature proposing to replace the finite differences by one or
another form of analytical function. In the early years of numerical fore-
casting, Eady (1952) and Eliassen (1952) introduced the two-parameter models
in which the vertical layered structure of the atmosphere was rejected in
favor of a representation in terms of given functions of the vertical coor-
dinate. A few attempts have been made to extend this representation to
more parameters but a satisfactory solution has not yet been proposed. On
the other hand, useful horizontal representations of atmospheric variables
in terms of orthogonal polynomials have been introduced in numerical meteo-
rology by Silberman (1954) and later by Lorenz (1960) and Platzman (1960).
The polynomials are chosen to be characteristic functions of the horizontal
Laplace operator occurring in the quasi-geostrophic relationship between
vorticity and height field.

The purpose of this paper is to extend the above ideas by represen-
ting the atmosphere in both horizontal and vertical directions in terms of
orthogonal polynomials which are chosen in a logical manner. The technique
is applied to the quasi-geostrophic potential vorticity equation which be-

came very popular in early numerical prediction studies and recently has
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heating, the equations governing the motions in the atmosphere conserve

the total vorticity and the total encrgy of the atmosphere. It is here

required that the simplified cquations arc consistent in this respect.
The horizontal wind can be written as the sum of a nondivergent

and an irrotational componcnt
W =1k x Vi + Vy (1)

where Y is a stream function and x a velocity potential, Ik is the vertical
unit vector and V is the horizontal gradient operator. As usual, pressure
is used as the vertical coordinate. If ¢ and D denote the vertical com-
ponent of vorticity and the horizontal divergence, respectively, then

from (1)

r = V2y ) D = v2y (2)

The horizontal equations of motion may be transformed into the
vorticity equation and the divergence equation. A well-known simplified
form of the divergence equation is the following quasi-geostrophic

approximation
0 = -V2¢ + fyv2y (3)

where f; is a constant value of the Coriolis parameter f = 2Q sin ¢. If

in addition the vorticity equation is truncated to the form
3T
== -JW, T+ ) - £D (4)

where J represents the Jacobian operator, then these equations satisfy the
consistency requirements mentioned above.
The atmosphere is assumed to be always in quasi-hydrostatic balance

and thus the vertical equation of motion reduces to

== -a (5)



values. This has an important consequence. All the terms in (9) are
related to the height field according to (5) and (7). However, the
standard value of the static stability is independent of the streamfield
as defined by (10) while thc first two terms of (9) will depend on the
stream field only. This implies that the stream function and the static
stability are effectively uncoupled.

Now let us define
d )
. 1
5 = 3¢ * (fk x vy (11)
Then from (2), (4), and (6) we obtain
d .o _ ¢ 0w
o %+ £) = £o52 %)

With (5), (7), and (10) we may write (9) as

d 3y, _ W
® & " F (13)
where we defined
-1
P 0T . 14
S = - g G - 39, (14)
P

Differentiating (13) with respect to pressure, noting (11), and adding
(12), we find the prediction equation for the stream function
L w2y e £ gy 2 (2] =0
t ap " op (15)

This is the quasi-geostrophic potential vorticity equation, which has
become very popular in dynamic meteorology, and has been discussed recently
by Phillips (1963).

The purpose of this paper is to find a vertical representation of
the dependent variables ¢ and w which will satisfy the system of Eqs. (11)
to (15) in a logical manner. In mathematical terms we seek the eigen-
solutions of the vertical derivative-operator in (15) for given boundary

conditions at the top and bottom of the model atmosphere. The usual

assumption is that w = 0 at top and bottom. By (13) this imposes the



to extrapolate (15) in time. We will, however, derive a series represen-
tation for the vertical motion which is at least consistent with the
linearized forms of both (12) and (13). It is clear from (15) and (16)
that the eigenfunctions are dependent on the vertical variation of S(p).
If S could be taken to be constant then ¢ could be represented by a series
of cosines and w could be written as a serics of sines. It will be shown

in the following that a diffcrent distribution of S is more appropriate.

3. Standard Static Stability

The stability parameter S defined by (14) may be written in terms
of the lapse rate of temperature y - -3T/9z by virtue of the hydrostatic
equation

-1

P § 2

P 3T a gp

Sz-5 (- = (vg - v) (19)
R “9p cp R2T d

It is seen that S is inversely proportional to the static stability
(yd - y) and hence S will be called the static "instability". We will
now consider the standard value of this static instability to be used
in (15).

Observations show that the large-scale static stability (yd - vY)
tends to decrease with height in the middle troposphere, then increases
sharply at tropopause level, and becomes nearly constant with height in
the stratosphere. It may be seen immediately from (19) that the variation
of the static instability S is quite different. Gates (1961) has measured
the mean vertical distribution of various static stability parameters for
January and July averaged over 45 United States radiosonde stations. The
values of S obtained by averaging the January and July values are repre-
sented by the points in Fig. la. The variation with height is seen to be
nearly linear up to a certain level which may be taken to represent the
tropopause. Above the tropopause the static stability (yd - v) and the

temperature are quasi-constant and thus from (19)

~ .
g = —L——Z p2: cp? P <P, (20)
R°T(vq - ¥)

where P denotes the tropopause level.
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Then from (21) s=5 @1-2) (24)

By definition, the mathematical top is rcached for § = 0, that is for z =

If p; denotes this upper boundary, then from (23)

ot (25)

and also
AR S, (26)

Fig. 2a shows the variation with height of Yq Y and the physical and
mathematical upper boundary for p, = 175 mb and s = 85 mbZsec?/m?. By
definition, fg =7 = 10°C/km for p = P, and thus from (19) we have

s, = 1.7 mb2sec?/m? usihg the standard atmosphere temperature of 218°K

t

in the stratosphere. The values of S5 and p, are based on Fig. la.

s
t’
From equation (22) then

_ 85 - 1.7 _

= 8% .98

and hence from (25)

p, = 1000 - 222 = 160 ub
It may be noted here that the model is completely determined by the values
of S and Py - It would seem that the tropopause level as suggested by
Gates' data is rather high. Fig. 2b shows a model with the tropopause
level closer to that of the standard atmosphere. The value of S, is the
same as in Fig. 2a but p, = 225 mb and so from (19) with v, - v = 10°C/km
we get s, = 2.8 mb2sec?/m?. Then from (22) and (25)

q = .967 p, = 200 mb

The same figure also includes a more unstable configuration based on the

value s_ = 100 mb2sec?/m?. For that case

q = .972 P, * 200 mb

i1z
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then (30) and (31) become

N -
Fret 2 3y e g (33)
ol X 9
oX
3 e
S, = 4
X = 0 for x = 0, 2 (34)

Equation (33) is Bessel's equation of order zero. The appropriate parti-

cular solution is Bessel's function of the first kind of order zero

) i © (_)i - 21
¢ = JO(AX) = 1=ZO 'EI—!F (—2') (35)

This function is related to the Bessel function of order one as follows

dJo(x)
. (36)

Clearly, the boundary condition at x = 0 is satisfied. With (36) the

remaining boundary condition becomes
J, (@A) =0 (37)

The eigenvalues are given by the infinite series of positive roots of
(37). Thus Am = %—xm if X are the zeros of the Bessel function of order

one. The first eigenvalue by = 0. The corresponding eigenfunctions are
¢m x) = Jo (Amx) mn=0; 1; 2, « . .. (38)

The functions @m are orthogonal on the interval (0,2) with weight function

X. By using (33) to (38) one may derive

2 o} m#n

f x¢m x) @n x) dx = <<: , (39)
a 2 (22) m=n
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then from (36) and (40)

dZm
1 -2z) i mem(z) (46)
and from (44)
R . ﬂdXﬂr,”__“m_“uw,4~_,"_v“m.m P SR
‘nlm = Tz (47)

The functions Xm are zero for z = 1 and also for z = 0 which follows
from (37). It will be shown in the next section that the functions Xm are
the required eigensolutions for the vertical motion. Here it may be noted
that the following orthogonality relations hold. First, it can be shown
readily, e.g., by partial integration of (41) and use of (45) and (47),
that

1 1 0 m#n
z
[ x (2) X (2) 17 °© <1 (48)
0 m=n
It follows from (41) and (47) that
1 dxn o] m#£n
/ z (2) —Ei'dz = <: (49)
0 A - m=n
m
and from (46) and (48) that
1 dzm o} m#n
[ 47 X, () dz = < (50)
0 A m=n

The first few polynomials are shown in Fig. 4 plotted against a linear

height scale.

5. Spectral Prediction Equation

The prediction equation will first be written in non-dimensional
form. Defining p = sin ¢ where ¢ is latitude and taking Q~! as time unit,
where @ is the speed of the earth's rotation, and taking the radius of the
20 sin ¢ = 2u and (27) becomes

earth as unit of length, we get f
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ticns were checked by computing the orthogonality relationship (41).
table 2 shows the first few interaction coefficients. Clearly the inter-
actions bear some resemblance to those of cosine functions, the major
lateractions occurring for k = m + j.

The computation of the nonlinear term in the spectral prediction

¢quation may be somewhat simplified. Noting that ijk = Jmkj and
I‘Hu = —IYGB and recalling the definition (57) we may write (58) as
&y m i

(cy = de) 1%— = 21Rywym i) %% FaBm IYQB (61)
where

FaBm = z;::;:.wak ij [ca - cg * o(dk-dj)] Jmkj (62)
Mow F = - i fo 4
fow B om FaBm and so thg product FaBm IYaB is symmetric in a and B.

Further IYGB = 0 for a = B. Hence the double sum may be written

[o B

1

722 .
a B a B=0

+.> to the symmetry of Jmkj’ the double sum in (62) may also be reduced

to a summation of the form

> >

k j=0o ;

wwte, however, that here the diagonal terms (j = k) do not disappear.
Eq. (61) satisfies to predict the stream field. The vertical motion
may then be computed from the diagnostic equations (12) or (13). In

sndimensional form the vorticity equation becomes

-f
s, w0 w3, T a
(st*mom  wn )WV 25— p; 3z k5
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and the adiabatic equation
iy B W8 gy . __©°
+ - T ) o(l-z) z w (64)
Now let the vertical motion be represented by the series

w(X, u, z, t) = % z_ 0. () Y, 061 X (2) (65)

where Xm(z) is given by (45) and hence is zero for z=0 and z=1, thus
satisfying the vertical boundary conditions. Note also that Xo(z) =0
according to (45) since Ao = 0. Substituting the expansions (55) and
(65) into (63), applying the orthogonality relationships (54), (41), and

in particular (49), we obtain

dv, .

cY " 212YwYm -

£
> > W - =20 o (66)
a B Y PoP1 Y

Nf -

where

Cuim = 8y = %) 2;-_32 Vak Y5 Jmkj (67)

For completeness we may.derive the spectral form of (64). Using the
orthogonality relations (48) and (50) we obtain

dy e £
A el o H I R, k.. Y.
%“n Tat 2 za:g aBm “yoB P, - P; “ym (68)
where
H =0 %JZ bak a5 @ - dy) T (69)

where the function H, is obtained by a partial integration after

gm
applying (46). Eqs. (68) and (69) may, of course, be obtained directly
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For actual computations the serics will be truncated to a finite set.
However, following Platzman (1960) wc can show that (74) is still
satisfied if all components of the sct arce included in the double sum
in (61) and (62). Thus the relationship (74) is uscd as a check on

time-truncation errors.

6. Conclusion

Three-dimensional atmospheric flow fields may be represented in
terms of orthogonal polynomials which are characteristic functions for
certain differential operators occurring in the forecast equations. In
the present paper the orthogonal functions are chosen to be eigenfunctions
of the three-dimensional quasi-Laplacian operator in the potential vor-
ticity equation. Thus the functions representing the vertical variation
of the flow field are determined by the variation of the standard static
stability with height. A simple relationship between the stability para-
meter and pressure is suggested by observations and has been used in this
paper. Another set of eigenfunctions might be found for a different
variation of static stability with height. However, the approximation
used is thought to be satisfactory for describing the large-scale atmos-
pheric motions. Moreover, a more accurate description of the standard
static stability is not justified in view of the approximations made in
deriving the quasi-geostrophic potential vorticity equation.

The spectral form of the potential vorticity eqﬁation is presently
being used in a study of barotropic and baroclinic instability in the
atmosphere. The main objectives of that study are: (1) comparison of
linear and nonlinear instability, (2) evaluation of the influence of the
initial form of the perturbation on its growth-rate, and (3) the relation
between stability characteristics and truncation of the series represen-
tation for the flow field with respect to the horizontal and the vertical.
The spectral prediction equation derived in this paper is particularly
well-suited for this kind of study.
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m=1

=2

=3

- j=1 j=2 =3 3=4
k=0 1. 0. 0. 0. 0.
k=1 0. 1. 0. 0. 0.
k=2 0. 0. 1. 0. 0.
k=3 0. 0. 0. I 0.
k=4 0 0. 0. 0. 1.
k=0 0. 1. 0. a. 0
k=1 1. -.874663428461 .886783279415 -.010591634078 -.001139174754
k=2 0. .886783279415 -.749717066387 .878610435014 -.013381827554
k=3 0. -.010591634078 .878610435014 -.727026943622 .876164779497
k=4 0. -.001139174754 -.013381827554 876164779497 -.718838439866
k=0 0. 0. 1. 0. 0.
k=1 0 .886783279415 -.749717066387 .878610435014 -.013381827554
k=2 1. -.749717066387 .517959559900 -.615062150507 .867803973740
k=3 0. .878610435014 -.615062150507 .482675398311 -.587059840133
k=4 D -.013381827554 .867803973740 -.587059840133 470902423164
k=0 0. 0. 0. 1. 0.
k=1 0. -.010591634078 .878610435014 -.727026943622 876164779497
k=2 0 .878610435014 -.615062150507 .482675398311 -.587059840133
k=3 s -.727026943622 .482675398311 -.472960848340 .439708915718
k=4 0. 876164779497 -.587059840133 .439708915718 -.439766904532
k=0 0. 0. 0. 0. 1.
k=1 0. -.001139174754 -.013381827554 876164779497 -.718838439866
k=2 0. -.013381827554 .867803973740 -.587059840133 470902423164
k=3 0. 876164779497 ~.587059840133 .439708915718 -.439766904532
k=4 1. -.718838439866 470902423164 ~.439766904532 .387851034112

Table 2: Interaction coefficients

Jmk 3



