Orbital Mechanics and Analytic

 Modeling of Meteorological Satellite Orbits
Applications to the Satellite Navigation Problem

by
Eric A. Smith

Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado

Coborado State

> Department of Atmospheric Science

ORBITAL MECHANICS AND ANALYTIC MODELING OF METEOROLOGICAL SATELLITE ORBITS
 Applications to the Satellite Navigation Problem

by

Eric A. Smith

An analysis is carried out which considers the relationship of orbit mechanics to the satellite navigation problem, in particular, meteorological satellites. A preliminary discussion is provided which characterizes the distinction between "classical navigation" and "satellite navigation" which is a process of determining the space time coordinates of data fields provided by sensing instruments on meteorological satellites. Since it is the latter process under consideration, the investigation is orientated toward practical applications of orbit mechanics to aid the development of analytic solutions of satellite orbits.

Using the invariant two body Keplerian orbit as the basis of discussion, an analytic approach used to model the orbital characteristics of near earth satellites is given. First the basic concepts involved with satellite navigation and orbit mechanics are defined. In addition, the various measures of time and coordinate geometry are reviewed. The two body problem is then examined beginning with the fundamental governing equations, i.e. the inverse square force field law. After a discussion of the mathematical and physical nature of this equation, the Classical Orbital Elements used to define an elliptic orbit are described. The mathematical analysis of a procedure used to calculate celestial position vectors of a satellite is then outlined. It is shown that a transformation of Kepler's time equation (for an elliptic orbit) to an expansion in powers of eccentricity removes the need for numerical approximation.

The Keplerian solution is then extended to a perturbed solution, which considers first order. time derivatives of the elements defining the orbital plane. Using a formulation called the gravitational perturbation function, the form of a time variant perturbed two body orbit is examined. Various characteristics of a perturbed orbit are analyzed including definitions of the three conventional orbital periods, the nature of a sun-synchronous satellite, and the velocity of a noncircular orbit.

Finally, a discussion of the orbital revisit problem is provided to highlight the need to develop efficient, relatively exact, analytic solutions of meteorological satellite orbits. As an example, the architectural design of a satellite system to measure the global radiation budget without deficiencies in the space time sampling procedure is shown to be a simulation problem based on "computer flown" satellites. A set of computer models are provided in the appendices.
Chapter Page
1.0 INTRODUCTION 1
2.0 BASIC CONCEPTS 4
2.1 Orbit mechanics and navigation 4
2.2 Satellite navigation modeling 6
2.3 Satellite orientation 7
2.4 Applications of a satellite navigation model. 8
3.0 TIME 10
3.1 Basic systems of time 10
3.2 The annual cycle and zodiac 17
3.3 Sidereal time 21
4.0 GEOMETRICAL CONSIDERATIONS 23
4.1 Definitions of latitude 23
4.2 Cartesian - spherical coordinate transformations. 28
4.3 Satellite - solar geometry 29
5.0 THE TWO BODY PROBLEM 34
5.1 The inverse square force field law. 34
5.2 Coordinate systems and coordinates. 40
5.3 Selection of units. 44
5.4 Velocity and period 46
5.5 Elliptic orbits 50
5.6 The Gaussian constant 53
5.7 Modified time variable. 55
5.8 Classical Orbital Elements. 56
5.9 Calculation of celestial pointing vector 59
5.10 Rotation to terrestrial coordinates 77
6.0 PERTURBATION THEORY 81
6.1 Concept of gravitational potential 81
6.2 Perturbative forces and the time dependence of orbital elements. 86
6.3 Longitudinal drift of a geosynchronous satellite. 98
6.4 Calculations required for a perturbed drift 99
6.5 Equator crossing period 101
6.6 Required inclination for a sun synchronous orbit. 105
6.7 Velocity of a satellite in an elliptic orbit. 106
Chapter Page
7.0 THE ORBITAL REVISIT PROBLEM. 109
7.1 Sun-synchronous orbits. 109
7.2 Multiple satellite system 113
8.0 CONCLUSIONS 116
9.0 ACKNOWLEDGEMENTS 117
10.0 REFERENCES 118
APPENDIX A--EXAMPLES OF NESS, NASA, ESA, AND NASDA ORBITAL ELEMENT TRANSMISSIONS。 120
APPENDIX B--COMPUTER SOLUTION FOR AN EARTH SATELLITE ORBIT (PERTURBED TWO BODY) 133
APPENDIX C--COMPUTER SOLUTION FOR FINDING A SYNODIC PERIOD 141
APPENDIX D--COMPUTER SOLUTION FOR A SOLAR ORBIT (PERTURBED TWO BODY) 144
APPENDIX E-COMPUTER SOLUTIONS FOR A SOLAR ORBIT (APPROXIMATE AND NON-LINEAR REGRESSION) 150
APPENDIX F--LIBRARY ROUTINES FOR ORBITAL SOFTWARE. 154
APPENDIX G--COMPUTER ROUTINE FOR DETERMINING THE INCLINATION REQUIRED FOR A SUN-SYNCHRONOUS ORBIT. 160

1.0 INTRODUCTION

The topic of this investigation is orbital mechanics and its relationship to the satellite navigation problem. Since the term "satellite navigation" denotes a variety of concepts, it is important to refine a definition for purposes of this study. We say, in general, that satellite navigation is a process of identifying the space and time coordinates of satellite data products (in this case meteorological satellites). Note that this characterization departs somewhat from the classical usage of navigation which implies the definition and maneuvering of the position of ships, aircraft, satellites, etc. A more exact definition is given in Chapter 2. A fundamental component of any satellite navigation system is a model of the satellite's orbital properties. This investigation is primarily concerned with the mathematical and physical nature of near earth meteorological satellite orbits and thus meteorological satellite navigation requirements. The study also considers the basic nature of coordinate systems and the various measures of time.

There are two very general orbital application areas insofar as meteorological satellites are concerned. The first and more traditional application of orbital analysis is the process of tracking the position and motion of satellites, by the space agencies, so as to provide ephemeris and antenna pointing information to ground readout stations and operations command facilities. Considering that in this process, the actual characteristics of an orbital plane are defined, this can be referred to as a navigation process. However, for our purposes, we shall consider this process as an "orbital tracking" problem.

The second application is the analytic treatment of orbital motion in a model designed for processing the meteorological data, generated by spacecraft instrumentation. In this case, there are very different computational and operational restraints than in the case of orbit tracking. Primarily we are concerned with developing efficient and quick computational routines that retain a relatively high degree of orbital position accuracy, but are not bogged down with the multiplicity of external forces that orbit tracking models must consider.

The practical outcome of the study is a set of orbital computer models, which are adaptable in a very general fashion, to a variety of analytic near-earth satellite navigation systems. The usability of these models is insured because they are based on the conventional orbital elements available from the primary meteorological satellite agencies, i.e. the National Environmental Satellite Service (NESS), the National Aeronautical Space Administration (NASA), the European Space Agency (ESA), and the National Space Development Agency (NASDA) of Japan. The reader may refer to Appendix A for an explanation.

Meteorological satellites, whether they are of the experimental or operational type, are classified as either geosynchronous ($\simeq 24$ hour period) or polar low orbiter ($\simeq 100$ minute period) by the above agencies. The low orbiters may be placed in either sun-synchronous or non-sunsynchronous orbit. All of these satellites are in nearly circular orbit, and in general, are at altitudes at which atmospheric drag is not a significant factor over the prediction time scale under consideration ($\simeq 1-2$ weeks). This investigation will be addressed to these types of orbits.

Chapter 2.0 considers some basic concepts which are crucial to an understanding of the satellite navigation problem. Chapter 3.0 provides a set of definitions and an explanation of the various measures of time. A discussion of station coordinates (latitude) is given in Chapter 4.0 along with some fundamental geometric definitions. Chapter 5.0 represents the major portion of the analysis, that is, a discussion of the two body orbit problem and a method to calculate orbital position vectors given a set of "Classical Orbital Elements". Chapter 6.0 considers the time varying properties of an orbit and goes on to look at the resultant effects of the aspherical gravitational potential of the earth on the orbital characteristics of a satellite. The topic of the orbital revisit problem is considered in Chapter 7.0. Finally, appendices are included which provide a set of computer models which can be used to calculate orbital position vectors and the various orbital periods which are discussed in the chapter on perturbation theory.

A principle reference used in this analysis is the very fine compendium on Orbit Mechanics by Pedro Ramon Escobal (1965), hereafter EB. This work stands alone as an aid to solving orbital mechanics problems faced by satellite workers and scientists. Other very helpful references used in this study were The Handbook on Practical Navigation by Bowditch (1962) and a translation of a Russian text on orbit determination by Dubyago (1961). The latter work provides a very interesting historical sketch of the development of orbital mechanics and man's understanding of the motion of celestial bodies.

2.0 BASIC CONCEPTS

2.1 Orbit Mechanics and Satellite Navigation

The following definitions are essential to an understanding of the ensuing analysis:

Orbital Mechanics: A branch of celestial mechanics concerned with orbital motions of celestial bodies or artificial spacecraft.

Celestial Mechanics: The calculation of motions of celestial bodies under the action of their mutual gravitational attractions.

Astrodynamics: The practical application of celestial mechanics, astroballistics, propulsion theory, and allied fields to the problem of planning and directing the trajectories of space vehicles.

Navigation (General): The process of directing the movement of a craft so that it will reach its intended destination: subprocesses are position fixing, dead reckoning, pilotage, and homing.

Navigation (Satellite): The process of determining a set of unique transformations between the coordinates of satellite data points in a satellite frame of reference and their associated terrestrial or planetary coordinates. (This definition should be contrasted with "Satellite Image Alignment", which is a non-analytic, mostly subjective process in which the two or more images to be aligned often have different aspect ratio characteristics.)

The major areas of Orbital Mechanics are:

1. Satellite Orbit Injection
a. Thrust (Ballistic, Propulsion) forces
b. Drag forces
c. Lift forces
2. Determination of Orbital Elements
a. Position vector, velocity vector, and initial time $\left(\vec{r}, \dot{\vec{r}}, t_{0}\right)$
b. Two position vectors and times ($\vec{r}_{1}, t_{1}, \vec{r}_{2}, t_{2}$)
c. Three pairs of azimuth-elevation angles and times

$$
\left[\left(\Phi_{1}, H_{1}, t_{1}\right),\left(\Phi_{2}, H_{2}, t_{2}\right),\left(\Phi_{3}, H_{3}, t_{3}\right)\right]
$$

d. Slant-range, range-rate, and time observations

$$
\left[\left(d_{1}, \dot{d}_{1}, t_{1}\right),\left(d_{2}, \dot{d}_{2}, t_{2}\right) \ldots\right]
$$

e. Mixed observations (angles, ranges, range-rates, times)
3. Orbital Properties and Tracks
a. Orbital elements
b. Velocities and periods
c. Position vectors
d. Direct and retrograde orbits
e. Equator crossing data
f. Orbital revisit frequencies
4. Orbital Analytics (Keplermanship)
a. Nodal passages
b. Satellite rise and set times
c. Line of sight periods and eclipses
d. Orbital architecture

The ensuing analysis will be primarily concerned with the topics outlined in parts 3 and 4. Since meteorological satellite navigation methods are generally not affected by how satellites are placed in orbit nor how the various space agencies track these satellites so as to produce orbital elements (other than the associated errors), we will put aside any further discussion of parts 1 and 2, and instead concentrate on the material outlined in parts 3 and 4.

2.2 Satellite Navigation Modeling

Satellite navigation modeling can be considered to be a five part problem:

1. The time dependent determination of the spacecraft orbital position in an inertial coordinate system.
2. The time dependent determination of the spacecraft orientation (attitude) in an inertial coordinate system.
3. The specification or determination (time dependent) of the optical paths of the imaging or sounding instrument with respect to the spacecraft.
4. The integration of the above static and dynamic aspects of the spacecraft into a model which can provide measurement pointing vectors in the inertial frame of reference.
5. The transformation of the inertial pointing vectors to pointing vectors in the preferred (non-inertial) coordinate system.

The first requirement of an analytic navigation technique is a model which can solve for satellite position at any specified time. In fact, the determination of spacecraft orientation is absolutely dependent on knowledge of satellite position if ground based or star based attitude determination techniques are applied. A discussion of this topic can be found in Smith and Phillips (1972) and is presently being extended by Phillips (1979). With the knowledge of spacecraft position and orientation, the dynamics of the actual on-board instrumentation can then be considered. Finally, upon integration of these three dynamic aspects of an orbiting satellite into an appropriate model, pointing vectors can be obtained which fix the relationship between an instrument field-of-view and a terrestrial coordinate (latitude, longitude, height).

2.3 Satellite Orientation

It is important to distinguish between the effect of varying satellite position and varying satellite orientation on the apparent earth scene. First of all it is instructive to define the various terms associated with satellite orientation:

Attitude: Orientation of the principal axis of a spacecraft, e.g. the spin axis, with respect to the principal axis (spin axis) of the earth, usually given in terms of declination and right ascension with respect to a celestial frame of reference.

Precession: The angular velocity of the axis of spin of a spinning rigid body, which arises as a result of steady uneven external torques acting on the body.

Nutation: A high frequency spiral, bobbing, or jittering motion of a spinning rigid body, about a mean principal axis, due to asymmetric weight distribution or short period torque modulation.

Wobble: An irregular vacillation of a body about its mean principal axis due to non-solid body characteristics.

Figure 2.1 has been provided to illustrate these definitions.

PRECESSION

Figure 2.1 Dynamics of Satellite Orientation

Variation in the orientation of a meteorological satellite can lead to both translations and rotations of earth fields with respect to a fixed satellite field-of-view. These apparent motions are superimposed on real motions due to variation in the orbital position. A requirement of any satellite navigation model is the inclusion of procedures to separate the apparent motions from the real motions which are essentially independent processes. Therefore, this investigation will be devoted to the determination of orbital position as these calculations generally preface the determination of the remaining navigational parameters.

2.4 Applications of a Satellite Navigation Model

Finally, an important question concerning satellite navigation is: "What does a navigation model provide?" Essentially, it provides the following three capabilities:

1. The capability of placing grid and/or geographic-topographic annotation information in or on the data. This process should be called a "Gridding" process.
2. A means to specify the terrestrial or planetary coordinate of a given data point coordinate, or conversely, to specify the data point coordinate corresponding to a given terrestrial or planetary coordinate. This process should be called a "Navigational Interrogation" process.
3. A framework for transforming the raw satellite imagery into alternate cartographic (map) projections. The actual process of reorganizing the raw data into a new projection should be called a "Mapping" process.

Note the actual navigation process only involves specifying, calculating, or determining the appropriate parameters inherent to the navigation model and utilizing them to calculate coordinate transformations。

3.0 TIME

3.1 Basic Systems of Time

Any navigational process, by its very nature, involves various systems of time. Therefore, we need the following definitions:

Mean Solar Time (MST): Time that has the mean solar second as its unit and is based on the mean sun's motion. One mean solar second is $1 / 86,400$ of a mean solar day. One solar day is 24 hours of mean solar time。

Greenwich Mean Time (GMT): Mean solar time at the meridian of Greenwich, England. Also referred to as Universal Time (UT0), Zulu Time, Z-Time, or Greenwich Civil Time:

$$
\begin{equation*}
G M T=M S T+n \tag{3.1}
\end{equation*}
$$

where n is the number of time zones to the west of the Greenwich meridian as shown in Figure 3.1. There are also higher order systems of Universal Time (UT1, UT2) which are corrected for variations in the earth's rotational rate due to secular, irregular, periodic seasonal and periodic tidal terms and polar motion due to solar and lunar gravitational effects on the earth's equatorial bulge. These corrections are not significant for the time periods we are considering.

Figure 3.1 Time Zones

Ephemeris Time (ET): A uniform measure of time defined by laws of dynamics and determined in principle from the orbital motions of the planets, particularly of the earth. One ephemeris second (ISU:1960) is $1 / 31556925.9747$ of a tropical year defined by the mean motion of the sun in longitude at the epoch 1900, January 0, 12 hours (12:00 GMT, Dec. 31, 1899). An ephemeris day is 86,400 ephemeris seconds. The earth's rotation suffers periodic and secular variations in rotation so that ephemeris time is defined by:

$$
\begin{equation*}
E T=G M T+\Delta t \tag{3.2}
\end{equation*}
$$

where Δt is an annual increment tabulated in the American Ephemeris and Nautical Almanac. For instance, using values from the American Ephemeris and Nautical Almanac (1978), Table 3.1 is generated:

Table 3.1: Ephemeris Time Correction Increments

Year	Δt
1956.5	31.52
1957.5	31.92
1958.5	32.45
1959.5	32.91
1960.5	33.39
1961.5	34.80
1962.5	34.23
1963.5	35.43
1964.5	36.14

Note that Δt can not be calculated in advance. It is determined from observed and predicted positions of the moon.

It is also worth noting that the change in the time increment from year to year is fairly insignificant. The result of this
characteristic of ephemeris time, is that short term orbital predictions ($\simeq 5$ years) can effectively ignore ephemeris corrections. Although this may simplify operational satellite orbit prediction, incremental correction must be included when considering long term orbital calculations such as historical earth-sun configurations. Table 3.2 represents a listing of incremental corrections from the American Nautical and Ephemeris Almanac (1978).

Atomic Time (AT): A measure of time based on the oscillations of the U.S. Cesium Frequency Standard (National Bureau of Standards, Boulder, Colorado). The standard is based on the U.S. Naval Observatory's suggested value of $9,192,631,770$ oscillations per second of the cesium atom - isotope 133. The reference epoch has been defined as January 1, $19580^{h_{0} m_{0}}{ }^{s}$ GMT. The standard time scale to which U.S. orbital tracking stations are synchronized is the Universal Time Coordinated (UTC) system. This system is derived from an atomic time scale. Prior to 1972 the UTC system operated at a frequency offset from the AT system. Since January 1, 1972 the UTC system is derived from a rubidium atomic frequency standard. The new measurements used to convert to UTC come from various global stations and are thus referred to as Station Time (ST).

Tropical Year: Period of one revolution of the earth measured between two vernal equinoxes. Equal to 365.24219879 mean solar days or 365 days, 5 hours, 48 minutes, 46 seconds or $31,556,925.9747$ ephemeris seconds. Also referred to as an Astronomical Year, Equinoctial Year, Natural Year or Solar Year.

Anomalistic Year: Period of one revolution of the earth measured between perhelion to perhelion (see Figure 3.2). Equal to 365.259641204

Table 3.2: Ephemeris Time Correction Table (From the 1978 American Ephemeris and Nautical Almanac)

$\begin{gathered} \text { Date } \\ \left(0^{\mathrm{A}} \mathrm{UT}\right) \end{gathered}$	$\Delta \mathrm{T}(\mathrm{A})$	$\triangle \mathrm{UT1}$	$\underset{(0450}{\text { Date }}$	$\Delta \mathrm{T}(\mathrm{A})$	$\triangle \mathrm{UT1}$		$\Delta \mathrm{T}(\mathrm{A})$	$\triangle \mathrm{VTI}$
1956		${ }^{5}$	1964	5	,	1972	${ }^{\text {s }}$	
Jan. 1	+31.34	-0.08	Apr. 1	+35.22	-0.05	Jan. 1	+42.22	-0.04
Jan. 4	31.34	-. 08	July 1	35.40	- . 11	Apr. 1	42.52	-. 34
Jan. 4	31.34	- . 02	Aug. 31	35.47	- . 11	June 30	42.82	- . 64
Apr. 1	31.43	- . 04	Sept. 1	35.47	- . 01	July 1	42.82	+ . 36
July 1	31.52	- . 07	Oct. 1	35.52	-. 02	Oct. 1	43.07	+. 11
Oct. 1	31.56	-. 01	Dec. 31	35.73	-. 11	Dec. 31	43.37	-. 19
1957			1965			1973		
Jan. 1	$+31.67$	-0.04	Jan. 1	+35.73	-0.01	Jan. 1	+43.37	+0.81
Apr. 1	31.79	- . 06	Feb. 28	35.86	-. 06	Apr. 1	43.67	+. 51
July 1	31.92	-. 07	Mar. 1	35.86	+ . 04	July 1	43.96	+. 22
1958			July 1	36.14	+. 02	Dec. 31	44.48	. 30
Jan. 1	+32.17	-0.04	Aug. 31	36.24	-. 01	1974		
Apr. 1	32.32	-. 05	Sept. 1	36.24	+. 09	Jan. 1	+44.48	+0.70
July 1	32.45	- . 06	Oct. 1	36.31	+. 06	Apr. 1	44.73	+.45
Oct. 1	32.52	-. 01				July 1	44.99	+. 19
1959			${ }_{\text {Jan. }} 1966$	+36.54	-0.05	Oct. 11 Dec. 31	45.20 45.47	- $\mathrm{-} .02$
Jan. 1	+32.67	-0.03	Apr. 1	36.76	-. 03			
Apr. 1	32.80	- . 03	July 1	36.99	- . 02	1975		
July 1	32.91	- . 06	Oct. 1	37.18	+ . 02	Jan. 1	+45.47	+0.71
Oct. 1	33.00	. 00				Apr. 1	45.73	+. 45
1960			$\stackrel{1967}{\text { Jan. } 1}$	+37.43	+0.01	July 1	45.98 46.18	+ 20
Jan. 1	+33.15	-0.01	Apr. 1	+37.65	+ +02	Dec. 31	46.45	- . 27
Apr. 1	33.28	- . 03	July 1	37.87	+. 04			
July 1	33.39 33.45	-.02 +.03	Oct. 1	38.04	+. 10	${ }_{\text {Jan. }}^{1976}$		
			1968			Apr. 1	(+46.7$)$	+0.73)
1961			Jan. 1	+38.29	+0.09	July 1	(47.0)	+ .2)
Jan. 1	+33.58	+0.02	Jan. 31	38.37	+. 09	Oct. 1	(47.2)	. 0)
Apr. 1	33.70	+ . 02	Feb. 1	38.37	- . 01			
July 1	33.80	+. 04	Apr. 1	38.52	. 00	1977		
July 31	33.81		July 1	38.75	+. 01	Jan. 1		
Aug. 1 Oct. 1	33.81 33.86	+.01 +.04	Oct. 1	38.95	+ . 04	Apr. 1	(47.7)	
Oct. 1	33.86	+. 04	1969			July 1 Oct. 1	$\binom{47.9}{48.1}$	
1962			Jan. 1	+39.20	+0.03			
Jan. 1	+33.99	+0.04	Apr. 1	39.45	+. 02	1978		
Apr. 1	34.12	+. 01	July 1	39.70	+. 01	Jan. 1	(+48.4)	
July 1 Oct.	34.23 34.31	.	Oct. 1	39.91	+. 03	Apr. 1	(48.6)	
			1970			Oct. 1	(49.1)	
1963			Jan. 1	+40.18	0.00			
Jan. 1	+34.47	-0.03	Apr. 1	40.45	-. 03	1979		
Apr. 1	34.58	- . 05	July 1	40.70	- . 05	Jan. 1	(+49.3)	
July ${ }^{\text {Oct. }} 1$	34.73 34.83	- 0.09	Oct. 1	40.89	-. 01			
Oct. 31	34.90	- . 12	1971					
Nov. 1	34.90	-. 02	Jan. 1	+41.16	-0.04			
			Apr. 1	41.41	-. 05			
1964			July 1	41.68	- . 08			
Man. 1	+35.03 +35.22	-0.08 -0.15	Oct. ${ }^{1}$ Dec. 31	41.92 +42.22	-.09 -0.15			

The quantity $\Delta T(A)=32918+T A I-U T 1$ provides a first approximation to $\Delta T=E T-U T$, the reduction from Universal to Ephemeris Time. TAI is the scale of International Atomic Time formally introduced on 1972 January 1, but extrapolated to previous dates; UT1 is the observed Universal Time, corrected for polar motion. The correction $\triangle \mathrm{UT} 1=\mathrm{UT1}-\mathrm{UTC}$ is given for use in connection with broadcast time signals, which are now UTC in most countries. Coded values of Δ UT1 are now given in the primary time signal emissions, and may be as much as $\pm 0^{3} 8$. Discontinuities in UTC can occur at 0 UT on the first day of a month (exception: 1956 Jan. 4, discontinuity at $19^{\mathrm{b}} \mathrm{UT}$). Special entries are given for the two dates bracketing any discontinuity greater than $0: 02$. Values within parentheses are either provisional (two decimals) or extrapolated (one decimal). Additional information is given in the explanation concerning time scales (page 527) and concerning the use of ΔT with ephemerides (pages $539-541$).

Table 3.2 Continued

CORRECTIONS

The American Ephemeris, 1970-1978

The corrections tabulated below should be added to $\mathrm{A}_{\mathrm{E}}+180^{\circ}$ and $\mathrm{A}_{\mathrm{s}}+180^{\circ}$ in the Ephemeris for Physical Observations of Jupiter for the years 1970-1978. These corrections should also be subtracted from the Longitude of Central Meridian (System I and System II).

1970	+0.03
1971	+0.02
1972	+0.02
1973	+0.01
1974	0.00
1975	-0.01
1976	-0.02
1977	-0.03
1978	-0.03

The American Ephemeris, 1972-1980
All the negative values of the Astrometric Declination of the four principal minor planets, Ceres, Pallas, Juno, Vesta, for the years 1972-1980 require a correction of -0.1 .
For example, on page 281 of this volume:
1978 Aug. 16 for $-31^{\circ} 15{ }^{\prime} 52^{\prime \prime} .4$ read $-31^{\circ} 15^{\prime} 52^{\prime \prime} .5$
The American Ephemeris, 1972-1977
The mean motion for the Earth in the table of mean elements at the top of page 216 is referred to a moving equinox while the mean motions for Mercury, Venus and Mars are referred to a fixed equinox. For consistency, the Earth's mean motion should also have been referred to a fixed equinox; in which case its value should have been 0.985609 .

CIVIL CALENDAR

| New Year's Day Sun. | Jan. | 1 | Labor Day | Mon. | Sept. | 4 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Lincoln's Birthday | Sun. | Feb. | 12 | Columbus Day | Mon. | Oct. | 9 | |
| Washington's Birthday | . . Mon. | Feb. | 20 | Veterans Day. | Sat. | Nov. | 11 | |
| Memorial Day Mon. | May | 29 | General Election Day | . | . | Tue. | Nov. | 7 |
| Independence Day | Tue. | July | 4 | Thanksgiving Day | | Thu. | Nov. | 23 |

mean solar days or 365 days, 6 houns, 13 minutes, 53 seconds. Keep in mind that the perhelion is continually precessing.

Figure 3.2 Nodal Passages of the Earth's Orbit (From Bowditch, 1962)

Julian Day: The number of each day, counted consecutively since the beginning of the present Julian period on January 1, 4713 B.C. The Julian Day begins at noon, 12 hours later then the corresponding civil day (see Table 3.3).

Julian Calendar: A calendar replaced by the Gregorian Calendar. The Julian year was 365.25 days, the fraction allowed for the extra day every fourth year (leap year). There are 12 months, each 30 or 31 days except for February which has 28 days or in leap year 29. "Thirty days hath September, April, June, and November. All the rest have 31, excepting February, which has 28, although in leap years 29."

Table 3.3: Julian Day Number (From EB, 1965)

Days Elapsed at Greenwich Noon, A.D. 1950-2000

IIAK	JAN. 0		reb. 0		APR. 0 MAY 0		JUNE 0	July 0	alcg. 0 sep. 0		oct. 0	Nov. 0 dec. 0	
19.0	2.43	3282	3313	3341	3372	3402	3433	3463	3494	3525	3555	3586	3616
1491		3647	3678	3706	3737	3767	3798	3828	3859	3890	3920	3951	3981
1952		4012	4043	4072	4103	4133	4164	4194	4225	4256	4286	4317	4347
1953		4378	4409	4437	4468	4498	4529	4559	4590	4621	4651	4682	4712
1954		4743	4774	4802	4833	4863	4894	4924	4955	4986	5016	5047	5077
14.5	243	5108	5139	5167	5198	5228	5259	5289	5320	5351	5381	5412	5442
1956		5473	5504	5533	5564	559.4	5625	5655	5686	5717	5747	5778	5808
14.97		5839	5870	5898	5929	5959	5990	6020	6051	6082	6112	6143	6173
1958		6204	6235	6263	6294	6324	6355	6385	6416	64.47	6477	6508	6538
1454		6569	6600	6628	6659	6689	6720	6750	6781	6812	6842	6873	6903
1960	243	6934	6965	6994	7025	7055	7086	7116	7147	7178	7208	7239	7269
1461		7300	7331	7359	7390	7420	7451	7481	7512	7543	7573	7604	7634
146?		7665	7696	7724	7755	7785	7816	7846	7877	7908	7938	7969	7999
106.3		8030	8061	8089	8120	8150	8181	8211	8242	8273	8303	8334	8364
1964		8395	8426	8455	8486	8516	8547	8577	8608	8639	8669	8700	8730
1965	243	8761	8792	8820	8851	8881	8912	8942	8973	9004	9034	9065	9095
1466		9126	9157	9185	9216	9246	9277	9307	9338	9369	9399	9430	9460
1967		9491	9522	9550	9581	9611	9642	9672	9703	9734	9764	9795	9825
1:963		9856	9887	9916	9947	9977	*0008	*0038	*0069	*0100	*0130	* 0161	*0191
1969	2	0222	0253	0281	0312	0342	0373	0403	0434	0465	0495	0526	0556
1970	244	0587	0618	0646	0677	0707	0738	0768	0799	0830	0860	0891	0921
1971		0952	0983	1011	1042	1072	1103	1133	1164	1195	1225	1256	1286
1972		1317	1348	1377	1408	1438	1469	1499	1530	1561	1591	1622	1652
1973		1683	1714	1742	1773	1803	1834	1864	1895	1926	1956	1987	2017
1974		2048	2079	2107	2138	2168	2199	2229	2260	2291	2321	2352	2382
1975	244	2413	2444	2472	2503	2533	2564	2594	2625	2656	2686	2717	2747
1976		2778	2809	2838	2869	2899	2930	2960	2991	3022	3052	3083	3113
1477		3144	3175	3203	3234	3264	3295	3325	3356	3387	3417	3448	3478
1978		3509	3540	3568	3599	3629	3660	3690	3721	3752	3782	3813	3843
1979		3874	3905	3933	3964	3994	4025	4055	4086	4117	4147	4178	4208
1980	244	4239	4270	4299	4330	4360	4391	4421	4452	4483	4513	4544	4574
1981		4605	4636	4664	4695	4725	4756	4786	4817	4848	4878	4909	4939
1982		4970	5001	5029	5060	5090	5121	5151	5182	5213	5243	5274	5304
1983		5335	5366	5394	5425	5455	5486	5515	5547	5578	5608	5639	5669
1984		5700	5731	5760	579 i	5821	5852	5882	5913	5944	5974	6005	6035
1985	244	6066	6097	6125	6156	6186	6217	6247	6278	6309	6339	6370	6400
1486		6431	6462	6490	6521	6551	6582	6612	6643	6674	6704	6735	6765
1987		6796	6827	6855	6886	6916	6947	6977	7008	7039	7069	7100	7130
1988		7161	7192	7221	7252	7282	7313	7343	7374	7405	7435	7466	7496
1989		7527	7558	7586	7617	7647	7678	7708	7739	7770	7800	7831	7861
1190	244	7892	7923	7951	7982	8012	8043	8073	8104	8135	8165	8196	8226
1991		8257	8288	8316	8347	8377	8408	84.38	8469	8500	8530	8561	8591
1992		8622	8653	8682	8713	8743	8774	8804	8835	8866	8896	8927	8957
1993		8988	9019	9047	9078	9108	9139	9169	9200	9231	9261	9292	9322
1994		9353	9384	9412	9443	9473	9504	9534	9565	9596	9626	9657	9687
1995	244	9718	9749	9777	9808	9838	9869	9899	9930	9961	9991	*0022	${ }^{*} 0052$
1496	245	0083	0114	0143	0174	0204	0235	0265	0296	0327	0357	0388	0418
1947		0449	0480	0508	0539	0569	0600	0630	0661	0692	0722	0753	0783
1998		0814	0845	0873	0904	0934	0965	0995	1026	1057	1087	1118	1148
11999		1179	1210	1238	1269	1299	1330	1360	1391	1422	1452	1483	1513
2000	254	1544	1575	1604	1635	1665	1696	1726	1757	1788	1818	1849	1879

Gregorian Calendar: The calendar used for civil purposes through-
out the world, replacing the Julian calendar and closely adjusted to
the tropical year.

Note that it is common practice among satellite data users to refer to the Julian day or date of a data set in terms of the day number of the corresponding year (1-365 or 1-366). This is not inconsistent with the classical definition since the initial day of the sequence is arbitrary.

3.2 The Annual Cycle and Zodiac

We must also consider the definition of sidereal time, but before doing so, a brief discussion of the annual cycle and the zodiac is in order. As the earth progresses through its annual cycle, there are four solar passages which are used to distinguish the seasons and divide the earth into its so called climate zones. There are two equator crossing (equinoxes) and two maximum excursion passages (solstices) of the sun with respect to the earth (see Figure 3.3). These are:

1. March or Spring Equinox
2. June or Summer Solstice
3. September or Autumnal Equinox
4. December or Winter Solstice

It is commonplace to refer to the summer and winter solstice latitudes as the tropic of cancer and the tropic of capricorn, respectively.

To an observer on the earth the sun appears to achieve a maximum latitudinal excursion of $+23^{\circ} 27^{\prime}$ or $-23^{\circ} 27^{\prime}$ at the solstices. The zone between these two parallels is often referred to as the torrid zone. The apparent motion of the sun, of course, is due to the inclination of the earth's orbit about the sun. The apparent track of the sun is along a plane which is called the ecliptic. When the sun reaches a solstice position, the opposite hemisphere is having its winter in which the limits of the circumpolar sun are approximately $23^{\circ} 27^{\prime}$ from the pole.

Figure 3.3 Solar Passages (From Bowditch, 1962)

These two polar circles define the boundaries between the temperate zones and the frigid zones, that is, the so-called arctic circle and antarctic circle parallels (see Figure 3.4).

Figure 3.4 C1imate Zones

The names used to describe the boundaries of the torrid zone were given some 2000 years ago when the sun was entering the constellations Cancer and Capricorn at the time of the solstices. By the same token the spring and autumnal equinoxes were taking place at the time the sun was entering the constellations Aires and Libra. Thus, it is appropriate to refer to the solstices and the equinoxes as zodiacal passages. What is the zodiac?

Figure 3.5 The Zodiac (From Bowditch, 1962)

Strictly, the zodiac is the circular band of sky extending 8° on each side of the ecliptic (see Figure 3.5). The navigational planets and the moon are within these limits. The zodiac is divided into 12 sections of 30° each, each section being given the name and symbol
(sign) of the constellation within it. The sun remains in each section for approximately one month. Due to the precession of the equinoxes, the sun no longer enters the aforementioned constellations at the seasonal passages. However, astronomers still list the sun as entering these constellations; this is their principal astronomical significance. The pseudo-science of astrology assigns additional significance, not recognized by all scientists to the position of the sun and planets among the zodiacal signs (see Bowditch, 1962).

Since the precession of the equinoxes plays an important role in celestial position fixing, we shall define it:

Precession of the Equinoxes: A slow conical motion of the earth's axis (like the spinning of a top) about the vertical to the plane of the ecliptic, having a period of about 26,000 years (25,781 years) caused by the perturbative attractions of the sun, moon, and other planets on the equatorial protuberence (bulge) of the earth. It results in a gradual westward motion of the equinoxes (50.27 arc-seconds per year). Because of the precession, the zodiacal configuration with respect to the sun at its seasonal passages, has shifted approximately one section or constellation westward.

At the time of the definition of the zodiac, the sun was entering the constellation Aires at the time of the Spring Equinox. This solar position is of major importance to the sidereal reference system of time. The celestial meridian corresponding to the sun position at the time of a spring or vernal (from the Greek for spring) equinox defines the reference meridian for sidereal time. The expression "vernal equinox" and associated expressions, are applied to both "times" and "points" of occurrence of various phenomena. The vernal equinox is
also called the "first point of Aries" (γ) or the "rams horns", although strictly speaking we should now call it the "first point of Pisces" due to the precession of the equinoxes.

3.3 Sidereal Time

We can now provide a set of definitions which describe the sidereal time system:

Sidereal Time: Time that is based on the position of the stars. A sidereal period is the length of time required for one revolution of a celestial body about its primary axis, with respect to the stars. Thus, a sidereal year is one revolution of the earth around the sun with respect to the fixed celestial reference.

Now there are 365.24219879 mean solar days in a tropical year. Due to the earth's revolution about the sun and the respective orientation of the sun and a fixed celestial reference (star reckoning), a sidereal day is actually shorter in time than a solar day. In fact, it is easy to show that there is exactly one more sidereal day in an annual period (vernal equinox to vernal equinox) than there are mean solar days (see Figure 3.6). Thus:

$$
\begin{aligned}
1 \text { mean solar time unit } & =1.002737909 \text { sidereal time units } \\
& =366.24219879 / 365.24219879
\end{aligned}
$$

Therefore, a sidereal day is $3^{\prime} 56^{\prime \prime}$ shorter than a solar day.

Sidereal Year: A sidereal year (i.e. the period of revolution of the earth relative to the stars) is 365.2563662 mean solar days (365 days, 6 hours, 9 minutes, 10 seconds) due to the precession of the equinoxes (50.27" per year).

$$
365.2563662=\frac{360^{\circ} 0^{\prime} 50.27^{\prime \prime}}{360^{\circ}} \cdot 365.24219879
$$

Figure 3.6 Difference between a solar and sidereal year (Not exact scale).

Hour Angles: Angular distance west of a celestial meridian or hour circle of a body (e.g. the sun) measured through 360° (see Figure 3.7). There are three conventionally defined hour angles:

1. Local Hour Angle (LHA): Angular distance west of the Local celestial meridian.
2. Greenwich Hour Angle (GHA): Angular distance west of the Greenwich celestial meridian。
3. Sidereal Hour Angle (SHA): Angular distance west of the Vernal Equinox celestial meridian (γ) 。

Figure 3.7 Hour Angles

4.0 GEOMETRICAL CONSIDERATIONS

4.1 Definitions of Latitude (Station Coordinates)

Since the earth is not a perfect sphere, there are a selection of coordinates to choose from. Most systems are based on the assumption that the earth can be represented by an oblate spheriod; that is, a geometrical shape in which sections parallel to the equator are perfect circles and meridians are ellipses (see Figure 4.1).

Figure 4.1 Model of the earth (From EB, 1965)

We define an oblate spheroid in terms of two radial axes (a, b) where:
$a \equiv$ semi-major axis
b \equiv semi-minor axis
We can now define the flattening (f) parameter which is related to the eccentricity of the ellipsoid of revolution. We also define the eccentricity (e), a parameter which will be considered in the discussion of orbital calculations and conic sections. The flattening (f) and
eccentricity (e) are given by:

$$
\begin{align*}
f & =(a-b) / a \tag{4.1}\\
& =0 \text { for } a \text { perfect sphere } \\
e & =\sqrt{a^{2}-b^{2}} / a \tag{4.2}\\
& =0 \text { for a spheroid or a circular orbit }
\end{align*}
$$

Also:

$$
\begin{align*}
& e=\sqrt{2 f-f^{2}} \tag{4.3}\\
& \mathrm{f}=1-\sqrt{1-e^{2}}
\end{align*}
$$

Note that in the limit as $b \rightarrow 0$ then $e \rightarrow 0$ and $f \rightarrow 0$. Values of these parameters for the earth are given by:

$$
\begin{align*}
& \mathrm{a}=6378.214 \mathrm{~km} \\
& \mathrm{~b}=6356.829 \mathrm{~km} \\
& \mathrm{e}=8.1820157 \cdot 10^{-2} \tag{4.4}\\
& \mathrm{f}=3.35289 \cdot 10^{-3}
\end{align*}
$$

Note that:

$$
\begin{equation*}
b=a \cdot(1-f) \tag{4.5}
\end{equation*}
$$

We can also define a mean earth radius (c) by a weighted average:

$$
\begin{align*}
c & =(2 a+b) / 3 \tag{4.6}\\
& =6371.086 \mathrm{~km}
\end{align*}
$$

Using our adopted model of the geometric shape, we can define the twa conventional measures of latitude. Following the approach given in Chapter 2 of $E B$ and using Figure 4.2 as a guide we first consider geocentric latitude:

Geocentric Latitude: The acute angle (ϕ) wrt the equatorial plane determined by a line connecting the geometric center of the ellipsoid and a point on its surface。

Figure 4.2 Ellipsoid of revolution defining geocentric latitude (Based on a figure from EB, 1965)

It is convenient to define the rectangular components ($\mathrm{x}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}$), as we shall see later. It is also helpful to provide a derivation of x_{c} and z_{c} in terms of a, e and ϕ. To do so, we first define the reduced latitude β :
$\beta \equiv$ the acute angle wrt the equatorial plane determined by a line connecting the geometric center of the ellipsoid and a point on a circumscribing circle (see Figure 4.2). We will use the circumscribing circle later in the discussion of the eccentric anomaly.

Since:

$$
\begin{align*}
& x_{c}=r_{c} \cos \phi=a \cdot \cos \beta \tag{4.7}\\
& z_{c}=r_{c} \sin \phi=a \sqrt{1-e^{2}} \sin \beta \tag{4.8}
\end{align*}
$$

therefore:

$$
\begin{equation*}
r_{c}=\sqrt{x_{c}^{2}+z_{c}^{2}}=a \sqrt{1-e^{2} \sin ^{2}} \beta \tag{4.9}
\end{equation*}
$$

and:

$$
\begin{align*}
& \sin \phi=\frac{z_{c}}{r_{c}}=\frac{\sqrt{1-e^{2}} \sin \beta}{\sqrt{1-e^{2} \sin ^{2} \beta}} \tag{4.10}\\
& \cos \phi=\frac{x_{c}}{r_{c}}=\frac{\cos \beta}{\sqrt{1-e^{2} \sin 2 \beta}} \tag{4.11}
\end{align*}
$$

We square (4.10) and (4.11) and after multiplying by $\sqrt{1-\mathrm{e}^{2}}$:

$$
\begin{align*}
& \sin ^{2} \phi=\frac{\left(1-e^{2}\right) \sin ^{2} \beta}{1-e^{2} \sin ^{2} \beta} \tag{4.12}\\
& \left(1-e^{2}\right) \cos ^{2} \phi=\frac{\left(1-e^{2}\right) \cos ^{2} \beta}{1-e^{2} \sin ^{2} \beta} \tag{4.13}
\end{align*}
$$

now add (4.12) and (4.13) and after some manipulation:

$$
\begin{equation*}
\sqrt{1-\mathrm{e}^{2} \sin ^{2} \beta}=\frac{\sqrt{1-\mathrm{e}^{2}}}{\sqrt{1-\mathrm{e}^{2} \cos ^{2} \phi}} \tag{4.14}
\end{equation*}
$$

We now combine (4.10) and (4.14) to solve for $\sin \beta$:

$$
\begin{equation*}
\sin \beta=\frac{\sin \phi}{\sqrt{1-\mathrm{e}^{2} \cos ^{2} \phi}} \tag{4.15}
\end{equation*}
$$

similarly for (4.11) and (4.14):

$$
\begin{equation*}
\cos \beta=\frac{\sqrt{1-\mathrm{e}^{2}} \cos \phi}{\sqrt{1-\mathrm{e}^{2} \cos ^{2} \phi}} \tag{4.16}
\end{equation*}
$$

Combining (4.16) and (4.7) with (4.15) and (4.8):

$$
\begin{align*}
& x_{c}=\frac{a \sqrt{1-e^{2}} \cos \phi}{\sqrt{1-e^{2} \cos ^{2} \phi}} \tag{4.17}\\
& z_{c}=\frac{a \sqrt{1-e^{2}} \sin \phi}{\sqrt{1-e^{2} \cos ^{2} \phi}} \tag{4.18}
\end{align*}
$$

Next, we define geodetic latitude, again following EB:

Geodetic Latitude: The acute (ϕ^{\prime}) wrt the equatorial plane determined by a line normal to the tangent place of a point on the surface of the ellipsoid and intersecting the equatorial plane. Geodetic latitude is often referred to as geographic latitude (see Figure 4.3).

Recalling Eqns. (4.7) and (4.8):

$$
\begin{align*}
& x_{c}=a \cos \beta \tag{4.7}\\
& z_{c}=a \sqrt{1-e^{2}} \sin \beta \tag{4.8}
\end{align*}
$$

we can now differentiate:

$$
\begin{align*}
& -d x_{c}=a \sin \beta(d \beta) \tag{4.19}\\
& d z_{c}=a \sqrt{1-e^{2}} \cos \beta(d \beta) \tag{4.20}
\end{align*}
$$

Now note:

$$
\begin{equation*}
d s=\sqrt{\left(-d x_{c}\right)^{2}+(d z)^{2}}=a \sqrt{1-e^{2} \cos ^{2} \beta(d \beta)} \tag{4.21}
\end{equation*}
$$

and finally:

$$
\begin{align*}
& \sin \phi^{\prime}=\frac{-\mathrm{dx}_{c}}{\mathrm{ds}}=\frac{\sin \beta}{\sqrt{1-e^{2} \cos ^{2} \beta}} \tag{4.22}\\
& \cos \phi^{\prime}=\frac{\mathrm{dz}{ }_{c}}{\mathrm{ds}}=\frac{\sqrt{1-e^{2}} \cos \beta}{\sqrt{1-\mathrm{e}^{2} \cos ^{2} \beta}} \tag{4.23}
\end{align*}
$$

Finally, using Equations (4.10, 4.11) and (4.22, 4.23), it is easy to show that:

$$
\begin{align*}
\phi^{\prime} & =\tan ^{-1}\left[\tan \phi /(1-\mathrm{f})^{2}\right] \\
\phi & =\tan ^{-1}\left[\tan \phi^{\prime} \cdot(1-\mathrm{f})^{2}\right] \tag{4.24}
\end{align*}
$$

This provides a convenient transformation between the station coordinate systems.

$\begin{aligned} \text { Figure 4.3 } & \text { Ellipsoid of revolution defining geodetic } \\ & \text { latitude (Based on a figure from EB, 1965) }\end{aligned}$

A third definition of latitude is oriten used, particularly in the process of surveying, that is astronomical latitude:

Astronomical Latitude: The acute angle ($\phi^{\prime \prime}$) wrt the equatorial plane formed by the intersection of a gravity ray with the equatorial plane. This latitude is a function of the local gravitational field (direction of a plumb-bob), and is thus affected by local terrain。 Tabulation of station errors is required to convert to geodetic latitude. Note that most maps are in either geodetic or astronomical latitude whereas navigational analysis will usually use a geocentric system。

4.2 Cartesian - Spherical Coordinate Transformations

It is necessary to define transformations between a spherical frame of reference and a cartesian frame of reference. For satellite navigation purposes, two systems are convenient:

1. Declination-Right Ascension-Radial System (δ, ρ, r) where we have chosen declination to be defined in the same sense as co-latitude:

$$
\begin{align*}
& x=r \cdot \sin (\delta) \cdot \cos (\rho) \\
& y=r \cdot \sin (\delta) \cdot \sin (\rho) \tag{4.25}\\
& z=r \cdot \cos (\delta) \\
& \delta=\cos ^{-1}\left[z / \sqrt{\left.x^{2}+y^{2}+z^{2}\right]}\right. \\
& \rho=\tan ^{-1}[y / x] \tag{4.26}\\
& r=\sqrt{x^{2}+y^{2}+z^{2}}
\end{align*}
$$

2. Latitude-Longitude-Radial System (ϕ, λ, r):

$$
\begin{align*}
& x=r \cdot \cos (\phi) \cdot \cos (\lambda) \\
& y=r \cdot \cos (\phi) \cdot \sin (\lambda) \tag{4.27}\\
& z=r \cdot \sin (\phi) \\
& \phi=\sin ^{-1}\left[z / \sqrt{\left.x^{2}+y^{2}+z^{2}\right]}\right. \\
& \lambda=\tan ^{-1}[y / x] \tag{4.28}\\
& r=\sqrt{x^{2}+y^{2}+z^{2}}
\end{align*}
$$

4.3 Satellite - Solar Geometry

A standard requirement for satellite data analysis is the definition of the angular configuration of a satellite and the sun with respect to a terrestrial position (ϕ, λ, r). In order to specify the three usual angles (zenith, nadir, azimuth), we first define the following polar coordinates:

$$
\begin{aligned}
\left(\phi_{\Theta}, \lambda_{\Theta}, r_{\Theta}\right) & \equiv \text { solar position } \\
\left(\phi_{s}, \lambda_{s}, r_{s}\right) & \equiv \text { satellite position } \\
(\phi, \lambda, r) & \equiv \text { reference point }
\end{aligned}
$$

Converting these three positions to their terrestrial position vectors:

$$
\begin{aligned}
& \vec{V}_{\odot} \equiv \text { solar vector in earth coordinates (from 4.27) } \\
& \overrightarrow{\mathrm{V}}_{\mathrm{s}} \equiv \text { satellite vector in earth coordinates (from } 4.27 \text {) } \\
& \overrightarrow{\mathrm{V}}_{\mathrm{p}} \equiv \text { reference point in earth coordinates (from } 4.27 \text {) }
\end{aligned}
$$

We can define the solar and satellite zenith $\left(\theta_{0}, \theta_{s}\right)$, nadir (η_{0}, η_{s}), and azimuth (Φ_{Θ}, Φ_{S}) angles and relative zenith (Θ_{r}) and azimuth (Φ_{r}) angles:

$$
\begin{align*}
& \text { Solar zenith } \equiv \theta_{\theta}=\cos ^{-1}\left[\vec{V}_{p} \cdot\left(\vec{V}_{\theta}-\vec{V}_{p}\right)\right] \tag{4.29}\\
& \text { Solar nadir } \equiv \eta_{\theta}=\cos ^{-1}\left[-\vec{v}_{\odot} \cdot\left(\vec{V}_{p}-\vec{V}_{e}\right)\right] \\
& \text { Satellite zenith } \equiv \theta_{s}=\cos ^{-1}\left[\overrightarrow{\mathrm{~V}}_{\mathrm{p}} \cdot\left(\overrightarrow{\mathrm{~V}}_{\mathrm{s}}-\overrightarrow{\mathrm{V}}_{\mathrm{p}}\right)\right] \tag{4.30}\\
& \text { Satellite nadir } \equiv \eta_{s}=\cos ^{-1}\left[-\vec{V}_{s} \cdot\left(\vec{V}_{p}-\vec{V}_{s}\right)\right] \\
& \text { Relative zenith } \equiv \theta_{r}=\cos ^{-1}\left[\left(\vec{V}_{e}-\vec{V}_{p}\right) \cdot\left(\vec{V}_{s}-V_{p}\right)\right] \tag{4.31}
\end{align*}
$$

Figure 4.4 illustrates the zenith and nadir angle definitions.

In order to define the azimuth angles we first define a pointing vector $\left(\vec{V}_{90}\right)$ which is subtented 90° from \vec{V}_{p} in the same hemisphere as \vec{v}_{p} and in the plane defined by the center of the earth, the north pole,

Figure 4.4 Definition of zenith and nadir angles.
and the endpoint of $\overrightarrow{\mathrm{V}}_{\mathrm{p}}$. Let:

$$
\begin{equation*}
\vec{S}_{\theta}=\left(\vec{v}_{e}-\vec{v}_{p}\right) /\left\|\vec{v}_{\theta}-\vec{v}_{p}\right\| \tag{4.32}
\end{equation*}
$$

Furthermore, we define:

$$
\begin{align*}
& \vec{X}_{\odot}=\vec{v}_{90} /\left\|\vec{v}_{90}\right\| \\
& \vec{Z}_{\odot}=\vec{v}_{p} /\left\|\vec{v}_{p}\right\| \tag{4.33}\\
& \vec{Y}_{\odot}=\vec{X}_{\odot} \times \vec{Z}_{\odot}
\end{align*}
$$

$$
\begin{equation*}
\Phi_{1}=\cos ^{-1}\left[\left(\vec{Z}_{\odot} \times \vec{S}_{\odot} \times \vec{Z}_{\odot}\right) \cdot \vec{X}_{\odot}\right] \tag{4.34}
\end{equation*}
$$

$$
\Phi_{2}=\cos ^{-1}\left[\left(\vec{Z}_{\odot} \times \vec{S}_{\odot} \times \vec{Z}_{\odot}\right) \cdot \overrightarrow{\mathrm{Y}}_{\odot}\right]
$$

The solar zenith is then given by:

$$
\Phi_{\odot} \begin{cases}=\Phi_{1} & \text { for } \Phi_{2} \leq 90 \\ =360-\Phi_{1} & \text { for } \Phi_{2}>90\end{cases}
$$

The satellite azimuth (Φ_{s}) is defined in the same way. Finally, we have the relative azimuth:

$$
\begin{equation*}
\Phi_{r}=\operatorname{MOD}\left(\left|\Phi_{\odot}-\Phi_{s}\right|, 180\right) \tag{4.35}
\end{equation*}
$$

See Figure 4.5 for an illustration.

Figure 4.5 Definition of azimuth angles.

5.0 THE TWO BODY PROBLEM

5.1 The Inverse Square Force Field Law

We continue the analysis by considering the two body problem, ignoring all of the perturbative influences (i.e., thrust, drag, lift, radiation pressure, proton bombardment or solar wind, assymetrical electromagnetic forces, auxillary bodies and any aspherical gravitational potential of either body), that is we consider only the mutual attractions of a body A with a body B and the resultant motions. Furthermore, we assume that the motion under consideration is that of a satellite or planetary body B (secondary body of mass m_{2}) with respect to a central body A (primary body of mass m_{1})。

For closed solutions we will utilize the inverse square force field 1aw:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}}=\stackrel{\ddot{r}}{\mathrm{r}}=-\frac{\mathrm{K}^{2} \mu \vec{r}}{\mathrm{r}^{3}} \tag{5.1}
\end{equation*}
$$

First, we determine the origin of the above equation. Essentially, Equation 5.1 embodies the laws of Kepler and Newton. To review:

Kepler's Laws (Empirical-aided by astronomical observations)
I. Within the domain of the solar system all planets describe elliptical paths with the sun at one focus.
II. The radius vector from the sun to a planet generates equal areas in equal times.
III. The squares of the periods of revolution of the planets about the sun are proportional to the cubes of their mean distances from the sun.

Newton's Laws of Motion

I. Every body will continue in its state of rest or of uniform motion in a straight line except insofar as it is compelled to change that state by an impressed force.
II. Rate of change of momentum (mv) is proportional to the impressed force and takes place in the line in which the force acts.

$$
\mathrm{F}=\mathrm{ma}=\mathrm{m}(\mathrm{dv} / \mathrm{dt})
$$

III. Action and reaction are equal and opposite。

Newton's Law of Universal Gravitation

Any two bodies in the universe attract one another with a force (F_{12}) which is directly proportional to the product of their masses ($\mathrm{m}_{1}, \mathrm{~m}_{2}$) and inversely proportional to the square of the distance (r_{12}) between them:

$$
\begin{align*}
\mathrm{F}_{12} & =\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}_{12}^{2} \\
& =\mathrm{K}^{2} \mathrm{~m}_{2} / 4_{12}^{2} \tag{5.2}
\end{align*}
$$

where:

$$
\begin{aligned}
\mathrm{K}^{2} & =\mathrm{Gm}_{\mathrm{l}} \\
\mathrm{G} & \equiv \text { Universal Gravitational Constant } \\
& =6.373 \cdot 10^{-8} \text { dyne } \cdot \mathrm{cm}^{2} \cdot \mathrm{gm}^{-2} \\
\mathrm{~m}_{1} & \equiv \text { larger mass (e.g. the earth) } \\
\mathrm{m}_{2} & \equiv \text { smaller mass (e.g. a satellite) }
\end{aligned}
$$

We can derive the inverse square force field law from Newton's second law and his law of universal gravitation。 Adopting the notation in Chapter 2 of EB, the Universal Law of Gravitation states:

$$
\begin{equation*}
\mathrm{F}_{12}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}_{12}^{2}} \tag{5.3}
\end{equation*}
$$

Now consider an arbitrary inertial reference frame shown in Figure 5.1. The force in the x direction $F_{1 x}$ is:

$$
\begin{equation*}
\mathrm{F}_{1 \mathrm{x}}=\mathrm{F}_{12} \cos \theta=\mathrm{F}_{12} \cdot\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / \mathrm{r}_{12} \tag{5.4}
\end{equation*}
$$

therefore:

$$
\begin{equation*}
\mathrm{F}_{1 \mathrm{x}}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}_{12}^{2}} \cdot \frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{r}_{12}} \tag{5.5}
\end{equation*}
$$

and finally:

$$
\begin{equation*}
F_{1 x}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}_{12}^{3}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \tag{5,6}
\end{equation*}
$$

\equiv force on body 1

Figure 5.1 Arbitrary inertial coordinate reference frame

Newton's second law states that the unbalanced force on a body in the x direction is given by:

$$
\begin{equation*}
F_{1 x}=m_{1} \frac{d^{2} x_{1}}{d t^{2}} \tag{5.7}
\end{equation*}
$$

therefore:

$$
\begin{equation*}
m_{1} \frac{d^{2} x_{1}}{d t^{2}}=G m_{1} m_{2} \frac{\left(x_{2}-x_{1}\right)}{r_{12}^{3}} \tag{5.8}
\end{equation*}
$$

Now repeating the analysis for the y and z components we find:

$$
\begin{equation*}
m_{1} \frac{d^{2} \vec{r}_{1}}{d t^{2}}=\mathrm{Gm}_{1} m_{2} \frac{\left(\vec{r}_{2}-\vec{r}_{1}\right)}{r_{12}^{3}} \tag{5.9}
\end{equation*}
$$

or:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \vec{r}_{1}}{\mathrm{dt}^{2}}=\mathrm{K}^{2} \frac{\mathrm{~m}_{2}}{\mathrm{~m}_{1}}\left(\vec{r}_{2}-\vec{r}_{1}\right) / \mathrm{r}_{12}^{3} \tag{5.10}
\end{equation*}
$$

Now transform to a relative inertial coordinate system as shown in Figure 5.2. From above:

$$
\begin{equation*}
\mathrm{m}_{1} \frac{\mathrm{~d}^{2} \overrightarrow{\mathrm{r}}_{1}}{\mathrm{dt}^{2}}=\mathrm{Gm}_{1} \mathrm{~m}_{2} \frac{\overrightarrow{\mathrm{r}}_{12}}{\mathrm{r}_{12}^{3}} \tag{5.11}
\end{equation*}
$$

where:

$$
\begin{equation*}
\vec{r}_{12}=\vec{r}_{2}-\vec{r}_{1} \tag{5.12}
\end{equation*}
$$

Now considering only the x component:

$$
\begin{equation*}
x_{12}=x_{2}-x_{1} \tag{5.13}
\end{equation*}
$$

we note that:

$$
\begin{equation*}
\frac{d^{2} x_{12}}{d t^{2}}=\frac{d^{2} x_{2}}{d t^{2}}-\frac{d^{2} x_{1}}{d t^{2}} \tag{5.14}
\end{equation*}
$$

which is the desired expression for the acceleration of body 2 with respect to body 1.

From our arbitrary inertial analysis:

$$
\begin{align*}
& \mathrm{m}_{1} \frac{\mathrm{~d}^{2} \mathrm{x}_{1}}{d t^{2}}=\mathrm{Gm}_{1} \mathrm{~m}_{2} \frac{\mathrm{x}_{12}}{\mathrm{r}_{12}^{3}} \tag{5.15}\\
& \mathrm{~m}_{2} \frac{\mathrm{~d}^{2} \mathrm{x}_{2}}{d t^{2}}=\mathrm{Gm}_{2} \mathrm{~m}_{1} \frac{\mathrm{x}_{21}}{\mathrm{r}_{21}^{3}} \tag{5.16}
\end{align*}
$$

Figure 5.2 Relative inertial coordinate reference frame.

Now since $r_{12}=r_{21}$, and cancelling masses, then:

$$
\begin{align*}
& \frac{d^{2} x_{1}}{d t^{2}}=G m_{2} \frac{x_{12}}{r_{13}^{3}}=G m_{2} \frac{\left(x_{2}-x_{1}\right)}{r_{12}^{3}} \tag{5.17}\\
& \frac{d^{2} x_{2}}{d t^{2}}=G m_{1} \frac{x_{21}}{r_{12}^{3}}=G m_{1} \frac{\left(x_{1}-x_{2}\right)}{r_{12}^{3}} \tag{5.18}
\end{align*}
$$

and subtracting the two equations yields:

$$
\begin{align*}
& \frac{d^{2} x_{2}}{d t^{2}}-\frac{d^{2} x_{1}}{d t^{2}}=\frac{d^{2} x_{12}}{d t^{2}}=G m_{1} \frac{\left(x_{1}-x_{2}\right)}{r_{12}^{3}}-G m_{2} \frac{\left(x_{2}-x_{1}\right)}{r_{12}^{3}} \tag{5.19}\\
& \frac{d^{2} x_{12}}{d t^{2}}=-G\left(m_{1}+m_{2}\right) \frac{\left(x_{2}-x_{1}\right)}{r_{12}^{3}} \tag{5.20}
\end{align*}
$$

Now repeating the analyses for the y and z components we find:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}_{12}}{\mathrm{dt}}{ }^{2}=-G m_{1} \frac{\left(m_{1}+m_{2}\right)}{m_{1}} \frac{\overrightarrow{\mathrm{r}}_{12}}{\mathrm{r}_{12}^{3}} \tag{5.21}
\end{equation*}
$$

and finally:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \stackrel{\rightharpoonup}{r}}{\mathrm{dt}^{2}}=\ddot{\vec{r}}=-\mathrm{K}^{2} \underset{r^{3}}{\stackrel{\rightharpoonup}{r}} \tag{5.22}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mu & =\left(m_{1}+m_{2}\right) / m_{1} \\
& \equiv \text { normalized mass sum }
\end{aligned}
$$

We generally apply (5.22) to a system where the primary mass (m_{1}) is much greater than the secondary mass $\left(m_{2}\right)$, yielding μ approximately 1.0 . Often in the study of orbital mechanics, an n-body system arises in which the desired origin of the coordinate system is the mass center or barycenter; that is, motion is relative to the barycenter and not any single central body (see Figure 5.3). We refer to such a reference system as a Barycentric Coordinate System (see a review in Chapter 2 of EB). The utility of this frame of reference arises in the event that the trajectory of a space vehicle would undergo less disturbed motion if referred to a barycenter. Since we are primarily concerned with near earth satellites we will forego an examination of the barycentric coordinate system. It is useful to examine the governing equation, however:

$$
\begin{equation*}
\frac{d^{2} \stackrel{\rightharpoonup}{r}_{B 2}}{d t^{2}}=-G\left[\sum_{i=1}^{n} m_{i}\right] \frac{\vec{r}_{B 2}}{\frac{r_{B 2}}{3}}+G \sum_{\substack{i=1 \\ i \neq 2}}^{n} m_{i} \vec{r}_{i 2}\left(\frac{1}{r_{B 2}^{3}}-\frac{1}{r_{i 2}^{3}}\right) \tag{5.23}
\end{equation*}
$$

where:
$\mathrm{n}=1$ (the primary mass of the system)
$\mathrm{n}=2$ (the space vehicle under consideration)
and B represents the barycenter.

Figure 5.3 Barycentric coordinate reference frame. (Based on a figure from EB, 1965)

5.2 Coordinate Systems and Coordinates

We first define the celestial sphere:
Celestial Sphere: An imaginary sphere of indefinitely large radius, having the earth as the origin and the funadmental plane being an infinite extension of the Earth's equatorial plane (see Figure 5.4). To define the celestial sphere we first extend a line along the fundamental plane to a point fixed by the vernal equinox (γ), which is the reference meridian, and let that be the x-axis. The z-axis is given by the earth's spin axis or principal axis. An orthogonal coordinate system is finally established by defining the y-axis as the cross product of the z and x axes (see Figure 5.5).

Figure 5.4 The celestial sphere (From Bowditch, 1962)

$\begin{aligned} \text { Figure 5.5 } & \begin{array}{l}\text { The right ascension - declination } \\ \text { inertial coordinate system. }\end{array}\end{aligned}$

This celestial reference frame is of ten termed a right ascensiondeclination inertial coordinate system, in which declination (δ) is analogous to latitude (ϕ) (or as the case may be - colatitude), and right ascension (ρ) is analogous to longitude (λ) or hour angle (HA). Note that we refer to the equatorial plane as the fundamental plane, the z-axis as the principal axis, the the vernal equinox as the reference meridian. Also note that the celestial coordinate system is not truly an inertial system since it utilizes the terrestrial spin axis as the principal axis. Since the earth's spin axis precesses (giving rise to the westward precession of the equinoxes) we are left with a non-inertial reference frame if we consider very long time periods. There is also a lunar influence on the earth's spin axis which causes a nutation having a periodicity of approximately 18.5
years. Superimposed on these motions is the so-called Chandler Wobble, which has a period of approximately 14 months and is due to the nonsolid nature of the earth itself. For our purposes, the non-inertial variation in the terrestrial spin axis is ignored.

It should be noted that we can define our coordinate system in any way we choose, however, simplicity and convenience are the watchwords. In designing coordinate systems for the various orbiting bodies or vehicles contained in the solar system, the same basic principles that are used for the earth centered (geocentric) celestial coordinate system are applied. Examples of various coordinate systems adopted for orbital analysis are referred to as follows (see EB):

Reference Body	Coordinate System
Earth	Geocentric
Sun	Heliocentric
Moon	Selenographic
Mars	Arcocentric
Satellite	Orbit Plane

It should also be pointed out that there are a choice of coordinates to be used once the coordinate system is defined. Again, the choice is arbitrary, however, the chosen coordinate parameters should have a natural relationship between the observer and the observed depending on whether measurement, calculation, or description is the nature of the problem on hand. Again, there are a variety of choices:

1. Declination (δ) - right ascension (ρ) - radial distance (r)
2. Declination (δ) - hour angle (HA) - radial distance (r)
3. Latitude (ϕ) - longitude (λ) - height (h)
4. Elevation (H) - azimuth (ϕ) - slant range (d)
5. Zenith (θ) - azimuth (ϕ) - altitude (h)
6. Cartesian (x, y, z)

The solution of the governing equation (5.22) given in an earthrelative celestial coordinate system will yield three constants after the first integration (of the three component equations), and three constants after the second. Since (5.22) is an acceleration form of a linear, second order, ordinary differential equation, the first set of constants are initial velocity terms ($(\dot{x}, \dot{y}, \dot{z}$) and the second set of constants are initial position terms ($\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{\mathrm{o}}$). Thus, if we are given a position vector and a velocity vector at an epoch time t_{o} (six orbital elements and an epoch), we have a means to solve the governing equation.

Usually, this set of initial elements is not available since observations of the secondary body B are made from a rotating primary body A (that is a coordinate system that is different from that in which the analysis will be performed). That is why elevation-azimuth angle observations or range-range rate signals must first be transformed to a set of convenient orbital elements in the preferred coordinate system. Since this problem comes under the more general problem of orbital determination we will not consider it any further.

5.3 Selection of Units

Simplicity and computational efficiency can be achieved with the proper selection of units, based on the particular orbital problem. The proper choice of physical units for length, mass, and time is primarily determined by the dimensionality of the primary body A. We
shall discuss two systems of units; the Heliocentric (solar origin) and Geocentric (terrestrial origin) systems.

1. Heliocentric Units

Length: Astronomical Unit (A.U.)
The mean distance between the sun and a fictitious planet, subjected to no perturbations, whose mass and sidereal period are the values adopted by Gauss in his determination of K_{Θ} (we will discuss K_{Θ} 1ater).

1 A.U. $=1.496 \cdot 10^{8} \mathrm{~km}(\simeq 93,000,000 \mathrm{miles})$ per A.U.
Mass: Mass of Sun $\left(\mathrm{m}_{\widehat{0}}\right)$
$\mathrm{m}_{0}=1.9888822 \cdot 10^{33}$ gm per solar mass (s.mo)
Now if we use our previous definition:

$$
\begin{equation*}
G\left(m_{G}+m_{p}\right)=K_{\mu}^{2} \tag{5.24}
\end{equation*}
$$

where:

$$
\begin{aligned}
m_{\Theta} & \equiv \text { mass of sun } \\
m_{p} & \equiv \text { mass of planet } \\
\mathrm{K}^{2} & =\mathrm{G} \mathrm{~m}_{\theta} \\
\mu & =\left(m_{\theta}+m_{\mathrm{p}}\right) / m_{\Theta}
\end{aligned}
$$

we can define normalized mass factors for the nine planets. Note that the mass of a planet in the heliocentric system would also include the mass of its moons. Table 5.1 provides normalized mass factors for the nine planets.

Table 5.1: Solar System Normalized Mass Factors

Planet	Normalized Mass Factor (μ)
Mercury	1.0000001
Venus	1.0000024
Earth-Moon	1.0000030
Mars	1.0000003
Jupiter	1.0009547
Saturn	1.0002857
Uranus	1.0000438
Neptune	1.0000512
Pluto	1.0000028

2. Geocentric Units

Length: Earth equatorial radius (e.r.)
1 e.r. $=6378.214 \mathrm{~km}(\simeq 3960$ miles $)$ per e.r.

Mass: Mass of earth (me)
$m_{e}=5.9733726 \cdot 10^{27}$ gm per earth mass (e.m.)
Note the mass of the moon $\left(m_{m}\right)$:
$m_{m}=7.3473218 \cdot 10^{25} \mathrm{gm}$ per moon mass $\left(\mathrm{m}_{\mathrm{m}}\right)$
must be considered as part of the planetary mass when considering the earth orbit in a heliocentric system, but is ignored when considering a satellite in a geocentric system.
5.4 Velocity and Period

We need to define the velocity and period of an orbiting body. Consider first the circular orbit of a satellite at height h (mass m_{s}) above the earth (radius R_{ϵ}). Therefore, the geocentric radius r is
given by:
and:

$$
\begin{equation*}
r=R_{e}+h \tag{5.25}
\end{equation*}
$$

$$
\begin{equation*}
m_{s} \ddot{\vec{r}}=-m_{s} \cdot k^{2} \mu \vec{r} / r^{3} \tag{5.26}
\end{equation*}
$$

However, the magnitude of $m_{s} \ddot{\vec{r}}$ is a centrifugal force $-m_{s} \cdot V^{2} / r$ where V is the circular velocity at orbital altitude. Therefore in scalar form:

$$
\begin{align*}
& m_{s} \frac{v^{2}}{r}=\frac{m_{s} \cdot K^{2} \cdot \mu}{r^{2}} \tag{5.27}\\
& v^{2}=\frac{K^{2} \cdot \mu}{R_{e}+h} \tag{5.28}\\
& v=\sqrt{K^{2} \mu /\left(R_{e}+h\right)} \tag{5.29}\\
& v=K \sqrt{\mu /\left(R_{e}+h\right)} \tag{5.30}
\end{align*}
$$

Therefore V is the required orbit velocity for a circular orbit at heigat h.

Since the circular orbital track would be a distance of $2 \pi\left(R_{e}+h\right)$, for a single revolution, the orbital period (P) would be $2 \pi \cdot\left(R_{e}+h\right) / V$, or:

$$
\begin{equation*}
P=\frac{2 \pi \cdot\left(R_{e}+h\right)^{3 / 2}}{K \sqrt{\mu}} \tag{5.31}
\end{equation*}
$$

Note that as the height of a satellite increases, the velocity required to maintain it in circular orbit decreases. See Figure 5.6 for an illustration. Note, however, from a propulsion point of view, more energy is expended in lifting a satellite against gravity to reach a higher orbit, than is gained in the reduction or the forward speed required for orbit injection.

Figure 5.6 Velocity and period of a satellite in circular orbit as a function of altitude (From Widger, 1966)

If we solve $P=2 \pi \cdot\left(R_{e}+h\right)^{3 / 2} /\left(K_{\mu}^{I / 2}\right)$ for h using a period P of 24 hours, we have solved for the required height of a geosynchronous satellite; that is, an orbital configuration in which the period is that of a single rotation of the earth. The required height for a geosynchronous satellite in a circular orbit is thus approximately $35,863 \mathrm{~km}$ (42241.214 km from geocentric origin).

Now since we know the orbital period P, we can determine the ground speed $\left(V_{g s}\right)$ of a circular orbit, $i_{0} e_{o}$, the velocity at radius $R_{e}{ }^{\circ}$ Since the path of one revolution is $2 \pi \cdot R_{e}$, then

$$
\begin{align*}
V_{g s} & =2 \pi \cdot R_{e} / P \\
& =\frac{R_{e}}{R_{e}+h} \cdot K \cdot \sqrt{\frac{\mu}{R_{e}+h}} \tag{5.32}
\end{align*}
$$

and applying equation (5,29):

$$
\begin{equation*}
v_{g s}=\frac{R_{e}}{\left(R_{e}+h\right)} \cdot v \tag{5.33}
\end{equation*}
$$

Table 5.2 tabulates various orbital characteristics as a function
of satellite altitude.

Table 5.2: Orbital Characteristics as a Function of Altitude $\mathrm{R}_{\mathrm{e}}=6370 \mathrm{~km}$ or 3435 N . miles (From Widger, 1966).

Orbit Altitude Km	Orbit Altitude N. Miles	$\begin{aligned} & \mathrm{R}_{+}+\mathrm{h} \\ & \mathrm{Km} \end{aligned}$	$\begin{gathered} R_{e}+h \\ \text { N. Milea } \end{gathered}$	$\left(\frac{R_{e}+h}{R_{e}}\right)\left(\frac{R_{e}}{R_{e}+h}\right)$	$\begin{aligned} & \text { Orbital } \\ & \text { Velocity } \\ & \mathbf{k m / h r} \text { knota } \end{aligned}$		GroundVelocity(Non-Rotating$\frac{\text { Earth }}{\text { kmhr knots }}$		$\begin{array}{r} \begin{array}{r} \mathrm{O}_{\mathrm{r}} \\ \mathrm{Pe}_{\mathrm{e} ~} \end{array} \\ \text { hours } \end{array}$	ital iod \min.	Westward Displace. PerOrbit Deg.Long.
150	81	6520	3516	1.024 .9770	28111	15245	27464	14894	1.458	87.48	21.87
185	100	6555	3535	1.029 .9717	28080	15203	27285	14773	1.468	88.08	22.02
200	108	6570	3543	1.031 .9695	28004	15188	27150	14725	1.476	88.56	22.14
250	135	6620	3570	1.039 .9622	27901	15130	26846	14558	1.492	89.52	22.38
278	150	6643	3585	1.044 . 9582	27839	12099	26675	1.468	1.502	90.12	22.53
300	162	6670	3597	1.047 .9550	27795	15074	26544	14396	1.509	90.54	22.64
350	189	6720	3624	1.055 . 9478	27690	15017	26245	14233	1.526	91.56	22.89
371	200	6741	3635	1.058 .9450	27649	14994	26128	14169	1.533	91.98	23.00
400	216	6770	3651	1.063 .9408	27589	14962	25956	14076	1.543	92.58	23.15
450	243	6820	3678	$1.071 \quad .9339$	27488	14905	25671	13920	1.560	93.60	23,40
463	250	6833	3685	1.073 .9322	27462	14893	25600	13883	1.565	93.90	23.48
500	270	6870	3705	1.079 .9271	27386	14851	25390	13768	1.578	94.68	23.67
550	297	6920	3732	1.086 .9204	27287	14798	25115	13620	1.595	95.70	23.93
556	300	6926	3735	1.087 .9197	27277	14793	25087	13605	1.597	95.82	23.96
600	324	6970	3759	$1.094 \quad .9138$	27189	14745	24845	13474	1.612	96.72	24.18
649	350	7019	3785	1.102 .9075	27095	14694	24589	13335	1.629	97.74	24.44
650	351	7020	3786	1.102 .9073	27092	14692	24581	13330	1.629	97.74	24.44
700	378	7070	3813	1.110 .9009	26995	14640	24320	13189	1.647	98.82	24.71
741	400	7111	3835	1.116 .8957	26919	14597	24111	13075	1.661	99.66	24.92
750	405	7120	3840	1.118 . 8945	26902	14588	24064	13049	1.664	99.84	24.96
800	432	7170	3867	$1.126-8883$	26807	14536	23813	12912	1.652	100.92	25.23
834	450	7214	3885	1.131 .8842	26725	14503	23630	12824	1.697	101.82	25.46
850	459	7220	3894	1.134 .8821	26715	14487	23565	12779	1.699	101.94	25.49
900	486	7270	3921	1.141 .8761	26624	14436	23325	12647	1.717	103.02	25.76
927	500	7297	3935	1.146 . 8729	26575	14411	23197	12579	1.727	103.62	25.91
950	513	7320	3948	1.149 .8701	26531	14388	23085	12519	1.735	104.10	26.03
1000	540	7370	3975	1.157 . 8642	26441	14338	22850	12391	1.753	105.18	26.30
1019	550	7389	3985	1.160 . 8620	26408	14320.	22764	12344	1.760	105.60	26.40
1050	567	7420	4002	1.165 .8583	26352	14290	22618	12265	1.771	106.26	26.57
1100	594	7470	4029	$1.173 \quad .8526$	26264	14243	22393	12144	1.788	107.26	26.82
1112	600	7482	4035	1.175 . 8513	26243	14232	22341	12116	1.793	107.58	26.90
1150	621	7520	4056	1.181 .8469	26179	14194	. 22171	12021	1.806	108.36	27.09
1200	648	7570	4083	1.189 .8413	26089	14147	21949	11902	1.825	109.50	27.38
1205	650	7575	4085	1.189 .8409	26083	14145	21933	11895	1.826	109.56	27.39
1250	674	7620	4109	1.196 . 8360	26005	14103	21740	11790	1.842	110.52	27.63
1297	700	7667	4135	1.204 .8307	25925	14059.	21536	11679	1.860	111.60	27.90
1300	701	7670	4136	1.204 .8305	25919	14057	21526	11674	1.861	111.66	27.92
1350	728	7720	4163	1.212 .8251	25834	14011	21316	11560	1.879	112.74	28.19
1390	750	7760	4185	1.218 .8208	25769	13974	21151	11470	1.894	113.64	28.41
1400	755	7770	4190	$1.220 \quad .8198$	25752	13966	21111	11449	1.897	113.82	28.46
1450	782	7820	$42!7$	1.228 .8146	25670	13921	20911	11340	1.915	114.90	28.73
1483	800	7853	4235	1.233 .8111	25615	13891	20776	11267	1.928	115.68	28.92
1500	809	7870	4244	1.236 . 8094	25589	13876	20712	11231	1.934	116.04	29.01
1550	836	7920	4271	1.243 . 8043	25508	13833	20516	11126	1.952	117.12	29.28
1575	850	7945	4285	$1.247 \quad .8016$	25468	13810	20415	11070	1.961	117.66	29.42
1600	863	7970	4298	1.251 .7992	25428	13789	20322	11020	1.971	118.26	29.57
1650	890	8020	4325	1.259 .7942	25349	13747	20132	10918	1.989	119.34	29.84
1668	900	8038	4335	1.262 .7924	25321	13730	20064	10880	1.976	119.76	29.94
1700	917	8070	4352	1.267 . 7893	25267	13703	19943	10816	2.008	120.48	30.12
1750	944	8120	4379	$1.275 \quad .7844$	25191	13662	19760	10716	2.027	121.62	30.41
1761	950	8131	4385	1.277 .7834	25175	13651	19722	10694	2.031	121.86	30.47
1800	971	8170	4406	1.283 .7796	25113	13619	19578	10617	2.046	122.76	30.69
1850	998	8220	4433	1.291 .7749	25039	13578	19103	10522	2.064	123.84	30.96
1853	1000	8223	4435	1.291 .7745	25033	13574	19388	10513	2.066	123.96	30.99
35815	19326	42185	22761	6.622 .1510	11052	5992	-	-	24.000	1440.00	

5.5 Elliptic Orbits

In the consideration of elliptic orbits governed by our principle equation, the radius r, of the second body from the primary body, can be given by:

$$
\begin{equation*}
r=p /(1+e \cdot \cos v) \tag{5.34}
\end{equation*}
$$

which is simply the equation describing conic sections (see Figure 5.7), where:

$$
\begin{aligned}
\mathrm{e} & \equiv \text { eccentricity } \\
\nu & \equiv \text { true anomaly } \\
\mathrm{p} & \equiv \text { semi-parameter of conic } \\
& =\text { ed }
\end{aligned}
$$

DIRECTRIX

If a point P moves so that its distance from a fixed point (called the focus) divided by its distance from a fixed line (called the directrix) is a constant e (called the eccentricity), then the curve described by P is called a conic (so-called because such curves can be obtained by intersecting a plane and a cone at different angles). If the focus is chosen at origin 0 the equation of a conic in polar coordinates (r, v) is, if $O Q=P$ and $L M=d$:

$$
r=\frac{p}{1+e \cos v}=\frac{e d}{1+e \cos v}
$$

Figure 5.7 Conic sections (Based on a figure from Spiegal, 1968).

Thus we see that if $p \neq 0$, then:
$0<e<1 \quad$ the conic is an ellipse
$\mathrm{e}=1 \quad$ the conic is a parabola
$1<e<\infty \quad$ the conic is a hyperbola

In the following discussions the term semi-major axis (a) will be used. It is defined as half the maximum diameter of the conic. Note that (see Dubyago, 1961):

$$
\begin{aligned}
\quad a & =0 \text { for parabolic motion } \\
0<a & <\infty \text { for elliptic or circular motion } \\
-\infty<a & <0 \text { for hyperbolic motion }
\end{aligned}
$$

For an ellipse, a and p are related through e by $p=e d=a\left(1-e^{2}\right)$ 。
As an aside, it is interesting to note that for any arbitrary position of a vehicle, within the influence of the terrestrial gravitational field, there is a given escape velocity ($\mathrm{V}_{\mathrm{esc}}$). The magnitude of the initial velocity vector $\stackrel{\dot{r}}{\mathbf{r}}$ determines the type of path, that is:

$$
\begin{aligned}
& \text { elliptic if }\|\dot{\vec{r}}\|<v_{\text {esc }} \\
& \text { parabolic if }\|\dot{\vec{r}}\|=v_{\text {esc }} \\
& \text { hyperbolic if }\|\dot{\vec{r}}\|>\mathrm{V}_{\text {esc }}
\end{aligned}
$$

The escape velocity from a celestial body is given by:

$$
\begin{equation*}
v_{\text {esc }}=(2 g R)^{1 / 2} \tag{5.35}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{g} \equiv \text { gravitational constant of body } \\
& \mathrm{R} \equiv \text { radius of body }
\end{aligned}
$$

For the earth and moon, the escape velocities of a missile launched from the surface are:

Body	$\frac{V_{\text {esc }}}{\text { Earth }}$
Moon	$\simeq 11 \mathrm{~km} \cdot \mathrm{sec}^{-1}$
	$\simeq 2.5 \mathrm{~km} \cdot \mathrm{sec}^{-1}$

Contrast the above to the velocity of an air parcel at the earth's surface (no wind):

$$
\begin{align*}
\mathrm{V}_{\mathrm{par}}=\Omega \mathrm{R}_{\mathrm{e}} & =7.292 \cdot 10^{-5} \cdot 6371 \mathrm{~km} \cdot \mathrm{sec}^{-1} \\
& \doteq 0.46 \mathrm{~km} \cdot \mathrm{sec}^{-1} \tag{5.36}
\end{align*}
$$

where Ω is the earth's angular velocity and R_{e} is the earth radius.
The equation for an ellipse, in polar coordinates with the origin at a focus, is given by:

$$
\begin{equation*}
r=a\left(1-e^{2}\right) /(1+e \cdot \cos v)=p /(1+e \cdot \cos v) \tag{5.37}
\end{equation*}
$$

Noting that $p \neq 0,0<e<1$, and $0<a<\infty$ for the planets, constitutes a proof of Kepler's First Law.

A proof of Kepler's Second Law requires an integration of the area swept out by the radius vector \vec{r}. This results in the definition of the orbital period P in the relative inertial coordinate system which we have established. The period is then given by:

$$
\begin{equation*}
P=\frac{2 \pi}{K \sqrt{\mu}} a^{3 / 2} \tag{5.38}
\end{equation*}
$$

which corresponds to equation (5.31). A proof of equation (5.38) is given in Chapter 3 of EB.

This is the appropriate form in a relative inertial coordinate system. Note that for circular orbits:

$$
\begin{equation*}
V=K \sqrt{\mu / a} \tag{5.39}
\end{equation*}
$$

which corresponds to equation (5.30). For elliptic orbits V is not constant. We will derive the velocity for elliptic orbits in Chapter 6.

Now since the period P of a body is:

$$
\begin{equation*}
P=\frac{2 \pi}{K \sqrt{\mu}} a^{3 / 2} \tag{5.40}
\end{equation*}
$$

we can square both sides to get Kepler's Third Law:

$$
P^{2}=\frac{4 \pi^{2}}{K^{2} \mu} a^{3} \quad \begin{align*}
& \text { The squares of the periods of revo- } \tag{5.41}\\
& \text { lution of the planets about the Sun } \\
& \text { are proportional to the cubes of } \\
& \text { their mean distances from the Sun. }
\end{align*}
$$

It is interesting that Kepler derived his laws empirically, involving many years of laborious data reduction. His 3rd law did not include the mass factor μ since the accuracy in his data simply did not allow the detection of the secondary mass effect (see EB).

5.6 The Gaussian Constant

We can now define the Gaussian constant K_{0}, noting that:

$$
\begin{equation*}
\mathrm{P}^{2}=\frac{(2 \pi)^{2}}{\mu K^{2}} a^{3} \tag{5,42}
\end{equation*}
$$

and choosing a heliocentric system of characteristic units. It is a simple matter to compute the numerical value of K^{2} or the Gaussian constant:

$$
\mathrm{K}_{0}=\sqrt{\mathrm{K}^{2}}
$$

thus:

$$
\begin{equation*}
K_{0}=\frac{2 \pi}{P \sqrt{\mu}} a^{3 / 2} \tag{5.44}
\end{equation*}
$$

Now since the period of the Earth is 365.256365741 mean solar days (celestial period), and if the semi-major axis of the earth's orbit is taken to be 1 A.U. and $\sqrt{\mu}=1.0000015$, then $K_{0}=0.017202099 \mathrm{~A} . \mathrm{J} .{ }^{3 / 2} \cdot \mathrm{day}^{-1}$.

This was the procedure Gauss used to determine K_{6} in his 1809 publication "Theoria Motus Corporum Coelestium In Sectionibus Conicis Solem Ambientium", i.e., Theory of the Motion of Heavenly Bodies Revolving Round the Sun in Conic Sections (see EB). Similar procedures are used to obtain the gravitational constants of the other planets. Table 5.3 provides gravitational constant data for the planets.

Table 5.3: Gravitational Constants of the Major Planets (From Escoba1, 1965)

Planet	Semimajor Axis (km)	Gravitational Constants $($ A. U. $3 / 2 /$ Mean
Solar Day $)$		

Note that for Table $5.3,1$ A.U. $=149,599,000 \mathrm{~km}$ and K_{p} is related to K_{0} by $K_{p}=K_{0} \sqrt{m_{p} / m_{0}}$. Also note that in the geocentric system, the present value of K_{e} (earth gravitational constant) is 0.07436574 e.r. ${ }^{3 / 2}$ - $\min ^{-1}$.

5.7 Modified Time Variable

It is often convenient in the treatment of orbital problems to transform the time dimension to the so-called modified time variable (τ). The transformation involves a gravitational constant (e.g., K_{0} or K_{e}) and an epoch time t_{0}. In Heliocentric units:

$$
\begin{equation*}
\tau=K_{0}\left(t-t_{0}\right) \tag{5.45}
\end{equation*}
$$

whereas in Geocentric units:

$$
\begin{equation*}
\tau=K_{e}\left(t-t_{o}\right) \tag{5,46}
\end{equation*}
$$

The advantage of using this quantity can be seen if we recast the governing equation in terms of τ. Since:

$$
\begin{equation*}
d^{2} \tau=K^{2} d^{2} t \tag{5.47}
\end{equation*}
$$

then:

$$
\begin{equation*}
\frac{d^{2} \vec{r}}{d t^{2}}=-K^{2} \mu \vec{r} / r^{3} \tag{5.48}
\end{equation*}
$$

transforms to:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dr}}{ }^{2}=-\mu \vec{r} / \mathrm{r}^{3} \tag{5.49}
\end{equation*}
$$

and K^{2} does not appear.
Use of characteristic units, leads to a new unit of velocity
$\left(V_{c s u}\right)$, the circular satellite unit velocity (see Chapter 3 of EB):

$$
\begin{equation*}
V_{c s u}=K \sqrt{\frac{\mu}{a}} \tag{5.50}
\end{equation*}
$$

In the Heliocentric System:

$$
\begin{equation*}
v_{c s u}=K_{0} \sqrt{\frac{1}{1 A_{0} U .}}=0.017202099 \frac{\text { A.U. }{ }^{3 / 2}}{\text { day }} \sqrt{\frac{1}{1 \text { A.U. }}} \tag{5.51}
\end{equation*}
$$

$$
\begin{align*}
\mathrm{V}_{\text {csu }} & =0.017202099 \frac{\text { A.U. }}{\text { day }} \cdot 1.496 \cdot 10^{11} \frac{\mathrm{~m}}{\text { A.U. }} \cdot \frac{1 \text { day }}{86400} \mathrm{sec} \tag{5.52}\\
& =29,785 \mathrm{~m} / \mathrm{sec}
\end{align*}
$$

In the Geocentric System:

$$
\begin{align*}
v_{c s u} & =K_{e} \sqrt{\frac{1}{1 \mathrm{e} \cdot r_{.}}}=0.07436574 \frac{\mathrm{e} . \mathrm{r}_{\mathrm{m}}^{3 / 2}}{\min } \sqrt{\frac{1}{1 \mathrm{e} \cdot \mathrm{r}}} \tag{5,53}\\
\mathrm{v}_{\mathrm{csu}} & =0.07436574 \frac{\mathrm{e} . \mathrm{r}}{\min } \cdot 6.378214 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{e} \cdot \mathrm{r}_{\circ}} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \\
& =7,905 \mathrm{~m} / \mathrm{sec} \tag{5.54}
\end{align*}
$$

5.8 Classical Orbital Elements

Let us first establish an elliptic frame of reference in which we consider coordinates along $\mathrm{x}_{\omega}, \mathrm{y}_{\omega}$ axes in a plane containing the orbit (see Figure 5.8).

Figure 5.8 Elliptic frame of reference (Based on a figure from EB, 1965)

We have already defined:

$$
\begin{aligned}
e & \equiv \text { eccentricity } \\
& =\sqrt{a^{2}-b^{2}} / a \\
a & \equiv \text { semi-major axis } \\
b & \equiv \text { semi-minor axis } \\
p & \equiv \text { semi-parameter of conic } \\
& =a\left(1-e^{2}\right) \\
\nu & \equiv \text { true anomaly }
\end{aligned}
$$

In addition, the positions where $\mathrm{dr} / \mathrm{d} \tau$ are zero are called apsis (plural for apse). Elliptical orbits possess two points where the above condition is satisfied, i.e., the minimum radius position (perifocus) and the maximum radius position (apofocus). In discussing the sun in its ecliptic, we refer to the apsis as perihelion and aphelion (see Figure 5.9).

Figure 5.9 Perihelion and aphelion of earth in solar orbit (Not exact scale)

A complete set of orbital elements sufficient to describe an orbit are the "Classical Orbital Elements". They are as follows:

1. Epoch Time (t_{0}): Julian day and GMT time for which the following elements are defined.
2. Semi-major Axis (a): Half the distance between the two apsis of perifocus and apofocus.
3. Eccentricity (e): Degree of ellipticity of the orbit.
4. Inclination (i): Angle between the orbit plane and the equatorial plane of the primary body.
5. Mean Anomaly $\left(M_{0}\right)$: Angle in orbital plane with respect to the center of a mean circular orbit, having a period equivalent to the anomalistic period, from perifocus to the satellite position (anomalistic period is discussed in Chapter 6) 。
6. Right Ascension of Ascending Node (Ω_{0}): Angle in orbital plane between vernal equinox (reference meridian) and northward equator crossing.
7. Argument of Perigee (ω_{0}): Angle in orbit plane from ascending node to perifocus.

The above set of elements satisfies the requirement of defining six constants and an epoch time noted in Section 5.2. Note that if the epoch time were to correspond to perifocus, the mean anomaly would be zero and thus would be an unnecessary parameter. This is generally not the case with either NASA, NESS, ESA, or JMS orbital element transmissions. Of the 7 parameters, the three angular quantities ($M_{0}, \Omega_{0}, \omega_{0}$) are subscripted similar to t_{0} indicating that they are time dependent quantities. The time dependence of a two body orbit will be discussed in Chapter 6. The European Space Agency has used true anomaly rather than mean anomaly in their orbital transmissions for the Meteosat and GOES-1 satellites. This presents no difficulty as will be seen in the following section. Appendix A provides examples of orbital parameter transmissions for various U.S., European, and Japanese satellites.

5.9 Calculation of Celestial Pointing Vector

First we recall the essential angles:

$$
\mathrm{i} \equiv \text { Orbital inclination }
$$

$\Omega_{0} \equiv$ Right ascension of ascending node (note that ϑ_{0} is
defined as the right ascension of descending node)
$\omega_{o} \equiv$ Argument of perigee
Following the approach given in Chapter 3 of $E B$, the angles $i, \Omega_{0}, \omega_{0}$ (the "Classical Orientation Angles") are used to define the orbit plane in celestial space, defined by an orthogonal (I, J, K) coordinate system (as shown in Figure 5.10).

Figure 5.10 The Classical Orientation Angles and the Orthogonal I, J, K Coordinate System (Based on a figure from EB, 1965)

Note that:

$$
\begin{aligned}
& 0 \leq i<\pi \\
& 0 \leq \Omega_{0}<2 \pi \\
& 0 \leq \omega_{0}<2 \pi
\end{aligned}
$$

From Figure 5.10 it is convenient to define retrograde and direct orbits:

1. Retrograde: Orbits whose motion is in the direction of y to x.
2. Direct or Prograde: Orbits whose motion is in the direction of

$$
x \text { to } y .
$$

Compare the above with the classic definition of a retrograde orbit:
Motion in an orbit opposite to the usual orbital direction of celestial bodies within a given system; i. $e_{\text {. }}$, a satellite motion, in a direction opposite to the motion of the primary body.

Since the use of angles is cumbersome, we transform to a set of orthogonal vectors (P, Q, W) in a cartesian reference frame (see Figure 5.11):
P is a vector pointing toward perifocus
Q is in the orbit plane and advanced 90° from P
W is the normal to the orbit plane

Figure 5.11 The P, Q, W orthogonal reference frame (Based on a figure from EB, 1965)

The set of orthogonal vectors ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) can also be defined (see Figure 5.12). These vectors will not be used in our analysis, however, they are useful vectors for additional analytical study (see EB for an explanation):
U is the vector always pointing at the satellite in the plane of the orbit
V is the vector advanced from U, in the sense of increasing true anomaly, by a right angle

W is the normal to the orbital plane and is given by $\mathrm{U} \times \mathrm{V}$

Figure 5.12 The U, V, W orthogonal reference frame (Based on a figure from EB, 1965)

Note that if the satellite is at its perifocal position, the (P, Q, W) orthogonal set is equivalent to the (U, V, W) orthogonal set.

Since ($i, \Omega_{0}, \omega_{o}$) are the Euler angles of a coordinate rotation, we can develop a transformation between the (I, J, K) system and the
($\mathrm{P}, \mathrm{Q}, \mathrm{W}$) system. The direction cosines of this transformation are thus:

$$
\begin{align*}
& P_{x}=\cos \omega_{0} \cdot \cos \Omega_{0}-\sin \omega_{0} \cdot \sin \Omega_{0} \cdot \cos i \\
& P_{y}=\cos \omega_{0} \cdot \sin \Omega_{0}+\sin \omega_{0} \cdot \cos \Omega_{0} \cdot \cos i \tag{5.55}\\
& P_{z}=\sin \omega_{0} \cdot \sin i \\
& Q_{x}=-\sin \omega_{0} \cdot \cos \Omega_{0}-\cos \omega_{0} \cdot \sin \Omega_{0} \cdot \cos i \\
& Q_{y}=-\sin \omega_{0} \cdot \sin \Omega_{0}+\cos \omega_{0} \cdot \cos \Omega_{0}-\cos i \tag{5.56}\\
& Q_{z}=\cos \omega_{0} \cdot \sin i \\
& W_{x}=\sin \Omega_{0} \cdot \sin i \\
& W_{y}=-\cos \Omega_{0} \cdot \sin i \tag{5.57}\\
& W_{z}=\cos i
\end{align*}
$$

Therefore we have:

$$
\left[\begin{array}{c}
P \tag{5.58}\\
Q \\
W
\end{array}\right]=\left[\begin{array}{c}
P_{x} P_{y} P_{z} \\
Q_{x} Q_{y} Q_{z} \\
W_{x} W_{y} W_{z}
\end{array}\right] \cdot\left[\begin{array}{l}
I \\
J \\
K
\end{array}\right]
$$

where (P, Q, W) is wrt the orbit plane frame of reference and (I, J, K) is wrt the celestial frame of reference. Note that the (P, Q, W) system utilizes $\left(x_{\omega}, y_{\omega}, z_{\omega}\right)$ coordinates (see Figure 5.10) whereas the (I, J, K) system utilizes ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinates (see Figure 5.11). Now if ($\mathrm{P}, \mathrm{Q}, \mathrm{W}$) are mutually orthogonal and we define the transformation matrix B, where:

$$
B=\left[\begin{array}{ccc}
P_{x} & P_{y} & P_{z} \tag{5.59}\\
Q_{x} & Q_{y} & Q_{z} \\
W_{x} & & W_{y}
\end{array}\right]
$$

then:

$$
\left[\begin{array}{l}
x_{\omega} \tag{5.60}\\
y_{\omega} \\
z_{\omega}
\end{array}\right]=B\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and since:

$$
\begin{equation*}
B^{-1}=B^{T} \tag{5.61}
\end{equation*}
$$

therefore:

$$
\left[\begin{array}{l}
x \tag{5.62}\\
y \\
z
\end{array}\right]=B^{T}\left[\begin{array}{l}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]
$$

where:

$$
B^{T}=\left[\begin{array}{ccc}
P_{x} & Q_{x} & W_{x} \tag{5.63}\\
P_{y} & Q_{y} & W_{y} \\
P_{z} & Q_{z} & W_{z}
\end{array}\right]
$$

so that:

$$
\begin{align*}
& x=x_{\omega} P_{x}+y_{\omega} Q_{x}+z_{\omega}{ }_{\omega} x \\
& y=x_{\omega} P_{y}+y_{\omega} Q_{y}+z_{\omega}{ }_{\omega} y \tag{5.64}\\
& z=x_{\omega} P_{z}+y_{\omega} Q_{z}+z_{\omega}{ }_{\omega} z^{2}
\end{align*}
$$

Now since the satellite always remains in the P, Q orbital plane, then z_{ω} is always zero. Therefore:

$$
\begin{align*}
& x=x_{\omega} P_{x}+y_{\omega} Q_{x} \\
& y=x_{\omega} P_{y}+y_{\omega} Q_{y} \tag{5.65}\\
& z=x_{\omega} P_{z}+y_{\omega} Q_{z}
\end{align*}
$$

implying that if we can determine $\left(x_{\omega}, y_{\omega}\right)$, we can solve for a celestial position vector. Note that if we remain in the orbital plane coordinate system as long as possible, we will have an easier time than working in a 3-dimensional system。

In order to determine orbit plane coordinates we need to derive Kepler's Equation which relates geometry or position in the orbit plane to time. We will restrict the analysis to an elliptical formulation, ignoring the parabolic and hyperbolic formulations. We first need a new definition, i.e., the eccentric anomaly (see Figure 5.13).

Eccentric Anomaly (E): The angle measured in the orbital plane from the P axis to a line through the origin and another point defined by the projection of the moving vehicle in the y_{ω} direction upon a circumscribing circle. Note that this angle is analogous to the angle β (reduced latitude) which was defined in Chapter 4 during the discussion of station coordinates.

Figure 5.13 Definition of eccentric anomaly Based on a figure from EB, 1965)

Recalling the definition of true anomaly (also shown in Figure 5.13): True Anomaly (v): Angle in the orbital plane with respect to a focus of the ellipse from the perifocal position to the satellite position.
and with the aid of the previous figure:

$$
\begin{align*}
& x_{\omega}=r \cos v \tag{5.66}\\
& y_{\omega}=r \sin v \\
& x_{\omega}=a \cdot \cos E-a \cdot e \tag{5.67}
\end{align*}
$$

Now since:

$$
\begin{equation*}
r=p /(1+e \cdot \cos v) \tag{5.68}
\end{equation*}
$$

then:

$$
\begin{equation*}
r=p /\left(1+e \cdot x_{\omega} / r\right) \tag{5.69}
\end{equation*}
$$

or:

$$
\begin{equation*}
p=r+e \cdot x_{\omega} \tag{5.70}
\end{equation*}
$$

But we know:

$$
\begin{equation*}
p=a\left(1-e^{2}\right) \tag{5.71}
\end{equation*}
$$

therefore from equation (5.67):

$$
\begin{equation*}
x_{\omega}=a(\cos E-e) \tag{5.72}
\end{equation*}
$$

we have:

$$
\begin{align*}
& r+e \cdot a(\cos E-e)=a\left(1-e^{2}\right) \tag{5.73}\\
& r=a\left(1-e^{2}-e \cos E+e^{2}\right) \tag{5.74}\\
& r=a(1-e \cos E) \tag{5,75}
\end{align*}
$$

Now since:

$$
\begin{equation*}
r^{2}=x_{\omega}^{2}+y_{\omega}^{2} \tag{5.76}
\end{equation*}
$$

by manipulation:

$$
\begin{equation*}
y_{\omega}=a\left(\sin E \cdot \sqrt{1-e^{2}}\right) \tag{5.77}
\end{equation*}
$$

and thus equations (5.72) and (5.77) give us orbital plane coordinates in terms of Classical Orbital Elements and the eccentric anomaly.

We can now develop the relationship between E and v. Noting that:

$$
\begin{align*}
a(\cos E-e) & =r \cos v \\
& =\frac{a\left(1-e^{2}\right)}{1+e \cos v} \cdot \cos v \tag{5.78}
\end{align*}
$$

and with suitable manipulation:

$$
\begin{equation*}
\cos \nu=\frac{\cos E-e}{1-e \cos E} \tag{5.79}
\end{equation*}
$$

Also:

$$
\begin{aligned}
\operatorname{asin} E \sqrt{1-e^{2}} & =r \sin \nu \\
& =\frac{a\left(1-e^{2}\right)}{1+e \cos \nu} \sin \nu
\end{aligned}
$$

Now using equation (5.79) to define cosv and with suitable manipulation:

$$
\begin{equation*}
\sin \nu=\frac{\sin E \sqrt{1-e^{2}}}{1-e \cos E} \tag{5.80}
\end{equation*}
$$

Equations (5.79) and (5.80) thus provide a transform pair between E and v. If we invert the expressions, we have a transform pair between ν and E. It is easy to show that:

$$
\begin{align*}
& \cos E=\frac{\cos v+e}{1+e \cos v} \tag{5.81}\\
& \sin E=\frac{\sqrt{1-e^{2}} \cdot \sin v}{1+e \cos v}
\end{align*}
$$

Now we will go through a brief derivation of Kepler's equation. First we note:

$$
\begin{align*}
& \dot{\mathrm{x}}_{\omega}=-\mathrm{a} \dot{\mathrm{E}} \sin \mathrm{E} \tag{5.82}\\
& \dot{\mathrm{y}}_{\omega}=\mathrm{a} \dot{\mathrm{E}} \sqrt{1-\mathrm{e}^{2}} \cos \mathrm{E}
\end{align*}
$$

Next we require some identities that are basic properties of orbits. From equation (5.49) :

$$
\begin{equation*}
\frac{d \vec{r}}{d \tau}=\ddot{\vec{r}}=-\frac{\mu}{r^{3}} \vec{r} \tag{5.83}
\end{equation*}
$$

therefore:

$$
\begin{equation*}
\overrightarrow{\mathbf{r}} \times \ddot{\vec{r}}=\frac{-\mu}{r^{3}} \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{r}}=0 \tag{5.84}
\end{equation*}
$$

Now since:

$$
\begin{equation*}
\frac{d}{d \tau}(\vec{r} \times \dot{\vec{r}})=\vec{r} \times \ddot{\vec{r}}+\dot{\vec{r}} \times \stackrel{\circ}{\vec{r}} \tag{5.85}
\end{equation*}
$$

therefore:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau}(\overrightarrow{\mathrm{r}} \times \stackrel{\circ}{\vec{r}})=0 \tag{5.86}
\end{equation*}
$$

and:

$$
\begin{align*}
& \vec{r} \times \dot{\vec{r}}=\vec{h} \equiv \text { a vector constant } \tag{5.87}\\
& (\vec{r} \times \dot{\vec{r}}) \cdot \vec{h}=h^{2} \equiv \text { a scalar constant } \tag{5.88}
\end{align*}
$$

A proof in Chapter 3 of EB shows that:

$$
\begin{equation*}
r=\frac{h^{2} / \mu}{1+e \cos \nu} \tag{5.89}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
\mu p=\mu \cdot a\left(1-e^{2}\right)=h^{2}=(\vec{r} \times \stackrel{\circ}{\vec{r}}) \circ(\vec{r} \circ \dot{\vec{r}}) \tag{5.90}
\end{equation*}
$$

Now expanding the right hand side of equation (5.90):

$$
\mu \cdot a\left(1-e^{2}\right)=\left[\begin{array}{ccc}
i & j & k \tag{5.91}\\
x_{\omega} & y_{\omega} & 0 \\
\stackrel{\circ}{x}_{\omega} & \dot{y}_{\omega} & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
i & j & k \\
x_{\omega} & y_{\omega} & 0 \\
\circ & \dot{x}_{\omega} & 0
\end{array}\right]
$$

results in the following:

$$
\begin{equation*}
\mu \circ a\left(1-e^{2}\right)=\left(x_{\omega} \dot{y}_{\omega}-y_{\omega} \dot{x}_{\omega}\right)^{2} \tag{5.92}
\end{equation*}
$$

From the definitions of $\mathrm{x}_{\omega}, \mathrm{y}_{\omega}, \dot{\mathrm{x}}_{\omega}, \dot{\mathrm{y}}_{\omega}$ it is easy to show that:

$$
\begin{equation*}
\frac{\sqrt{\mu}}{a^{3 / 2}}=(1-e \cos E) \dot{E} \tag{5.93}
\end{equation*}
$$

Now if we integrate equation (5.87) from $\tau^{\prime}=0$ to $\tau^{\prime}=\tau$:

$$
\begin{equation*}
\frac{\sqrt{\mu}}{a^{3 / 2}} \int_{0}^{\tau} d \tau^{\prime}=\int_{0}^{E_{\tau}}(1-e \cos E) d E^{\prime} \tag{5.94}
\end{equation*}
$$

we find:

$$
\begin{equation*}
\frac{\sqrt{\mu}}{a^{3 / 2}} \tau=E_{\tau}-e \sin E_{\tau} \tag{5.95}
\end{equation*}
$$

We now recall the definition of the modified time variable:

$$
\begin{equation*}
\tau=K\left(t-t_{0}\right) \tag{5,96}
\end{equation*}
$$

where we understand that from the integration limits, the initial time t_{0} corresponds to the point on the orbit where $E=0$ 。 We shall call this time T, the time of perifocal passage. Substituting for τ, such that $E \equiv E_{t}$, we have Kepler's equation:

$$
\begin{equation*}
\frac{\sqrt{\mu}}{a^{3 / 2}} K(t-T)=E-e \sin E \tag{5.97}
\end{equation*}
$$

Now we call $\sqrt{\mu} \mathrm{K} / \mathrm{a}^{3 / 2}$ the mean motion n, where:

$$
\begin{equation*}
n=\frac{\sqrt{\mu}}{a^{3 / 2}} K \tag{5.98}
\end{equation*}
$$

and it is now apparent that we have a formulation for the mean anomaly (M) :

$$
\begin{equation*}
M=n(t-T) \tag{5.99}
\end{equation*}
$$

Note that M is one of the Classic Orbit Elements:
Mean Anomaly (M): Angle in orbital plane with respect to the center of a mean circular orbit, having a period equivalent to the anomalistic period, from perifocus to the satellite position. We shall defer our discussion of anomalistic period until we discuss perturbation theory in Chapter 6。

We now see what the mean motion has to do with the period. Recalling equation (5.40):

$$
\begin{equation*}
P=\frac{2 \pi}{K \sqrt{\mu}} a^{3 / 2} \tag{5.100}
\end{equation*}
$$

Therefore the mean motion constant (n) and the period (P) are simply reciprocal quantities:

$$
\begin{align*}
& \mathrm{n}=\frac{2 \pi}{\mathrm{P}} \tag{5.101}\\
& \mathrm{P}=\frac{2 \pi}{\mathrm{n}}
\end{align*}
$$

It is important to note why the recovery of an accurate value of the semi-major axis (a) from raw orbit tracking data is so important. Since the period is directly proportional to $a^{3 / 2}$, any error in
recovering the semi-major axis translates to a cumulative error in position due to an incorrect period. Figure 5.14 provides a graph for both a low orbiting satellite and a geosynchronous satellite indicating the period error corresponding to errors in specifying the semi-major axis.

Figure 5.14 Error in determining satellite period corresponding to error in recovering the semi-major axis

From equations (5.97) and (5.99) we have a relationship between M and E :

$$
\begin{equation*}
M=E-e \sin E \tag{5.102}
\end{equation*}
$$

however, we want E in terms of M. Since equation (5.102) is a transcendental equation we can transform it. First equation 5.102 is differentiated:

$$
\begin{equation*}
d M=(1-e \cos E) d E \tag{5.103}
\end{equation*}
$$

Next we rearrange and integrate from the position of perigee at which $E_{0}=M_{0}=0$, to an arbitrary position in the orbit corresponding to $\left(E_{t}, M_{t}\right)$:

$$
\begin{equation*}
\int_{0}^{E_{t}} d E=E_{t}=\int_{0}^{M_{t}} \frac{d M}{1-e \cdot \cos E} \tag{5.104}
\end{equation*}
$$

We can now express the term under the integral of equation 5.104 as a Fourier expansion:

$$
\begin{equation*}
E_{t}=\int_{0}^{M_{t}}\left\{\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cdot \cos \frac{m \pi M}{\ell}+b_{m} \sin \frac{m \pi M}{\ell}\right)\right\} d M \tag{5.105}
\end{equation*}
$$

where 2ℓ is the period of the function and:

$$
\begin{align*}
& a_{m}=\frac{1}{\ell} \int_{0}^{2 \ell}(1-e \cos E)^{-1} \cos \left(\frac{m \pi M}{\ell}\right) d M \\
& b_{m}=\frac{1}{\ell} \int_{0}^{2 \ell}(1-e \cos E)^{-1} \sin \left(\frac{m \pi M}{\ell}\right) d M \tag{5.106a}\\
& a_{0}=\frac{1}{\ell} \int_{0}^{2 \ell}(1-e \cos E)^{-1} d M
\end{align*}
$$

Now substituting for $d M$ from equation (5.103) and noting that $2 \ell=2 \pi$:

$$
\begin{align*}
& a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} d E=2 \tag{5.106b}\\
& a_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} \cos (m \cdot M) d E
\end{align*}
$$

and $a l l \mathrm{~b}_{\mathrm{m}}=0$ since we are integrating an even function. Now using
our definition of M from equation (5.102):

$$
a_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} \cos \{m(E-e \sin E)\} d E
$$

Now using an integral representation property of Bessel functions (see Abramowitz and Stegun, 1972):

$$
\begin{equation*}
a_{\mathrm{m}}=2 \mathrm{~J}_{\mathrm{m}}(\mathrm{me}) \tag{5.107}
\end{equation*}
$$

where J_{m} is a Bessel function of the first kind of order m and argument me:

$$
\begin{equation*}
J_{m}(m e)=\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{m e}{2}\right)^{2 k+m}}{k!(k+m)!}=\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{m e}{2}\right)^{2 k+m}}{k!\Gamma(k+m+1)} \tag{5.108}
\end{equation*}
$$

We can now rewrite equation (5.105) as:

$$
\begin{equation*}
E_{t}=\int_{0}^{M}\left\{1+\sum_{m=1}^{\infty} 2 J_{m}(m e) \cos (m M)\right\} d M \tag{5.109}
\end{equation*}
$$

and integrating, we can finally express the eccentric anomaly E, explicitly in terms of M and e with a Fourier-Bessel series:

$$
\begin{equation*}
E=M+2 \sum_{m=1}^{\infty} \frac{1}{m} J_{m}(m e) \sin (m M) \tag{5.110}
\end{equation*}
$$

where E and M represent the eccentric and mean anomaly at an arbitrary time t .

The above expression remains cumbersome for computer calculations. However, the series term can be expanded in powers of e. Noting that $e<1.0$, we can truncate at some power of e, say 5:

$$
\begin{align*}
J_{1}(1 \cdot e) & =\frac{(-1)^{o}\left(\frac{e}{2}\right)^{1}}{0!\cdot 1!}-\frac{(-1)^{1}\left(\frac{e}{2}\right)^{3}}{1!^{\circ} 2!}-\frac{(-1)^{2}\left(\frac{e}{2}\right)^{5}}{2!\cdot 3!}+\ldots \\
& =\frac{e}{2}-\frac{e^{3}}{16}+\frac{e^{5}}{384}+\ldots \\
J_{2}(2 \cdot e) & =\frac{e^{2}}{2}-\frac{e^{4}}{6}+\ldots \tag{5.111}\\
J_{3}(3 \cdot e) & =\frac{9}{16} e^{3}-\frac{81}{256} e^{5}+\ldots \\
J_{4}(4 \cdot e) & =\frac{2}{3} e^{4}+\ldots \\
J_{5}(5 \cdot e) & =\frac{625}{768} e^{5}+\ldots
\end{align*}
$$

Now if we collect terms in similar powers of e :

$$
\begin{align*}
E=M & +\frac{2}{1} \cdot \frac{e}{2} \cdot \sin (M) \\
& +\frac{2}{2} \cdot \frac{e^{2}}{2} \cdot \sin (2 M) \\
& +\frac{2}{3} \cdot \frac{9}{16} \cdot e^{3} \cdot \sin (3 M)-\frac{2}{1} \cdot \frac{1}{16} \cdot e^{3} \cdot \sin (M) \tag{5.112}\\
& +\frac{2}{4} \cdot \frac{2}{3} \cdot e^{4} \cdot \sin (4 M)-\frac{2}{2} \cdot \frac{1}{6} \cdot e^{4} \cdot \sin (2 M) \\
& +\frac{2}{5} \cdot \frac{625}{768} \cdot e^{5} \cdot \sin (5 M)-\frac{2}{3} \cdot \frac{81}{256} \cdot e^{5} \cdot \sin (3 M) \\
& +\frac{2}{1} \cdot \frac{1}{384} \cdot e^{5} \cdot \sin (M)
\end{align*}
$$

Simplifying:

$$
\begin{align*}
E=M & +\sin (M) \cdot e+\frac{\sin (2 M)}{2} \cdot e^{2}+\frac{1}{8}[3 \cdot \sin (3 M)-\sin (M)] e^{3} \\
& +\frac{1}{6}[2 \circ \sin (4 M)-\sin (2 M)] \cdot e^{4} \tag{5.113}\\
& +\frac{1}{384}[125 \cdot \sin (5 M)-81 \cdot \sin (3 M)+2 \cdot \sin (M)] \cdot e^{5}
\end{align*}
$$

We now note that all the coefficients of the expansion are less than one, thus insuring that the truncation in powers of e only ignores increasingly smaller terms. Now we can apply the trigonometric multiple angle relationships:

$$
\begin{align*}
& \sin (2 M)=2 \sin (M) \cos (M) \\
& \sin (3 M)=3 \sin (M)-4 \sin ^{3}(M) \\
& \sin (4 M)=4 \sin (M) \cos (M)-8 \sin ^{3}(M) \cos (M) \tag{5,114}\\
& \sin (5 M)=5 \sin (M)-20 \sin ^{3}(M)+16 \sin ^{5}(M)
\end{align*}
$$

Substituting and simplifying we arrive at our final equation for E in explicit terms; an expression which involves only a single sin and cos calculation insofar as computational requirements are concerned:

$$
\begin{align*}
E=M & +\sin (M) \cdot e+\sin (M) \cos (M) e^{2} \\
& +\left[\sin (M)-(3 / 2) \sin ^{3}(M)\right] e^{3} \\
& +\left[\sin (M) \cos (M)-(8 / 3) \sin ^{3}(M) \cos (M)\right] e^{4} \tag{5.115}\\
& +\left[\sin (M)-(17 / 3) \sin ^{3}(M)+(125 / 24) \sin ^{5}(M)\right] e^{5}
\end{align*}
$$

Note that if we consider only the first power term (for example, in the event e is very small), then:

$$
\begin{equation*}
E \stackrel{\circ}{\cong} M+e^{\circ} \sin (M) \tag{5.116}
\end{equation*}
$$

To illustrate the error in ignoring the higher order terms we examine the eccentric anomaly of the sun with respect to the earth under various orders of expansion. Table 5.4 provides the results. Appendix D provides a computer solution for an apparent solar orbit which considers the above expansion.

Table 5.4 Eccentric Anomaly of Sun wrt Earth Under Various Orders of Expansion (Eccentricity of solar orbit is 。081820157)

Mean Anomaly			Eccentric Anomaly		
	e^{1}	e^{2}	e^{3}	e^{4}	e^{5}
0	0.000000	0.000000	0.000000	0.000000	0.000000
15	15.021177	15.022850	15.022978	15.022987	15.022988
30	30.040910	30.043809	30.043980	30.043987	30.043986
45	45.057856	45.061203	45.061300	45.061292	45.061291
60	60.070858	60.073757	60.073698	60.073678	60.073677
75	75.079032	75.080706	75.080494	75.080478	75.080479
90	90.081820	90.081820	90.081546	90.081546	90.081548
105	105.079032	105.077359	105.077147	105.077164	105.077165
120	120.070858	120.067960	120.067900	120.067920	120.067919
135	135.057856	135.054508	135.054605	135.054613	135.054611
150	150.040910	150.038011	150.038182	150.038176	150.038176
165	165.021177	165.019503	165.019631	165.019621	165.019622
180	180.000000	180.000000	180.000000	180.000000	180.000000

The stage is now set for the calculation of a celestial pointing vector. We first transform the epoch from t_{0} to the time of perifocal passage (T). Since:

$$
\begin{equation*}
M_{0}=n\left(t_{0}-T\right) \tag{5.117}
\end{equation*}
$$

therefore:

$$
\begin{equation*}
T=t_{0}-M_{0} / n \tag{5.118}
\end{equation*}
$$

Thus we can now solve for M at any arbitrary time t :

$$
\begin{equation*}
M=n(t-T) \tag{5.119}
\end{equation*}
$$

and then solve for E :

$$
\begin{equation*}
E=M+e \sin (M)+\ldots \tag{5.120}
\end{equation*}
$$

We now solve for x_{ω} and y_{ω} and note that z_{ω} is always 0 :

$$
\begin{align*}
& x_{\omega}=a(\cos E-e) \\
& y_{\omega}=a\left(\sin E \cdot \sqrt{\left.1-e^{2}\right)}\right. \tag{5.121}\\
& z_{\omega}=0
\end{align*}
$$

Now transform to a celestial pointing vector:

$$
\left[\begin{array}{l}
x \tag{5.122}\\
y \\
z
\end{array}\right]=B^{T}\left[\begin{array}{c}
x_{\omega} \\
y_{\omega} \\
0
\end{array}\right]
$$

where B^{T} is the transpose of the celestial frame-orbital plane transformation matrix. This completes the desired solution.

It is useful to sumarize the relationships between M, V, and $E:$

$$
\begin{align*}
& M=E-e \cdot \sin E \\
& E \dot{=} M+e \cdot \sin M+\ldots \tag{5.123}\\
& \cos V=(\cos E-e) /(1-e \cos E) \tag{5.124}\\
& \sin V=\sqrt{1-e^{2}} \cdot \sin E /(1-e \cos E) \\
& \cos E=(\cos \nu+e) /(1+e \cos V) \tag{5.125}\\
& \sin E=\sqrt{1-e^{2}} \cdot \sin \nu /(1+e \cos V)
\end{align*}
$$

Now recall that ESA uses True Anomaly (ν_{0}) rather than Mean Anomaly $\left(M_{o}\right)$ in their orbital element transmissions. Thus before we can apply equation (5.118), we first transform ν_{o} to an initial eccentric anomaly E_{o} :

$$
\begin{equation*}
E_{0}=\cos ^{-1}\left[\left(\cos v_{0}+e\right) /\left(1+e \cos v_{0}\right)\right] \tag{5.126}
\end{equation*}
$$

The initial mean anomaly can now be solved:

$$
\begin{equation*}
M_{o}=E_{o}+e \cdot \sin E_{o} \tag{5,127}
\end{equation*}
$$

5.10 Rotation to Terrestrial Coordinates

Finally, we transform to our rotating frame of reference (i.e., the earth). This is accomplished by noting that the observer's meridian is rotating with an angular velocity equal to $\dot{\rho}$, that is the sidereal rate of change. Thus the observer's right ascension can be given by:

$$
\begin{equation*}
\rho=\rho_{o}+\dot{\rho}\left(t-t_{e}\right) \tag{5.128}
\end{equation*}
$$

in which we have defined:

$$
\begin{align*}
& \rho_{\mathrm{o}}=\text { SHA } \tag{5.129}\\
& \rho=\left(2 \pi / P_{\mathrm{d}}\right) \cdot \mathrm{S}
\end{align*}
$$

where P_{d} is the daily period (24 hours), t_{e} is a sidereal epoch, and SHA is the sidereal hour angle at the epoch t_{e}. We can choose SHA $=0$, i.e. a time when the Greenwich meridian is in conjunction with the vernal equinox. To do so, the "Universal and Sidereal Time" table from the American Ephemeris and Nautical Almanac can be used. Table 5.5 provides an example from the 1978 version for January, in which can be seen that on January 1, at 171600 GMT the vernal equinox and the Greenwich meridian are aligned. S simply converts solar mean time to sidereal time, where:

$$
\begin{equation*}
S=366.25 / 365.25 \tag{5.130}
\end{equation*}
$$

Thus, by rotating the (x, y, z) vector through an angle ρ, we finally achieve our desired earth reference vector (x_{e}, y_{e}, z_{e}):

$$
\begin{align*}
& x_{e}=\cos (\rho) \cdot x+\sin (\rho) \cdot y \\
& y_{e}=-\sin (\rho) \cdot x+\cos (\rho) \cdot y \tag{5.131}\\
& z_{e}=z
\end{align*}
$$

Now, using the transformation between cartesian and spherical coordinates, we can solve for the sub-satellite point ($\phi_{s p}, \lambda_{s p}$) in geocentric coordinates and the satellite height (h). First, we solve for latitude and longitude (ϕ, λ) and the radius coordinate (r) in a spherical reference frame:

$$
\begin{align*}
& \phi=\sin ^{-1}\left[z_{e} / \sqrt{x_{e}^{2}+y_{e}^{2}+z_{e}^{2}}\right] \\
& \lambda=\tan ^{-1}\left[y_{e} / x_{e}\right] \tag{5.132}\\
& r=\sqrt{x_{e}^{2}+y_{e}^{2}+z_{e}^{2}}
\end{align*}
$$

Finally we transform to geocentric coordinates ($\phi_{\mathrm{sp}}, \lambda_{\mathrm{sp}}$) and height (h) :

$$
\begin{align*}
\phi_{s p} & =\cos ^{-1}\left[\cos \phi / \sqrt{1-e^{2} \sin ^{2} \phi}\right] \\
\lambda_{s p} & =\lambda \tag{5.133}\\
h_{s p} & =r-R_{e}
\end{align*}
$$

where R_{e} is the earth radius at latitude $\phi_{s p}$ and e is the eccentricity of the earth itself.

Computer codes adopted to the above methodology are given in Appendices B and D. Appendix B considers an earth-satellite configuration whereas Appendix D considers an earth-sun configuration. Appendix C consists of a numerical routine used to determine an earth satellite equator crossing period which will be discussed in Chapter 6. Appendix E gives two approximate solutions for determining solar position; these routines can be compared to the solution given in Appendix D. Appendix F represents a set of library routines applicable
to the aforementioned orbital codes, and finally Appendix G provides a solution for determining the required inclination for a sun-synchronous orbit (this problem is discussed in Chapter 6).

Table 5.5: Universal and Sidereal Time Table for January, 1978 (From the American Ephemeris and Nautical Almanac, 1978)

6.0 PERTURBATION THEORY

6.1 Concept of Gravitational Potential

We will now consider the deviation of an orbit from the ideal, two body, inverse square-force field law. In order to do so, we must distinguish the concepts of empirically correcting orbit calculations due to a non-perfect two body system, and the actual prediction of orbit positions based on a physical model which accounts for forces that perturb a body from perfect two body motion. The first technique has received a good deal of study under the general heading of "Differential Correction". A discussion of this topic is given in Chapter 9 of EB, by Dubyago (1961), and by Capellari et al. (1976)。 The method consists of bringing a predicted orbit position into agreement with a set of actual orbit measurements in such a way so as to adjust a set of constant orbital elements to satisfy a new local time period. Thus the methodology does not necessarily consider the physical reasons why an orbit is perturbed.

The general area of "Perturbation Theory" consists of developing a set of reasonable, time dependent quantities which arise due to various perturbation forces, which in turn lead to time dependent expressions for the orbital elements themselves. This theory, although not necessarily adaptable to analytic techniques, has a physical basis in fact. Since the satellite navigation problem is not really compatible with the required procedures used in Differential Correction techniques, we shall address the following discussion to perturbation techniques.

We first need to consider the governing equation in terms of the concept of potential. Following the approach of Kozai (1959) and EB and using a spherical coordinate system defined by the earth's
equatorial plane, we define a potential (V):

$$
\begin{equation*}
V+\frac{\mu K^{2}}{r} \tag{6.1}
\end{equation*}
$$

where:

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}+z^{2}} \tag{6,2}
\end{equation*}
$$

and (x, y, z) are the cartesian components of a radius vector \vec{r} extended from the earth center to an arbitrary satellite position. Taking partial derivatives with respect to x, y and z yields:

$$
\begin{align*}
& \frac{\delta V}{\delta x}=-\frac{\mu K^{2}}{r^{2}} \frac{\delta r}{\delta x} \\
& \frac{\delta V}{\delta y}=-\frac{\mu K^{2}}{r^{2}} \frac{\delta r}{\delta y} \tag{6,3}\\
& \frac{\delta V}{\delta z}=-\frac{\mu K^{2}}{r^{2}} \frac{\delta r}{\delta z}
\end{align*}
$$

and since:

$$
\begin{equation*}
\frac{\delta r}{\delta x}=\frac{x}{r} ; \frac{\delta r}{\delta y}=\frac{y}{r} ; \frac{\delta r}{\delta z}=\frac{z}{r} \tag{6.4}
\end{equation*}
$$

then:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=\frac{\delta V}{\delta x} ; \frac{d^{2} y}{d t^{2}}=\frac{\delta V}{\delta y} ; \frac{d^{2} z}{d t^{2}}=\frac{\delta V}{\delta z} \tag{6.5}
\end{equation*}
$$

or simply:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}}=\nabla \mathrm{V}(\operatorname{grad} \mathrm{~V}) \tag{6,6}
\end{equation*}
$$

Equation 6.6 thus states that the acceleration of a body is due to the gradient of what we shall call a potential V.

If we generalize the problem, it is easily seen that V can be expressed as a summation of normalized point masses $\left(m_{1}\right)$:

$$
\begin{equation*}
V=\sum_{i=1}^{n} \frac{m_{i} K^{2}}{r_{i}} \tag{6.7}
\end{equation*}
$$

Now if we consider the earth as a series of concentric (circular) masses about its center, we see that if we assume an oblate spheroid (bulging equator), we are considering a non-symmetric force field as shown in Figure 6.1. Makemson et al. (1961) have provided a spherical harmonics expansion of the aspherical potential V_{e} of the earth:

$$
\begin{aligned}
V_{e}=\frac{K^{2} m_{e}}{r}[1 & +\frac{J_{2}}{2 r^{2}}\left(1-3 \sin ^{2} \delta\right) \\
& +\frac{J_{3}}{2 r^{3}}\left(3-5 \sin ^{2} \delta\right) \sin \delta \\
& -\frac{J_{4}}{8 r^{4}}\left(3-30 \sin ^{2} \delta+35 \sin ^{4} \delta\right) \\
& -\frac{J_{5}}{8 r^{5}}\left(15-70 \sin ^{2} \delta+63 \sin ^{4} \delta\right) \sin \delta \\
& +\frac{J_{6}}{16 r^{6}}\left(5-105 \sin ^{2} \delta+315 \sin ^{4} \delta-231 \sin ^{6} \delta\right) \\
& +\epsilon]
\end{aligned}
$$

where:

$$
\begin{aligned}
m_{e} & =\text { mass of earth in earth mass units }=1 \\
k & =\text { the terrestrial gravitational constant }
\end{aligned}
$$

$$
\begin{aligned}
\delta= & \sin ^{-1}(z / r) \\
r= & \text { distance from the earth center to a spacecraft in e.r. } \\
& \text { units }
\end{aligned}
$$

and the J_{i} 's are the spherical harmonic coefficients of the earth's gravitational potential. Equation (6.8) has been normalized such that $J_{1}=1$. The term $\boldsymbol{\epsilon}$ simply expresses the error due to ignoring higher order terms. The lower order coefficients have been tabulated by Makemson et al. (1961) and are given in Table 6.1.

Table 6.1: Harmonic Coefficients of the Earth's Gravitational Potential

$$
\begin{aligned}
& \mathrm{J}_{2}=+1082.28 \cdot 10^{-6} \\
& \mathrm{~J}_{3}=-2.30 \cdot 10^{-6} \\
& \mathrm{~J}_{4}=-2.12 \cdot 10^{-6} \\
& \mathrm{~J}_{5}=-0.20 \cdot 10^{-6} \\
& \mathrm{~J}_{6}=+1.00 \cdot 10^{-6}
\end{aligned}
$$

Equation (6.8) is actually a simplification of the gravitational potential of the earth. When considering the departures from symmetry, there are two kinds of spherical harmonics: zonal harmonics (departures due to the ellipticity of the meridians), and tesseral harmonics (departures due to the ellipticity in latitudinal cross sections). Only zonal harmonics are considered in the above expansion. This is a standard model adopted in general perturbation techniques (see Escobal (1968) for a discussion of higher order models).

Since we can express the governing equation as:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}^{2}}=\nabla \mathrm{v}_{\mathrm{e}} \tag{6.9}
\end{equation*}
$$

Figure 6.1 Depiction of the earth as a sequence of concentric mass shells
by differentiating equation (6.8) with respect to x, y, z and using equation (6.4) we have the equations of motion of a satellite with respect to an oblate spheroidal central body (expressed to order J_{3}):

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}=\frac{\delta V e}{\delta x}=\frac{-K^{2} m_{e} x}{r^{3}}\left[1+\frac{3}{2} \frac{J_{2}}{r^{2}}\left(1-5 \sin ^{2} \delta\right)\right. \\
& \left.+\frac{5}{2} \frac{{ }^{\mathrm{J}}}{\mathrm{r}^{3}}\left(3-7 \sin ^{2} \delta\right) \sin \delta+\ldots .\right]^{\circ} \\
& \frac{d^{2} y}{d t^{2}}=\frac{\delta v e}{\delta y}=-\frac{-k^{2} m_{e} y}{r^{3}}\left[1+\frac{3}{2} \frac{J_{2}}{r^{2}}\left(1-5 \sin ^{2} \delta\right)\right. \\
& \left.+\frac{5}{2} \frac{{ }^{\mathrm{J}}}{\mathrm{r}^{3}}\left(3-7 \sin ^{2} \delta\right) \sin \delta+\ldots\right] \tag{6.10}\\
& \frac{d^{2} z}{d t^{2}}=\frac{\delta V_{e}}{\delta z}=\frac{-k^{2} m^{z}}{r^{3}}\left[1+\frac{3}{2} \frac{{ }^{J}}{r^{2}}\left(3-5 \sin ^{2} \delta\right)\right. \\
& \left.+\frac{5}{2} \frac{\mathrm{~J}_{3}}{r^{3}}\left(6-7 \sin ^{2} \delta\right) \sin \delta+\ldots\right] \\
& +\frac{\mathrm{K}^{2} \mathrm{~m}_{\mathrm{e}}}{\mathrm{r}^{2}}\left[\frac{3}{2} \frac{\mathrm{~J}_{3}}{\mathrm{r}^{3}}+\ldots\right]
\end{align*}
$$

This lays the foundation for considering the motion of a satellite with respect to an oblate spheriodal central body and under the influence of additional perturbative effects.
6.2 Perturbative Forces and the Time Dependence of Orbital Elements A satellite, under the influence of a perfect inverse square force field law, would have a set of constant orbital elements:

$$
\left[a, e, i, M_{0}, \Omega_{0}, \omega_{0}\right]
$$

devoid of any time dependence. However, due to perturbative forces, the orbital elements are acted upon leading to shifts or oscillations. There are a number of effects which can be considered as perturbative forces:

1. Aspherical gravitational potential
2. Auxillary bodies (e.g. sun, moon, planets)
3. Atmospheric drag
4. Atmospheric 1ift
5. Thrust
6. Radiation Pressure (shortwave and longwave radiation)
7. Galactic particle bombardment, e.g. protons (i.e. solar wind)
8. Electromagnetic field asymmetry

The most important of these effects on earth satellites is due to the first factor; the aspherical gravitational potential of the earth itself. Atmospheric drag becomes significant for the lower orbit satellites (heights less than 850 km).

The aim of general perturbation theory is to develop closed expressions for the time dependence of the orbital elements. It has been shown that perturbations possess different characteristics (see Chapter 10 of EB and Dubyago (1961) for a review):

1. Secular variations
2. Long term periodic variations
3. Short term periodic variations

In working with meteorological satellite orbits, we are primarily concerned with non-oscillatory secular perturbations which cause ever increasing or decreasing changes of particular orbital elements away from their values at an epoch t_{o} as shown in Figure 6.2。

Figure 6.2 Three principle types of orbital perturbations

The aspherical gravitational potential of the earth primarily effects M, Ω, and ω (where we understand that M, Ω, and ω without subscripts are no longer constant). The other elements (a, e, i) undergo minor periodic variations about their mean values due to the aspherical gravitational potential, but in terms of meteorological satellite orbits, are not considered significant. In general, long period variations are caused by the continuous variance of ω whereas short period variations are caused by linear combinations of variations in M and ω 。

The general form of the equation of motion in a relative inertial coordinate system is given by:

$$
\begin{equation*}
\frac{d^{2} \vec{r}_{12}}{d t^{2}}=-\dot{K}^{2} \mu \frac{\vec{r}_{12}}{r_{12}^{3}}+K^{2} \sum_{j=3}^{m} \frac{m_{j}}{m_{1}}\left(\frac{\vec{r}_{2 j}}{r_{2 j}^{3}}-\frac{\vec{r}_{1 j}}{r_{1 j}^{3}}\right)+\left[\Sigma a_{2}-\Sigma a_{1}\right] \tag{6.11}
\end{equation*}
$$

where subscript 1 indicates the earth, subscript 2 indicates the satellite, the summation over m represents accelerations due to all auxillary
bodies of mass m_{j} (moon, sun, planets), and the bracketed term represents the difference in accelerations of the satellite and the earth created by non-vacuum properties of the surrounding environment (i.e., drag, lift, thrust, radiation pressure, protons, electromagnetic fields). If we tabulate the accelerations due to the non-vacuum properties:

1. $\operatorname{Drag}\left(D^{P}\right): \quad D^{P}=\frac{1}{2} C_{D} \rho_{a} A V_{r}{ }^{2}$
2. Lift $\left(L^{P}\right): \quad L^{P}=\frac{1}{2} C_{L} \rho_{a} A V_{r}{ }^{2}$
3. Thrust $\left(\mathrm{T}^{\mathrm{P}}\right): \mathrm{T}^{\mathrm{P}}=\mathrm{T}(\mathrm{t}) /\left\{\mathrm{m}_{\mathrm{o}}-\int_{\mathrm{t}_{\mathrm{o}}}^{\mathrm{t}} \frac{\mathrm{dm}}{\mathrm{dt}}(\mathrm{t}) \mathrm{dt}\right\}$
4. Radiation Pressure $\left(\mathrm{RP}^{\mathrm{P}}\right): \quad \mathrm{RP} \mathrm{P}^{\mathrm{P}}=\mathrm{S} \cdot \mathrm{W} / \mathrm{c}$
5. Particle Flux $\left(\mathrm{PF}^{\mathrm{P}}(\mathcal{L})\right): \quad \mathrm{PF}^{\mathrm{P}}(\mathcal{L})=\frac{1}{2} \mathrm{C}_{\mathrm{P}} \mathrm{p}_{\mathrm{p}} \mathrm{A} \cdot \mathrm{V}_{\mathrm{r}}{ }^{2}$
6. Electromagnetic Effects $\left(E M^{P}\right): E M^{P}=F_{\varepsilon}+F_{m}$
where:
$C_{D} \equiv$ empirical drag coefficient (dimensionless) $C_{L} \equiv$ empirical lift coefficient (dimensionless) $\rho \equiv$ density term for atmosphere (ρ_{a}) or particles (ρ_{p})
$A \equiv$ cross section of satellite
$\mathrm{V}_{\mathbf{r}} \equiv \begin{aligned} & \text { relative motion of satellite with respect to residual } \\ & \text { atmosphere. }\end{aligned}$
$T(t) \equiv$ time dependent thrust function
$\int_{t_{0}}^{t} \frac{m_{0}}{d t}(t) d t \equiv$ vehicle mass at time of initial thrust
```
            S \equiv sensitivity coefficient of satellite (includes the effect
                    of the radiative characteristics of its exposed surfaces
                        and its cross-sectional area and has units of area)
            W \equiv total irradiance at satellite
            c \equiv velocity of light
            C the tilted arrow for the particle flux term \(\operatorname{PF}^{P}(\Omega)\) indicates that it is dominated by a point source of solar protons)
\(\left(F_{\varepsilon}+F_{m}\right) \equiv\) unbalanced electromagnetic forces
and note that the first term on the right hand side of equation (6.11) is given by equation (6.10), we can thus express the force field law, specifically for a satellite with respect to an oblate spheroidal earth, in a non-vacuum medium, and affected by the auxillary bodies of the solar system.
In terms of meteorological satellites we are generally considering nearly circular, free flying orbits with altitudes greater than 800 km . In addition, updated orbital parameters from the satellite agencies can be expected at a frequency of no greater than two weeks. Given these boundary conditions, most of the above perturbation terms can be ignored. The major perturbation effect, of course, is the non-sphericity of the earth and the resultant effect on the gravitational potential field.
```

The minor terms insofar as meteorological satellites are concerned, are the lunar effect, atmospheric drag, and solar radiation pressure. In general the minor terms need not be included in orbit propagations that take place over a one to two week period, if we consider the allowable error bars associated with satellite navigation requirements. That is to say, ignoring the effect of the minor perturbations does not lead to position or ephemeris errors significantly greater than the resolution of the data fields under analysis.

It is important to note that the space agencies responsible for tracking satellites of ten include the minor terms in retrieving orbital elements. This is due to the fact that generalized orbit retrieval packages have been developed for the extensive varlety of operational and experimental satellites, and missiles rather than retrieval packages individually tailored to specific types of satellites. The primary difficulty with treating the minor terms in a satellite navigation model is that the required mathematics does not lend itself to streamlined analytic calculations, a principle requirement for processing the vast amounts of data produced by most meteorological satellite instruments. This is the principle reason for retaining only the major perturbation effect (asymmetric gravitational potential) which can be handled in a direct analytic fashion.

Following EB, if we consider the potential of an aspherical earth $\left(V_{e}\right)$ with respect to the potential of a perfectly spherical earth $\left(V_{p}\right)$, where:

$$
\begin{align*}
& v_{p}=k^{2}\left(m_{e}+m_{s}\right) / r \tag{6.12}\\
& v_{e}=\frac{K^{2} m_{e}}{r}\left[1+\frac{J_{2}}{2 r^{2}}\left(1-3 \sin ^{2} \delta\right)+\frac{J_{3}}{2 r^{3}}\left(3-5 \sin ^{2} \delta\right) \sin \delta+\ldots\right] \tag{6.13}
\end{align*}
$$

then the difference in these two potentials can be said to define a perturbative function (R):

$$
\begin{equation*}
R=v_{e}-v_{p} \tag{6.14}
\end{equation*}
$$

We can then say the potential V_{p} gives rise to perfect two body motion whereas the difference function R leads to perturbations about that motion. Using the definition for r and δ :

$$
\begin{align*}
& r=a\left(1-e^{2}\right) /(1+e \cos v) \tag{6.15}\\
& \sin \delta=\sin i \cdot \sin (\nu+\omega)=z / r
\end{align*}
$$

we can develop an explicit expression for the perturbative function. The following equation is then an expansion of R to order J_{4} :

$$
\begin{align*}
R= & K^{2} m_{e}\left[\frac{3}{2} \frac{J_{2}}{a^{3}}\left(\frac{a}{r}\right)^{3}\left\{\frac{1}{3}-\frac{1}{2} \sin ^{2} i+\frac{1}{2} \sin ^{2} i \cdot \cos 2(\nu+\omega)\right\}\right. \\
& -\frac{J_{3}}{a^{4}}\left(\frac{a}{r}\right)^{4}\left\{\left(\frac{15}{8} \sin ^{2} i-\frac{3}{2}\right) \sin (\nu+\omega)\right. \\
& \left.-\frac{5}{8} \sin ^{2} i \cdot \sin 3(\nu+\omega)\right\} \sin i \\
& -\frac{35}{8} \frac{J_{4}}{a^{5}}\left(\frac{a}{r}\right)^{5}\left\{\frac{3}{35}-\frac{3}{7} \sin ^{2} i+\frac{3}{8} \sin ^{4} i\right. \tag{6.16}\\
& +\sin ^{2} i\left(\frac{3}{7}-\frac{1}{2} \sin ^{2} i\right) \cos 2(\nu+\omega) \\
& \left.\left.+\frac{1}{8} \sin ^{4} i \cdot \cos 4(\nu+\omega)\right\}\right]
\end{align*}
$$

Brouwer and Clemence (1961) and Sterne (1960) have provided the analysis necessary to relate time derivatives of the orbital elements to derivatives in R. These expressions as given by EB are as follows:

$$
\begin{align*}
& \frac{d a}{d t}=\frac{2}{n a} \frac{\delta R}{\delta M} \\
& \frac{d e}{d t}=\frac{\left(1-e^{2}\right)}{n a^{2} e} \frac{\delta R}{\delta M}-\frac{\sqrt{1-e^{2}}}{n a^{2} e} \frac{\delta R}{\delta \omega} \\
& \frac{d i}{d t}=\frac{\operatorname{cosi}}{n a^{2} \sqrt{1-e^{2}} \operatorname{sini}} \frac{\delta R}{\delta \omega} \\
& \frac{d M}{d t}=n-\frac{\left(1-e^{2}\right)}{n a^{2} e} \frac{\delta R}{\delta e}-\frac{2}{n a} \frac{\delta R}{\delta a} \tag{6.17}\\
& \frac{d \Omega}{d t}=\frac{1}{n a^{2} \sqrt{1-e^{2}} \operatorname{sini}} \frac{\delta R}{\delta i} \\
& \frac{d \omega}{d t}=\frac{\operatorname{cosi}^{2}}{n a^{2} \sqrt{1-e^{2}} \operatorname{sini}} \frac{\delta R}{\delta i}+\frac{\sqrt{1-e^{2}}}{n a^{2} e} \frac{\delta R}{\delta e}
\end{align*}
$$

It is now possible to partition the resultant derivatives into secular components, long period oscillatory components, and short period oscillatory components.

If we ignore the oscillatory components (in a, e, and i) we can then develop secular perturbation expressions for any selected order of the gravitational potential expansion. It is this process, for satellite applications, which eliminates the time dependence in a, e, and i while including it in M, Ω, and ω_{0} Next note that the time dependence of an arbitrary orbital element (χ) can be expressed as a Taylor series expansion:

$$
\begin{equation*}
x=x_{0}+\dot{x}\left(t-t_{0}\right)+\ddot{x}\left(t-t_{0}\right)^{2} / 2!+\ldots \tag{6.18}
\end{equation*}
$$

where X_{0} is the initial value at an epoch t_{0}, and $\dot{x}, \ddot{x}, \ldots$, are time derivatives. Now, if we ignore all but first order time derivatives and consider only the first order variations of the aspherical gravitational potential (due to J_{2}), we can express the time dependence of M, Ω, and ω in simple finite difference form with adequate accuracy:

$$
\begin{align*}
& M=M_{0}+\dot{M}\left(t-t_{0}\right) \\
& \Omega=\Omega_{0}+\dot{\Omega}\left(t-t_{0}\right) \tag{6.19}\\
& \omega=\omega_{0}+\dot{\omega}\left(t-t_{0}\right)
\end{align*}
$$

where $\dot{M}=\vec{n}$ is defined as the Anomalistic Mean Motion and $\dot{\Omega}$, $\stackrel{\circ}{\omega}$ are the first derivatives of Ω and ω. These expressions, derived in Chapter 10 of EB, are given by:

$$
\begin{align*}
& \dot{M}=\overline{\mathrm{n}}=\mathrm{n}\left[1+\frac{3}{2} J_{2} \frac{\sqrt{1-e^{2}}}{\mathrm{p}^{2}}\left(1-\frac{3}{2} \sin ^{2} \dot{i}\right)\right] \tag{6.20}\\
& \dot{\Omega}=-\left(\frac{3}{2} \frac{J_{2}}{p^{2}} \cos i\right) \overline{\mathrm{n}} \tag{6.21}\\
& \dot{\omega}=\left(\frac{3}{2} \frac{J_{2}}{p^{2}}\left[2-\frac{5}{2} \sin ^{2} \mathrm{i}\right]\right) \overline{\mathrm{n}} \tag{6.22}
\end{align*}
$$

which are all functions of a, e, and i. It is important to note that as long as the latter 3 parameters remain nearly constant with time, it is not necessary to apply implicit numerical techniques to the solutions of equations (6.20), (6.21), and (6.22). However, a principal effect of atmospheric drag on low orbit satellites is to modify the values of a, e and i as a function of the eccentric anomaly. This is due to the fact that the essential effect of drag is to de-energize a satellite
orbit and thus reduce the dimension (semi-major axis) of the orbit ellipse. In addition, if the initial orbit is highly non-circular, the variation in the drag effect due to the elliptic path leads to modification of the orbit inclination. If a low-flying satellite (small period or high eccentricity) were being considered, time dependent expressions for the semi-major axis, eccentricity, and inclination should be included. EB provides a set of expressions for drag induced derivatives of a, e, and i in Chapter 10 of his text, however, to include these expressions in an orbital solution would require a multiple step iterative approach to the calculation of the six derivative quantities. According to Fuchs (1980), with respect to the satellite navigation problem, drag induced perturbations need not be considered for meteorological satellites until orbital altitudes start falling below 850 km . With equation (6.20) we can define the Anomalistic Period ($\overline{\mathrm{P}}$):

$$
\begin{equation*}
\bar{P}=2 \pi / \bar{n} \text { (perifocus to varying perifocus) } \tag{6,23}
\end{equation*}
$$

Contrast this with the non-perturbative or mean period P :

$$
\begin{equation*}
P=2 \pi / n \text { (perifocus to non-varying perifocus) } \tag{6.24}
\end{equation*}
$$

Expanding to second order variations in potential results in terms of J_{2} and J_{4}, where the Anomalistic Mean Motion $\overline{\bar{n}}$ is given by: (see EB):

$$
\begin{align*}
\overline{\bar{n}}= & \mathrm{n}\left[1+\frac{3}{2} J_{2} \frac{\sqrt{1-e^{2}}}{p^{2}}\left(1-\frac{3}{2} \sin ^{2} i\right)\right. \\
& +\frac{3}{128} \mathrm{~J}_{2}^{2} \frac{\sqrt{1-e^{2}}}{p^{4}}\left(16 \sqrt{1-e^{2}}+25\left(1-e^{2}\right)-15\right. \\
& +\left[30-96 \sqrt{1-e^{2}}-90\left(1-e^{2}\right)\right] \cos ^{2} i \tag{6,25}\\
& \left.+\left[105+144 \sqrt{1-e^{2}}+25\left(1-e^{2}\right)\right] \cos ^{4} i\right) \\
& \left.-\frac{45}{128} \mathrm{~J}_{4} \frac{\sqrt{1-e^{2}}}{p^{4}} e^{2}\left(3-30 \cos ^{2} i+35 \cos ^{4} i\right)\right]
\end{align*}
$$

and the Anomalistic Period (P) and the Mean Anomaly (M) are given by:

$$
\begin{align*}
& \overline{\overline{\mathrm{P}}}=2 \pi / \overline{\overline{\mathrm{n}}} \\
& M=M_{0}+\overline{\bar{n}}\left(t-t_{0}\right) \tag{6.26}
\end{align*}
$$

The first derivative terms $\dot{M}, \dot{\Omega}$, and $\dot{\omega}$ are given by:

$$
\begin{align*}
\dot{\mathrm{M}}= & \overline{\bar{n}} \tag{6.27}\\
\dot{\Omega}= & -\left\{\frac { 3 } { 2 } \frac { \mathrm { J } _ { 2 } } { p ^ { 2 } } \overline { \mathrm { n } } \operatorname { c o s i } \left[1+\frac{3}{2} \frac{\mathrm{~J}_{2}}{p^{2}}\left\{\frac{3}{2}+\frac{\mathrm{e}^{2}}{6}-2 \sqrt{1-e^{2}}\right.\right.\right. \\
& \left.\left.-\left(\frac{5}{3}-\frac{5}{24} e^{2}-3 \sqrt{1-e^{2}}\right) \sin ^{2} i\right\}\right] \tag{6.28}\\
& \left.+\frac{35}{8} \frac{J_{4}}{p^{4}} n\left(1+\frac{3}{2} e^{2}\right)\left(\frac{12-21 \sin ^{2} i}{14}\right) \cos i\right\}
\end{align*}
$$

$$
\begin{align*}
\dot{\omega}= & \left\{\frac { 3 } { 2 } \frac { J _ { 2 } } { p ^ { 2 } } \overline { n } (2 - \frac { 5 } { 2 } \operatorname { s i n } ^ { 2 } i) \left[1+\frac{3}{2} \frac{J_{2}}{p}\{2\right.\right. \\
& +\frac{e^{2}}{2}-2 \sqrt{1-e^{2}}-\left(\frac{43}{24}-\frac{e^{2}}{48}-3 \sqrt{1-e^{2}}\right) \\
& \left.\left.\sin ^{2} i\right\}\right]-\frac{45}{36} \frac{J_{2}}{p^{4}} e^{2} n \cos ^{4} i-\frac{35}{8} \frac{J_{4}}{p^{4}} n \tag{6.29}\\
& {\left[\frac{12}{7}-\frac{93}{14} \sin ^{2} i+\frac{21}{4} \sin ^{4} i+e^{2}\left\{\frac{27}{14}\right.\right.} \\
& \left.\left.\left.-\frac{189}{28} \sin ^{2} i+\frac{81}{16} \sin ^{4} i\right\}\right]\right\}
\end{align*}
$$

Note that the sign of the expression for $\mathrm{d} \Omega / \mathrm{dt}$ (see Equation (6.21)) indicates why orbits must retrograde to achieve a sun synchronous configuration (eastward precession of ascending node). Since $\mathrm{d} \Omega / \mathrm{dt}$ must be positive and the expression is of the form -[positive constant] - cosi, then the cosine of i must be negative. This requires $i>90$.

It is worth comparing the first derivative terms ($\dot{M}, \dot{\Omega}, \stackrel{\circ}{\omega}$) for the first and second order expansions for both short period polar orbiting satellites and longer period geosynchronous satellites. Using typical orbital data we can generate Table 6.2 from the computer routine given in Appendix B.

Table 6.2: Comparison of First Derivative Terms for First and Second Order Expansions (deg/day)

	First Order		Second Order	
	Polar	Geosynchronous	Polar	Geosynchronous
n	4985.237053	357.564532	4985.237053	357.564532
$\dot{\circ}$	4982.408922	357.577648	4982.410662	357.577648
\circ	.990040	-.013117	.993605	-.013115
\AA	-2.666695	.026234	-2.664593	.026237

6.3 Longitudinal Drift of a Geosynchronous Satellite

We can now show that a geosynchronous satellite has a Ω term, even if the inclination and eccentricity are zero. Setting $i=0$ and using a first order expansion:

$$
\begin{equation*}
\dot{\Omega}=\frac{\mathrm{d} \Omega}{\mathrm{dt}}=\left(-\frac{3}{2} \frac{\mathrm{~J}_{2}}{\mathrm{p}^{2}}\right) \mathrm{n}\left[1+\frac{3}{2} \mathrm{~J}_{2} \frac{\sqrt{1-\mathrm{e}^{2}}}{\mathrm{p}^{2}}\right] \tag{6.30}
\end{equation*}
$$

Now since $n=K / a^{3 / 2}$ and $p=a\left(1-e^{2}\right)$, and if we set $e=0$, and letting:

$$
\begin{aligned}
J_{2} & =1082.28 \cdot 10^{-6} \\
\mathrm{~K} & =0.07436574 \text { e.r. }{ }^{3 / 2} / \mathrm{min} \\
a & =6.6229 \text { e.r. }
\end{aligned}
$$

then:

$$
\begin{align*}
\frac{d \Omega}{d t} & =-\left(\frac{3}{2} \frac{J_{2}}{a^{2}}\right) \frac{K}{a^{3 / 2}}\left[1+\frac{3}{2} J_{2} \frac{1}{a^{2}}\right] \tag{6.31}\\
& =-0.01332^{\circ} \text { day }^{-1} \text { westward drift }
\end{align*}
$$

This gives rise to the so-called figure 8 orbit track of a geosynchronous satellite as shown in Figure 6.3.

Figure 6.3 Figure 8 orbital track of a geosynchronous satellite

6.4 Calculations Required for a Perturbed Orbit

To calculate an orbital position vector, now that M, Ω, ω are no longer constant requires 2 more steps than the analysis given in Chapter 5. Recalling that prior to orbit calculations we determined the time of perifocal passage (T):

$$
\begin{equation*}
T=t_{0}-M_{0} / n \tag{6.32}
\end{equation*}
$$

we must now update Ω and ω to time T since they are no longer constant parameters; we shall call these new initial terms ω_{T} and Ω_{T} :

$$
\begin{align*}
& \omega_{T}=\omega_{0}+\dot{\omega}\left(T-t_{0}\right) \tag{6.33}\\
& \Omega_{T}=\Omega_{0}+\dot{\Omega}\left(T-t_{0}\right)
\end{align*}
$$

Finally, instead of considering the transformation matrix B (see Equation 5.59) as constant, we must calculate ω and Ω at the specified time t :

$$
\begin{align*}
& \omega=\omega_{T}+\stackrel{\circ}{\omega}(t-T) \tag{6.34}\\
& \Omega=\Omega_{T}+\Omega(t-T)
\end{align*}
$$

and then use these values to calculate the direction cosines for the transformation matrix B:

$$
B=\left[\begin{array}{cc}
P_{x}(t), & P_{y}(t), \tag{6.35}\\
P_{z}(t) \\
Q_{x}(t), & Q_{y}(t), \\
Q_{z}(t) \\
W_{x}(t), & W_{y}(t), \\
W_{z}(t)
\end{array}\right]
$$

where:

$$
\begin{align*}
& P_{x}(t)=\cos \omega \cdot \cos \Omega-\sin \omega \cdot \sin \Omega \circ \cos i \\
& P_{y}(t)=\cos \omega \circ \sin \Omega+\sin \omega \cdot \cos \Omega \cdot \cos i \\
& P_{z}(t)=\sin \omega \circ \sin i \\
& Q_{x}(t)=-\sin \omega \circ \cos \Omega-\cos \omega \cdot \sin \Omega \circ \cos i \\
& Q_{y}(t)=-\sin \omega \circ \sin \Omega+\cos \omega \circ \cos \Omega \cdot \cos i \tag{6.36}\\
& Q_{z}(t)=\cos \omega \circ \sin i \\
& W_{x}(t)=\sin \Omega \circ \sin i \\
& W_{y}(t)=-\cos \Omega \cdot \sin i \\
& W_{z}(t)=\cos i
\end{align*}
$$

This requirement slightly alters the run-time on a computer as shown in Table 6.3.

Table 6.3: Difference in Computational Time Between Non-Perturbed and Perturbed Orbit Calculations (times are given in relative units (RU) for a CDC-7600: 1 RU $\equiv .25$ milliseconds of CPU time)

No. of Vector Calculations	Non-Perturbed	Perturbed
1	1.00	1.08
10	9.20	10.00
50	44.00	50.00
100	88.00	100.00

6.5 Equator Crossing Period

There is another satellite period to be considered assuming varying orbital elements. This is the so-called synodic, nodal, or equator crossing period, which is very useful to operational tracking stations. The equator crossing period is most easily defined if we first let:

$$
\begin{align*}
& \nu^{+}=360-\omega_{T} \\
& \nu^{-}=180-\omega_{T} \tag{6.37}
\end{align*}
$$

and use the relationships between E and v :

$$
\begin{align*}
& \cos E=\frac{\cos v+e}{1+e \cos v} \tag{6.38}\\
& \sin E=\frac{1-e^{2} \sin v}{1+e \cos v}
\end{align*}
$$

yielding two solutions E^{+}and E^{-}. By defining ν^{+}and ν^{-}according to Equation (6.37) we have placed the satellite at its equatorial crossing nodes. We can now solve for M^{+}and M^{-}:

$$
\begin{equation*}
\mathrm{M}^{+,-}=\mathrm{E}^{+,--}-\mathrm{e} \sin \mathrm{E}^{+,-} \tag{6.39}
\end{equation*}
$$

and since $M=\bar{n}(t-T)$, we can solve for the times of equator crossings:

$$
\begin{align*}
& t_{\text {eqcs }}^{+}=\frac{M^{+}}{\bar{n}}+T \tag{6.40}\\
& t_{\text {eqcs }}^{-}=\frac{M^{-}}{\bar{n}}+T
\end{align*}
$$

where + indicates a northward excursion and - indicates a southward excursion. Finally, the equator crossing period (\tilde{P}) is given by:

$$
\begin{equation*}
\tilde{P}=2 \circ\left|t_{\text {eqcs }}^{+}-t_{\text {eqcs }}^{-}\right| \tag{6.41}
\end{equation*}
$$

The difficulty with the above approach is that over a half period, ω is varying, so that application of Equation (6.37) is only approximate. A rather simple solution to this problem is a numerical iterative approach in which two adjacent equator crossing nodes are found to a specified degree of accuracy. Appendix C provides a listing of a routine which will isolate a pair of equator crossings for a perturbed orbit. By applying the computer codes given in Appendices B and C, Table 6.4 is generated. This table compares the differences between the mean period, anomalistic period, and synodic period for both operational polar orbiter and geosynchronous satellites. Typical orbit data have been used in the calculations.

Table 6.4: Comparison of Three Satellite Periods (minutes)

	Polar	Geosynchronous
Mean	103.987	1440.108
Anomalistic (first order)	104.046	1440.055
Synodic	104.102	1339.935

Finally, to illustrate the application of a perturbed model,
Figures 6.4 and 6.5 are provided. These figures portray typical orbital paths of both a geosynchronous satellite (GOES-3) and a polar orbiting satellite (TIROS-N).

Figure 6.4 Typical orbital path of a geosynchronous satellite (GOES-3)

PERIODS

ORBITAL ELEMENTS

Figure 6.5 Typical orbital path of a polar orbiting satellite (TIROS-N)

6.6 Required Inclination for a Sun-Synchronous Orbit

 Another problem which we can address, is the determination of the required inclination angle for sun synchronous orbits for a given orbital period (P). This is simply a matter of requiring $\dot{\Omega}$ to be 360 degrees per mean solar year. Now since:$$
\begin{align*}
& \frac{d \Omega}{d t}=-\left(\frac{3}{2} \frac{J_{2}}{p^{2}} \cos i\right) \bar{n} \tag{6.42}\\
& \bar{n}=n\left[1+\frac{3}{2} J_{2} \frac{\sqrt{1-e^{2}}}{p^{2}}\left(1-\frac{3}{2} \sin ^{2} i\right)\right]=2 \pi / \bar{p} \tag{6.43}\\
& p=a\left(1-e^{2}\right) \tag{6.44}\\
& n=\frac{\sqrt{\mu}}{a^{3 / 2}} K=2 \pi / p \tag{6.45}
\end{align*}
$$

We simply require that i satisfies:

$$
\begin{align*}
\frac{360 \text { degrees }}{365.24219879 \text { days }}= & -\frac{3}{2}\left(\frac{J_{2}}{p^{2}} \operatorname{cosi}\right) n\left[1+\frac{3}{2} J_{2} \frac{\sqrt{1-e^{2}}}{p^{2}}\right. \\
& \left.\left(1-\frac{3}{2} \sin ^{2} i\right)\right] \tag{6.46}
\end{align*}
$$

or:

$$
\begin{aligned}
.985647336 \mathrm{deg} \cdot \mathrm{day}^{1}= & -\frac{3}{2}\left(\frac{1082.28 \cdot 10^{-6}}{\mathrm{p}^{2}} \cos \mathrm{i}\right) \mathrm{n} \\
& {\left[1+\frac{3}{2} 1082.28 \cdot 10^{-6} \frac{\sqrt{1-\mathrm{e}^{2}}}{\mathrm{p}^{2}}\left(1-\frac{3}{2} \sin ^{2} \mathrm{i}\right)\right] }
\end{aligned}
$$

Note that a is assumed to be in cannonical units:

$$
a\left(e . r_{0}\right)=a(k m) / R_{e}(k m)
$$

This equation is easily solved numerically. Since the right hand side of equation (6.46) is monotonically increasing as i goes from 90° to 180°, we can use a Newton's method approach in the interval $\left(90^{\circ} \leq\right.$ $i \leq 180^{\circ}$) to isolate, to a specified tolerance, a solution matching the left hand side. By applying this procedure, Table 6.5 has been generated which gives the required satellite height and inclination for a sun synchronous orbit, given the satellite period. A circular orbit (e=0) is assumed. A listing of a computer routine is given in Appendix G.
$\begin{array}{ll}\text { Table 6.5: } & \text { Required Orbital Inclination for a Sun Synchronous } \\ & \text { Satellite Given a Satellite Period }(\mathrm{e}=0)\end{array}$
Period (minutes) Height (km) Inclination (Deg)

90	274.36	96.5893
100	758.44	98.4366
110	1226.62	100.5585
120	1680.80	102.9718

6.7 Velocity of a Satellite in a Secularly Perturbed Elliptic Orbit:

A final problem we might want to solve is the determination of the velocity V of a satellite in an elliptic orbit at time t. Since we know:

$$
\begin{align*}
& x_{\omega}=a(\cos E-e) \tag{6.47}\\
& y_{W j}=a \sqrt{1-e^{2}} \sin E
\end{align*}
$$

and thus:

$$
\begin{align*}
& {\stackrel{\circ}{x_{\omega}}}=-a \stackrel{\circ}{E} \sin E \tag{6.48}\\
& \dot{y}_{\omega}=a \stackrel{\circ}{E} \sqrt{1-e^{2}} \cos E
\end{align*}
$$

and since V is simply:

$$
\begin{equation*}
v=\sqrt{\dot{x}_{w}^{2}+\dot{y}_{w}{ }^{2}} \tag{6.49}
\end{equation*}
$$

then:

$$
\begin{equation*}
V=a \dot{E} \sqrt{\sin ^{2} E+\left(1-e^{2}\right) \cdot \cos ^{2} E} \tag{6.50}
\end{equation*}
$$

Note immediately that for a circular orbit where $\mathrm{e}=0$:

$$
\begin{align*}
V & =a \dot{E} \sqrt{\sin ^{2} E+\cos ^{2} E} \tag{6.51}\\
& =a \dot{E}
\end{align*}
$$

and since if $e=0$ then $E=M$, thus:

$$
\begin{equation*}
\mathrm{V}=\mathrm{a} \dot{\mathrm{M}} \tag{6.52}
\end{equation*}
$$

Now since:

$$
\begin{equation*}
\dot{M}=n\left[1+\frac{3}{2} J_{2} \frac{\sqrt{1-e^{2}}}{p^{2}}\left(1-\frac{3}{2} \sin ^{2} i\right)\right] \tag{6.53}
\end{equation*}
$$

and if we ignore the perturbation term then $\dot{M}=n$, and we have a velocity expression for a circular, non-perturbed orbit:

$$
\begin{equation*}
\mathrm{V}=\mathrm{an} \tag{6.54}
\end{equation*}
$$

Now rote that since:

$$
\begin{equation*}
\mathrm{n}=\sqrt{\mu} \mathrm{k} / \mathrm{a}^{3 / 2} \tag{6.55}
\end{equation*}
$$

then:

$$
\begin{equation*}
V=\frac{a \sqrt{\mu} K}{a / 2}=K \sqrt{\frac{\mu}{a}} \tag{5.56}
\end{equation*}
$$

which is similar to Equation 5.30, an expression that is independent of time.

In the case $\mathrm{e}=0$, we consider the perturbative effects:

$$
\begin{equation*}
V=a \dot{E} \sqrt{\sin ^{2} E+\left(1-e^{2}\right) \cdot \cos ^{2} E} \tag{5.57}
\end{equation*}
$$

using:

$$
\begin{align*}
& E=M+e \cdot \sin M \\
& \dot{E}=\dot{M}(1+e \cdot \cos M) \tag{5.58}
\end{align*}
$$

where:

$$
\begin{equation*}
\dot{\mathrm{M}}=\overline{\mathrm{n}}=\mathrm{n}\left[1+\frac{3}{2} \mathrm{~J}_{2} \frac{\sqrt{1-\mathrm{e}^{2}}}{\mathrm{p}^{2}}\left(1-\frac{3}{2} \sin ^{2} \mathrm{i}\right)\right] \tag{5.59}
\end{equation*}
$$

and:

$$
\begin{align*}
& M=n(t-T) \\
& n=\sqrt{\mu} K / a^{3 / 2} \tag{6.60}\\
& p=a\left(1-e^{2}\right) \\
& J_{2}=1082.28 \cdot 10^{-6}
\end{align*}
$$

Thus we have solved for V as a function of time, knowing only the orbital elements.

7.0 THE ORBITAL REVISIT PROBLEM

7.1 Sun Synchronous Orbits

Does a satellite pass over the same point on each orbit if it is sun synchronous? It would, only if the equator crossing separation is an integer factor of 360°. For example:

1. Assume a 60 minute period. After 1 orbit period, the earth would rotate 15° underneath the satellite. This would continue 24 times untill the satellite was back to exactly the same point that it started.
2. Assume a 120 minute period. In this instance, there would be a 30° equator crossing separation. Therefore since $360 / 30=12$ is an exact integer, the satellite would return to the same point.

Tables 7.1 and 7.2 are useful.

Table 7.1: Orbit Crossing Separations up to 90°

Period	Longitudinal Separation			eger Number f Orbits
20 min	$\times 15^{\circ} / 60 \mathrm{~min}=$	5°	which divides 360°	72 times
40 min	"	10°	"	36 times
$60 \mathrm{~m}: \mathrm{Ln}$	"	15°	"	24 times
80 min	"	20°	"	18 times
120 min	"	30°	"	12 times
160 min	"	40°	"	9 times
180 min	"	45°	"	8 times
240 min	"	60°	"	6 times
360 min	"	90°	"	4 times

Table 7.2: Complete Table for Orbit Crossing Separations with 1 to 6 Hour Periods.

Period	Longitudinal Separation			Integer Number of Orbits	
60.0 min	$\times 15^{\circ} / 60 \min =$	15.0°	which divides	360°	24 times
62.60870 min	"	15.65217°	"		23 times
65.45455 min	"	16.34364°	"		22 times
68.57143 min	"	17.14286°	"		21 times
72.0 min	"	$18.0{ }^{\circ}$	"		20 times
75.78947 min	"	18.94737°	"		19 times
80.0 min	"	20.0°	"		18 times
84.70588 min	"	21.17647°	"		17 times
90.0 min	"	$22.5{ }^{\circ}$	"		16 times
96.0 min	"	$24.0{ }^{\circ}$	"		15 times
102.85714 min	"	25.71429°	"		1.4 times
110.76923 min	"	27.69231°	"		13 times
120.0 min	"	$30.0{ }^{\circ}$	"		12 times
130.90909 min	"	32.72727°	"		11 times
144.0 min	"	36.0°	"		10 times
160.0 min	"	40.0°	"		9 times
180.0 min	"	$45.0{ }^{\circ}$	"		8 times
205.71429 min	"	51.42857°	-		7 times
240.0 min	"	60.0°	"		6 times
288.0 min	"	72.0°	"		5 times
360.0 min	"	90.0°	"		4 times

3. Now consider a period which results in a longitudinal separation which does not divide 360° an integer number of times, such as $100 \mathrm{~min}-$ utes. Then $100 \times 0.25=25$ degree longitudinal crossing, which divides 360° exactly 14.4 times. If we let the first crossing occur at 0° longitude (Greenwich Meridian), Table 7.3 gives the equatorial crossing sequence.

Table 7.3: Equator Crossings for a Non-Integer Separation Factor

Note that it takes 5 complete orbital cycles or 72 orbital periods until the pattern repeats. It is easy to see why this gets more complicated if the period is something like 101.358 minutes. Basically, to determine how many cycles are required to repeat the sequence, the smallest integer (I) must be found such that:

```
I x P(period) = another integer
```

Thus, in order to find I:

1. Calculate the orbits per cycle (N):

$$
\mathrm{N}=360 /(0.25 \mathrm{P}) \text { where the period }(\mathrm{P}) \text { is in minutes. }
$$

2. Now N is given by:

$$
N=n_{1} n_{2} n_{3} n_{4} \cdots
$$

Take the decimal portion and divide it by a power of 10 corresponding to the number of places in the decimal portion at a preferred decimal accuracy.
3. Simplify that fraction to its least common denominator (LCD).
4. The LCD is the smallest integer I. Example:

Assume an orbit of 110 minutes. How many cycles and orbits must pass before the orbit pattern repeats itself?

$$
N=360 /(0.25 \cdot 110)=13.09090909 \ldots
$$

Let us make our calculation accurate to 4 decimal places, thus:

$$
N=13.0909
$$

Take the decimal portion 0909 and divide it by 10,000 , yie1ding $909 / 10,000$. Since any power of ten (10^{9}) can be given as the multiples of its prime factors, i.e., $10^{9}=5^{9} \cdot 2^{9}$, then the numerator 909 would have to be
divisible by 5 or 2 to have a lower least comon denominator. Thus, in this case, 10,000 is the LCD because 909 is not divisible by 2 or 5. Therefore, it would take 10,000 cycles or 130,909 orbits for the orbit pattern to repeat itself to within 4 decimal place accuracy.

Also note that even though the orbit pattern of a sun-synchronous satellite does not repeat every cycle, this does not make it any less sun-synchronous. It simply pseudo-randomizes the equator crossings. Actually, there is a predictable phase pattern to the equator crossing changes although it can be considered as a randomizing process.

7.2 Multiple Satellite System: Mixed Sun-Synchronous and Non-SunSynchronous Orbits

In order to achieve uniform spatial and temporal sampling, future satellite systems will include various sun-synchronous and non-sunsynchronous satellites. The basic problem is to design an orbit configuration which will yield an optimal revisit frequency over all parts of the globe. Since the topic of diurnal variability has become such an important consideration in radiation budget studies, future satellite systems cannot afford to provide only twice a day coverage of the globe. The most successful technique which has been used to design the orbit architecture for a multiple satellite system is the computer simulation of multiple satellite orbits. By "flying satellites" in a computer, the revisit frequencies for a global spatial grid can be computed for a variety of orbital parameters. Campbell and Vonder Haar (1978) used this approach for the specification of the optimal orbit inclination for a system of polar-orbiting satellites designed to measure the earth's radiation budget. Circular orbits were used in their analysis.

It should be recognized that when considering polar orbiting satellites, an analysis of the revisit problem must include not only the orbital period but also the scanning pattern of the satellite instrument. As the satellite height increases, the period increases and thus the longitudinal separation of equator crossings increases. A fixed nadir viewing instrument would miss global strips (swaths) to the east and west of the orbital track as the satellite height is increased. If a satellite instrument is designed to scan across the orbital track, the longitudinal separation can be increased up to the point at which the atmospheric path length would have to be considered.

Essentially, the solution of the orbital revisit problem should be an attempt to sample the three dimensional volume: latitude, longitude and local time. Polar orbiters with inclinations near 90° would sample all latitudes and longitudes in a time period of approximately one month. However, only a very narrow local time interval would be sampled because of the slow precession rates. Satellites with lower inclination orbits such as 30°, would precess rapidly (about 5° per day) for an 800 Km altitude orbit, sampling 12 hours in a month. Computer simulations indicate that a set of satellites at 80° and 50°, and $80^{\circ}, 60^{\circ}$, and 50° inclinations would provide nearly optimum sampling for two and three low orbit satellite systems, respectively (see Campbell and Vonder Haar, 1978). The geosynchronous satellites are examples of satellite platforms which provide fixed spatial and angular sampling but can provide high temporal sampling.

Another factor which must be included in the analysis is the quantity which is being measured. For observations of emitted flux, observations at any time of day generally provide good results. However,
when considering albedo measurements, observations at night are useless and observations near sunrise or sunset (local times 600 and 1800) are very difficult to analyze because of the high solar grazing angles. Any variation of the observed field must also be considered in the orbital design. For radiation budget purposes, a set of $80^{\circ}, 50^{\circ}$ and sun-synchronous satellites is better than an $80^{\circ}-60^{\circ}-50^{\circ}$ set. The sun-synchronous orbit should be located at some local time between 900 and 1500 so as to provide uniform quality albedo estimates. The drifting orbiters are able to measure the diurnal variations. There are, of course, additional requirements for which orbits at other times of the day might be more useful. For example, in order to observe the earth's surface, an orbit at 8:00 am local time might be best since there are generally fewer clouds to obscure the ground.

8.0 CONCLUSIONS

This investigation has been directed toward the study of the orbit properties of near earth meteorological satellites, and in particular, the application of the results to the satellite navigation problem. Beginning with some basic definitions of time and coordinate systems, the basic foundation for the solution of the two body Keplerian orbit was outlined. This solution was adapted to the conventional orbital element parameters available from the meteorological satellite agencies so as to develop computer models for calculating orbital position vectors as a function of time. This is a fundamental requirement for any analytic satellite navigation model.

The invariant two body solution was then extended to a perturbed solution in which the time variant nature of an orbit was considered. Using a formulation called the perturbation function, derived from a harmonic expansion of the earth's gravitational potential, a set of closed form time derivatives of particular orbital elements were examined. From these definitions, it was possible to examine various orbital characteristics of near earth satellites.

Next, a discussion of the orbit revisit problem was provided as a means to highlight the significance of exact computer solutions to the orbital properties of meteorological satellites. Finally, a set of computer codes for calculating orbital position vectors and various orbital period quantities is provided in the appendices. The input to these routines is based on the "Classical Orbital Elements" available from the operational satellite agencies. A brief description of the source of these elements is provided in Appendix A.

9.0 ACKNOWLEDGEMENTS

I would first like to express my gratitude to Dr。Dennis Phillips who was a colleague of mine at the University of Wisconsin's Space Science and Engineering Center, during the period 1966-1974. His insight and planning spearheaded the development of the first successful geosynchronous satellite navigation model which we ultimately completed in 1972. It was from my discussion with Dr. Phillips and his guidance in transforming the mathematical descriptions of satellite orbit properties into workable computer code, that I first developed an appreciation for analytic navigation techniques. I must also acknowledge Mr. Jim Ellickson of the National Environmental Satellite Service and Dr. Art Fuchs of the NASA Goddard Space Flight Center for their helpful discussions in preparing Appendix A。 I am indebted to Professor Thomas Vonder Haar for his generous assistance in planning the manuscript and Mr. Garrett Campbell for valuable discussions on the orbital revisit problem. Finally, I express my warmest regards to Laurie Parkinson for her excellent care and patience in preparing the manuscript and Mark Howes for his very fine drafting assistance.

The research was supported by the National Science Foundation under Grants ATM-7807148 and ATM-7820375 and the Office of Naval Research under Contract N00014-79-C-0793. Computing support and services were provided by the National Center of Atmospheric Research which is supported by the National Science Foundation.

10．0 REFERENCES

Abramowitz，M．，and I．A．Stegun，1972：Handbook of Mathematical Functions．Dover Publications，Inc．，New York， 1046 pp．

American Ephemeris and Nautical Almanac，1978：Issued by the Nautical Almanac Office，U．S．Naval Observatory and Her Majesty＇s Nautical Almanac Office，Royal Greenwich Observatory，U．S．Government Printing Office，Washington，D．C．， 573 pp．

Bowditch，Nathanie1，1962：American Practical Navigator－An Epitomie of Navigation．U．S．Navy Hydrographic Office，HoO．Pub。No。9， U．S．Government Printing Office， 1524 pp．

Brouwer，D．，and G．M．Clemence，1961：Methods of Celestial Mechanics． Academic Press，New York， 598 pp。

Campbell，G．G．，and T．H．Vonder Haar，1978：Optimum Satellite Orbits for Accurate Measurement of the Earth＇s Radiation Budget，Summary． Atmospheric Science Paper No．289，Department of Atmospheric Science，Colorado State University，Fort Collins，CO， 61 pp．

Cappellari，J．O．，C．E．Velez，and A．J．Fuchs，1976：Mathematical Theory of the Goddard Trajectory Determination System．Technical Report X－582－76－77，Goddard Space Flight Center，Greenbelt，MD， 599 pp ．

Ellickson，J．，（1980）：Personal Communication．
Escobal，P．R．，1965：Methods of Orbit Determination。 John Wiley and Sons，Inc．，New York／London／Sydney， 463 pp．

Escobal，P．R．，1968：Methods of Astrodynamics．John Wiley and Sons， Inc．，New York／London／Sydney， 342 pp ．

Fuchs，A。J．，（1980）：Personal Communication．
Kozai，Y．，1959：The Motion of a Close Earth Satellite。 The Astronomical Journal，64，9．

Makemson，M．W．，R．L．M．Baker，and G．B．Westrom，1961：Analysis and Standardization of the Astrodynamic Constants．Journal of the Astronautical Sciences，8，1，pp．1－13．

McGraw－Hill，1974：Dictionary of Scientific and Technical Terms． McGraw－Hill Book Co．，New York／St．Louis／San Francisco， 1634 pp．

Phillips，D．R．，1979：Incorporation of Star Measurements for the Determination of Orbit and Attitude Parameters of a Geosynchronous Satellite．Presented at the 4 th Annual Flight Mechanics／Estimation Theory Symposium，Oct．15－18，NASA Goddard Space Flight Center， Greenbelt，MD．

Smith, E. A., and D. R. Phillips, 1972: Automated Cloud Tracking Using Precisely Aligned Digital ATS Pictures. IEEE Trans, on Comp., C-21, pp. 715-729.

Spiegel, M. R., 1968: Mathematical Handbook of Formulas and Tables. McGraw-Hill Book Co., New York/St. Louis/San Francisco/Toronto/ Sydney, 271 pp.

Sterne, T. E., 1960: An Introduction to Celestial Mechanics. Interscience Publishers, New York, 206 pp.

Widger, W. K., 1966: Orbits, Altitudes, Viewing Geometry, Coverage, and Resolution Pertinent to Satellite Observations of the Earth and Its Atmosphere. Technical Report: Contract No. N-61339-66-C-0031, U.S. Naval Training Device Center, Port Washington, NY, pp. 489-537。

APPENDIX A
EXAMPLES OF NESS, NASA, ESA, AND NASDA ORBITAL ELEMENT TRANSMISSIONS

APPENDIX A

EXAMPLES OF NESS, NASA, ESA, AND NASDA ORBITAL ELEMENT TRANSMISSIONS

Classical Orbital Elements for meteorological satellites are, in general, provided by the operational satellite agencies, i.e., NESS, NASA, ESA, and NASDA. Although actual satellite tracking data may be provided by other agencies such as the North American Air Defense Command (NORAD), the reduction of this data to the conventional elements is under the management of the operational space agencies. Before providing examples of orbital element transmissions for various satellites from these agencies, a brief explanation of the format is required. As discussed in Chapters 5 and 6, the standard elements include:

1. Epoch Time (t_{o})
2. Semi-major Axis (a)
3. Eccentricity (e)
4. Inclination (i)
5. Mean Anomaly or True Anomaly (M_{o} or ν_{o})
6. Right Ascension of Ascending Node (Ω_{0})
7. Argument of Perigee $\left(\omega_{0}\right)$

In the discussion of Chapters 5 and 6 , these elements were referred to as "Classical Orbital Elements" although in actuality, the space agencies refer to the above set of elements by other names. The three basic categories of orbital elements that appear on standard orbital transmission documents are as follows:

1. Keplerian Elements
2. Osculating Elements
3. Brouwer Mean Elements

There are no differences in the definitions of the classical elements insofar as the above categories are concerned, however, there are differences in the time varying properties of orbital elements with respect to the three categories. Referring to the Orbital Elements as Keplerian, implies that pure unperturbed two body motion is under consideration. Referring to the Classical Elements as Brouwer Mean Elements implies that time derivatives are involved with respect to various elements and that the elements themselves are based on Brouwer theory (see Brouwer and Clemence, 1961) or Brouwer-Lyddane theory (see Cappellari et al., 1976). Keplerian or Brouwer Mean elements are the standard products of the operational space agencies. The model developed in Chapters 5 and 6 incorporates the basic physics considered in Brouwer or Brouwer-Lyddane theory but uses a different formulation, see Kozai (1959) or EB (1965).

Referring to a set of elements as Osculating Elements can lead to some confusion. We say, in general, that an orbit osculates (kisses) an instantaneous position and velocity vector. In this sense, various sets of elements compatible with the various orders of perturbation theory could propogate an orbit which kisses or osculates a pre-defined position-velocity constraint which is known to define an orbit. When the space agencies label a set of orbital elements as osculating, they are indicating that the elements used in a Keplerian theory will osculate a position-velocity constraint which could have been based on two-body theory or perhaps a perturbation theory applied to raw tracking data used to generate the ephemeris constraint. Therefore osculating elements can be considered as Keplerian elements, although the elements themselves may represent a fit to ephemeris data based on any number of perturbation models.

The above points may seem academic in terms of reducing tracking station data to a set of orbital elements, however, the distinction is very important. It is instructive to discuss this statement by example. We will consider the approaches used by NESS and NASA in their generation of orbital elements for TIROS-N, GOES, and Nimbus-7 satellites. TIROS $-N$, which is a NESS operated polar orbiting satellite, is radar tracked by NORAD. In addition, NORAD reduces approximately a week of tracking data to a set of orbital elements which are compatible with the NORAD perturbation model (the model itself is classified). Perturbation factors included in this model include zonal and meridional asymmetries in the earth's gravitational potential, lunar forces, atmospheric drag, and solar radiation pressure. The retrieved orbit elements are then used to propogate approximately 3 weeks of ephemeris data which are transmitted to NESS, who in turn, retrieves either Keplerian Elements or Brouwer Mean Elements based on unperturbed two body theory or Brouwer-Lyddane theory. The orbit retrieval package is based on sub-systens of the NASA Goddard Trajectory Determination System (GTDS) which is a large computer package designed for a vast array of NASA orbital problems, and is developed and maintained by the NASA Goddard Space Flight Center. Therefore, NESS can provide either unperturbed or perturbed model elements, but it must be recognized that these elements represent fits to model produced ephemeris data, not raw tracking data (see Ellickson, 1980).

The retrieval of GOES-East and GOES-West orbital elements takes place at both NESS and NASA. The NESS produced elements are based on approximately one week of tri-lateration (3 station) ranging data generated by the 5 NOAA operated tracking stations (Wallops Island, VA;

Seattle, WA; Honolulu, HI; Santiago, Chile; Ascension Island). The type of model used to fit the ranging data is based on unperturbed two-body motion, so by definition, the NESS produced orbital elements for GOES are Keplerian. NASA, on the other hand, bases its orbit retrievals on range and range-rate data available from its own global network of tracking stations. Unlike NESS, NASA uses the GTDS perturbation model to retrieve orbital elements which are then used to propogate an ephemeris stream. These model data are finally fit by a Keplerian model to produce a set of elements which osculate a positionvelocity vector pair which best characterizes a two body orbit. NASA then transmits these elements under the heading of Osculating Elements, although it is understood that they are Keplerian Elements. NASA uses a very similar procedure for producing Nimbus-7 orbital elements, however, the elements derived from the model ephemeris stream are Brouwer Mean Elements based on Brouwer-Lyddane theory.

The following ten cases are examples of various orbital transmission documents from four operational space agencies (NASA, NESS, ESA, JMS) for the following seven different satellites:

1. GOES-2 (Eastern Geosynchronous)
2. GOES-3 (Western Geosynchronous)
3. GOES-1 (Indian Ocean Geosynchronous, also called GOES-A)
4. METEOSAT (European Geosynchronous)
5. GMS (Japanese Geosynchronous)
6. TIROS-N (NESS Polar Orbiter)
7. NIMBUS-G (NASA Polar Orbiter)

CASE 1: GOES-2: NASA Transmission

```
T4:022...8 710-828-9716
LE GUGG 040
02/08182
FIG NISSION ANL [ATA OFEFATICNS NASA GSFC GREENEELT ND
TO GSE:/NAVSFASUR EARLGFEN UA
GSPIA/NOFAD.COC CLEYEPI:E NTN COMPLEX CO/LOFSO ITTR CHIEF Al.ALYST
GSPM/WILHELI: F STEFIVARTE REFLIN U GEFNIANY ATTN ZINNER
LSFK/FFGE FAPN:EOPGUCE: ENGLAI:D ATTN KING-HELE SPACE IEPT
GSTS/JCE JOH::S COLE. 933/MILLINGHAN CODE 572/PETRUZZO CODE 58!
GSTS/:AFSH CODE 490
CPOE/PFGKCPCHAK
GSTSNUYIV OF \ISCONSIN CCLLECT TUX 910-286-2771
GTOS/SOCC/MCINTOSH/SHAPTS
GSRM/PUYONSAMILLSTCNE HILL UESTFOPE NA ATTN SRI[HAFAN
G5F:/RUUUHTA/UHITE SF:NIS MISSILE RALGE LM ATTN MEYEFS
ESEN/AFCTL HANSCGR AFE EELFURD MA ATTA: SUYA/HLSSEY
GSFN/RUWTEPA/SEL EOULDEF CO ATTIN SCHOEDEF/NBS ECULDER CO ATTN W HANSCN
GSTS/COMPUT
THE FOLLOVING AFE THE OSCULATING OREITAL ELEMENTS:
FOR SATTELLITE 1977 48A GCES-2
COMPUTED AND ISSUEL EY THE GOCEARD SPACE FLICHT CEINTEP.
EPOCH 7O Y CZ M 23 L OO H OO M O.COO S UTU
SER:I-RAJOP nXIS 42432.7798 KILOMETEF:S
ECCENTEICITY .006227
INCLINATICN 0.0271 DEGREES
MEAN ANOMALY 309.9886 EEGREES
AFGUNEITT OF PERIGEE
    MOTION , PLUS . 0.0262 LEG. PER LAY
R.A. OF ASCEND. NODE
    MOTION MINUS 0.0131 EEG. PER EAY
ANONALISTIC PERICD 1449.81255 MINLTES
HEIGHT OF FERIGEE 35790.43 JILOMETERS
HEIGHT OF APOEEE . 36318.85 YILOIETERS
VELOCITY AT PEFIGEE 11103. KK. PER KF
VELOCITY AT APOGEE . 10965. KLS. PEP HP.
GEOC. LAT. OF PEFIGEE MINUS 0.013 EEGPEES
INEFTIAL COOPDINATES REFERENCE TFUE OF LATE
X 14996.5485 KILONETEFS
Y . 39513.80́31. KILC:IETERS
z - -19.6313 KILOMETERS
X DOT . . -2.8821 K:A. PEF SEC.
Y DOT . 1.0761 KM. PEF. SEC.
2 DOT . . 0.0003 KM. PEFSEC.
0^108192 KAS GlVWW
```


Case 2: GOES-2; NESS Transmission

```
7ห<c19...710-\varepsilonc&-9716
EE GTOS co7
01/16302
FE: SOCC/MCINTOSH
TO GMOC
GPHY
GPOB/M PROKOPCHAK
gSRM/RNYPMOA/NORGD COC CHEYENNE MTN COMPLEX CO/DOFO ChIEF aNALYST
GSPM/FULTGPA/J SCHPOELER, SEL EOLLDER/W HANSON, NES
GSFM/RUYOMSAM:ILLSTONE HILL VESTFOPD MA ATTN SFIDHARAN
GSFM/FUEOFFA/AFGL HANSCOM AFE MA LYS/B MEYERS, SUA/POBINSON
GSTS/E PICHARLSON UILLINGHAM CODE 572
GSTS/R MARSH CODE 490
GSTS/PHIL PEASE COLE 933
CSTS/UNIV OF VISC SPACE SCI AND ENGRNG CENTEF TUX 910-286-2771
GSTS/COLO ST UNIV DEPT OF ATMOSPHERIC SCIENCE TLX 910-930-9008
    cSU Liefaries
/SUS LUPE/
prenICTED pOST.MANELUER
orbital elements for goes-2
EPOCH 79Y 02M 28DAT O4H 28MIN 24SEC UT
SEMI-KAJOR AXIS (KM) 42164.189
ECCENTRICITY 0.000156
INCLINATION (DEG) 0.059
R. A. OF ASC. NOLE (DEG) 144.047
AFGUMENT OF PERIGEE (LEG) 138.064
NEAN ANOMALY (DEG) 202.303
LONGITUDE (DEG UEST) 100.0
```


Case 3：GOES－3：NASA Transmission

```
TMYOCE...71C-&E8-9716
CE EMuM 0き7
10/EC56Z
F\because:IISSICA fIL IATA OPEFATICNS NASA ESFCC EFEELNEELT RD,
TO ESF:V/IIANSPASUP EAKLEFEN VA
GSRN/NCEAD COC CZIEYENLE IATA CORPLEX CO/IOFSO ATTIG CFIEF ALALYST
ESFI:介VILKEL\: F STEPNVGETE EEFLIJ V EEFI:ANY ATTN ZIHNEन
LSEN/EAE FAPNEOPOUGH: ENCLANL &TTN KING-FELE SFACE EEST
GSTS/F NAFSH CODE 490/E VIELINGHAM COLE 57E/E FICHAFLSON.CODE 572
ESTS/C. PETPUZZO CCEE 581/J. JCHMS CCLE 933
GSTS/UNIV OF WISCCNSIN COLLECT TVX 910-286-E77!
GPOE/N. PPOKGPCHAK
GTOS/SOCC/ECINTOSH
GSFN/RUWONSA/RILLSTONE HILL WESTFOFD NA ATTIV SFIEFAFAN
ESEN/EUWJHTA/VHITE SANLS NISSILE FARNE NS ATTN H.EYEFS
GSFA/AFGL HARSCONE AFE PEEFORL KASS ATTN, SUA/ROEINSON,LY/I:YEFS
ESFN/FUWCTEA/ECULLEF CO ATTM SEL/SCHFOEDER,NES/FANSON
GSETMFLUJHTANVIITE EANLS IMISSIE PANGEMXPE ATTN CLAP 2EAES
ESTS/COIMPLT
TKE FOILOVING APE THE OSCLLATING OFEITAL ELE:IEMTS
FCF SATELLITE 1G78 SEA GCES-3
COMPUTEL GND ISSUED EY THE GODEAEE SFACE FLIIGHT CERTEE.
EFOCH'78 Y.07 M OG D 18 K EO N C.000 S LT.
SENI-NAJUR AXIS . . 42z37.1011 KILC:IETET.S
ECCENTEICITY
IN:CLINATION
    .001572
                                    1.0121 EEGREES
1:EAN ANONALY OS S2.7205 DEGFEES
AFGLI:ENT CF FEPIGEE :\therefore. : 162.E745 EEGEEES
    NOTICN :PLLS`. . O.OEST LEE. FEF LAY
E.A. OF ASCEKL. NOLE... 275.94E4 LEGFEES
    ICTION :ZINUS 0.0133 LEG: EEF DAY
ANO::ALISTIC PEFIOD . 1439.788&3 MINUTES .....
FEFICL DOT
1435.788&3 MINUTES NING
HEIGYT CF FEFIGEE , 35792.55 KILONETEPS
HEIEFT OF &PCEEE . 3ミ9`5.32 KILONETERS
VEICCITY &T PEFIGEE , , 11077. KN. PEE HF.
VELOCITY AT APOGEE. 11042. H.V. FEF KIF.
GEOC, LAT. GF PESICEE PLUS 0.301 EEGFEES.
10/E055z JUL GWW%
```

Case 4：GOES－3：NESS Transmission

```
ORBITAL ELEMENTS FOR GOES 3 ,SATID 7806201
EPOCH 78Y 07M 15D AT OOHR 4EMIN 4OSEC UT
SEMI-MAJOR AXIS- 42167.339 KM
ECCENTRICITY 0.0002892
INCLINATION 1.00173 DEG
R. A. OF ASC. NODE 276.0909 DEG
ARGUMENT OF PERIGEE 305.3629 DEG
MEAN ANOMALY 307.0778 DEG
LONGITUDE 134.6859 DEG W
ATTITUDE - SPIN VECTOR
    R. A. - 14.383 DEG
    DECLIN- -88.707 DEG
SPIN PERIOD/RATE- 0.60000 SEC / 100.0000 RPM
17/18172 JUL 78.GTOS
```

```
TWX005...710-528-9716
DE GWWW 027'E
30/16112
FM MISSION AND DATA OPERATIONS NASA GSFC GREENBELT MD
TO GSRM/NAVSPASUR DAHLGREN VA
GSRM/NORAD COC CHEYENNE MTN COMPLEX CO/DOFSO ATTN CHIEF ANALYST
GSRM/WILHELM F STERNWARTE BERLIN W GERMANY ATTN ZIMIMER
GSFM/AFGL HANSCOMB AFB BEDFORD KASS ATTN SUA/KOBINSON,LYS/B. MEYERS
GSRM/FIUWTGPA/NBS BOULDER CO ATTN HANSON
LSRM/RAE FARNEOROUGH ENGLAND ATTN KING-HELE SPACE DEPT
GPOB/PROKOPCHAK
GSTS/BRYANT CODE 581/WIRTH CODE 490/WILLINGKAM CODE 572
GSTS/UNIV OF WISCONSIN COLLECT TWX NR. 910-286-2771
GTOS/SOCC/L RANNE
GSRM/RUWOMSA/MILLSTONE HILL WESTFORD MA ATTN SRIDHARAN
GSFM/RUWJHTA/B. MEYERS WHITE SANDS MISSILE RANGE, N. MEX
GSRM/RUWJHTA/OLAP 2GADS UHITE SANDS MISSILE RANGE NM/XPD
GSTS/JOE JOHNS CODE 933
LESR/PALLASCHICE, K. AUBECK
GSTS/COMPUT
THE FOLLOWING ARE THE OSCULATING ORBITAL ELEMENTS
FOR SATELLITE 1975 IOOA GOES-A COMPUTED AN
COMPUTED AND ISSUED BY THE GODDARD SPACE FLIGHT CENTER.
EPOCH 78 Y 10 M 27 D O H 0 M 0.0 S UT.
SEMI-MAJOR AXIS 42113.5688 KILOMETERS
ECCENTRICITY
INCLINATION
MEAN ANOMALY
ARG. OF PERIFOCUS
        MOTION PLU
R.A. OF ASCEND. NODE
    MOTION MINUS
ANOMALISTIC PERIOD
PERIOD DOT
HT. OF PERIFOCUS
HT. OF APOFOCUS
VEL. AT PERIFOCUS
VEL. AT APOFOCUS
GEOC. LAT OF PERIFOCUS PLUS 0.037 DEGREES
30:16112 0CT GWWW
```


Case 6: GOES-1: ESA Transmission (During the FIRst GARP Global Experiment - FGGE)

```
:O LESP/CTE ATT, ESCC
TO GACD
    LPFN/G LAENNEL, LFULR GEEPPFAFFENHGFEN
    LPFN/NOC OPS, DFVLF
    LFFN/ONE COMP, EFVLT
    LPFN/G FATTEI, LFYLR OEERPFAFFENIIOFEN
    GTOS/F NAHK&uY, INGAA-HESS
    GTOS/P EYCLESHEIHEF, NOAA-ivESS
    GCEN/NOCC
    LLD/ T O HAIG, UNIVEFSITY OF WISCONSIN TLX 9!0-286-气771
    ELE/ SITEON; LMP ECOLE PGLYTECHNIQLE PAEIS - ILX 691556
    ELD/F LASELEIZ, CMS LANNION. TLX }95025
    DLD/G FEPRAND, EOPO TGULOLISE -TLX 520862
INFC DLIANT: AUYEGK, GAFLNER, LAUE, MUENCK, PFILASCIKKE, ROTH,
            NETVOFK, SCHEDULING, SPACON, ESCC
    [LD/A LUKASIEWICZ, FELU
    DLD/P ESTAFIA, VILSPA -TLX 42555
OREITAL PAFASETEPS FOF GCES-A (7510001) RUN NUMEER 22
    HEIGHT OF APCGEE.(KM) = 35812.069578
    SEMI MAJOF AXIS (KH) = 42168.960521
    ECCENTRICITY = .0C0504
    INCLINATICN (EEG) = . .171442
    ASCENDING NODE (DEG) = 77.2.88533
    APG. OF PEFIGEE (LEE) = . 125.944991
    TRUE ANOMALY (DEG) = = 3.044481
STATE VEGTOF X CCMPONENT (KM) = -37811.384898
    Y - COMPONENT (KM) = -18620.453813
    Z - CONPONENT (KI) . = . 98.024500
    X - CONPONENT (KM/SEC) = 1.358878
    Y - COMPONENT (KI:/SEC) = -2.759605
    Z - COMPONENT (KIMSEC) = -.005791
EPOCR: (!T) . 79 YR 2 NO 19 DA O HO O NIL .OOO SE
CFEIT !:UNEEF 217.3583
```

Case 7: METEOSAT: ESA Transmission

HR23 RR ESOC DARMSTADT ALLEXMAGNE APR $18 / 15642$
FM LESR/ORB ATT, ESOC

Case 8: GMS: NASDA produced elements transcribed onto GMS data tapes and decoded by the McIDAS system at the University of Wisconsin's Space Science and Engineering Center.

```
    **** N L S S & C I D A S
```



```
ORBING= EF MEANA= 2S3ES5 2ERFEj= ESFR4 ASNODF= 1SE114
```

Case 9: TIROS-N: NESS Transmission
tiros-n mavigation system polar spacecraft ephaterds access moutine initihlization report at jan di, 1980 yer 3.0 page 1

dooz fscear - for interpolation purposes 10 points will be used instead of the input value 0
THE. BROUWER ELEMENTS 800102. 0.

7228.96	0.001349	98.98	329.42	96.75	12.22

orbital period in seconds 6123.89

Case 10：NIMBUS－G：NASA Transmission

```
VADH Gこ%C
1*AU1か...71U-sट゙うーッ716
DE G**N U&ち'上
Uy/Ulul<
```



```
4] GS:M/AAvbFAbua LAALEni.v vA
```



```
COLUnAD) St U.VIV CU 1%A y1U-y3U-yUUS
GDIS/Li. wnIEril CJDE y1E
(SlS/C)wolul
```



```
FOh SAIELLITE 1%76 %}A NI:AEUS-G
CUMPUIEL AND I SDUEL DI IAE GJULAmD DrACE;FLIGAT CENTEK.
ErjCri 7% r.11 M US D UU A 00 M U.UUU S ÉL.
SEVI-VAJOK AKIS 7S&5.1057 KLLJMETENS
ECCEvTMICII%
I:NCLINAIIJ.N
MEAN AV):4ALY
AIsGUMENI JF FENIGEE
    MoTIJN MINUS
r.H. JF ASCEN1. NJUL
    *)TIJN FLUS
ANOMALISLIC FEhIJU
AEIGAL OF rEKIGEE
AEIGतd OF ArJGEk.
VELJCIIT AT KE ITE
vRLOCITY.HI Arj(:ER - 
vELOCIIY H\ ArJ(iEE * . c6534. NM. rEn rik.
G&JC. LAT. JF JEn\GEE vINUS 4S.183 LEGNEES
LNEMILAL CJJREVALES nEFEGENCE TKUE JF LAIE
\begin{tabular}{|c|c|c|}
\hline x & －5643．0572 &  \\
\hline 1 & －4674． 5650 & KILJMEstas \\
\hline \(\ell\) & － 216.915 & KILJ！Eitens \\
\hline \(x\) Lut & －U．9゙く3 & র夕，上上k stc． \\
\hline （ Li） & U．77yy & 「ix．FEN SEC． \\
\hline （L．）\({ }^{\text {L }}\) & 7.8715 & NV．reas brco \\
\hline
\end{tabular}
```


APPENDIX B
 COMPUTER SOLUTION FOR AN EARTH SATELLITE ORBIT
 (PERTURBED TWO BODY)

APPENDIX B

COMPUTER SOLUTION FOR AN EARTH SATELLITE ORBIT (PERTURBED TWO BODY)

```
    *,SARUGTINE SATYOS(IYKDAY,SATTIV,ICOOK,XSAT,YSAT,ZSAT,SATLAT,SATLON
```



```
    ERIC A. SMIIH
    DEFAKTMENI LO ATMOSFHEKIC SCIENCE
    COLURADUSTATE UNIVERSITY/FUUTHILLS CAMPUS
    PURI CULLINS, COLURADO OUS23
    TEL 3U3-4y1-8333
    REFERENCES.
    BUWDITCH,INATHAN1FC,1962.
    AMERICAN YRACTICAL WAVIGATOR - AN EPITGMIE UF MAVIGAIION.
    U.S. NAVY HYUFiJGAPHIC U'FICE,H.O. N(lO. NN). 9.
    UidLTED SIATES GOVERNMENIF PRINRING UFFICE.1524*PP.
    ESCOBAL,KEDRI KAMON,196O.
    MEIHUUS UR URBIT DEIEKM&NATIUN
    JOH.N wILEY AND SUNS,INC.,NEW YOKK/LDINDON/SYDINEY,463 PQ.
    INPUS PARAMETERS
    IYKDAY = YEAR ( YYDDU IN JULIAN DAY )
    SATIIM = TIME ( HOURS IN G:MI)
    ICUUK = U FUR TERRESTRIAL CUORDINATSES
        = 1FOR CrILESIIAL CUORDINATES
    OUTPUT PARAMENERS
    XSAT = X COAPINNENL UF SATELLITE POSITION VECTOR (KM
    YSAT = Y CUMPONENT OF SALELLITE PUSITIUN VECTOR (KM KM )
    ZSAT = 2 COMPONENT UF SARELLITE POSITIO
    SALLUN = SATELLITE LONGITUDE (DEGKEtSS)
    SALHGI = SALCLLITE :NEIGHA (KM )
    LAIIHUDE IS GJVEN LH TERMS OF SPHERICAL COORDINATES
    USE IHE FOLLJWING TKANSFOKMATIUN TO CUNVERT TO GEUCENTRIC LATITUDE
        S=RDPDG*SATLAT
        SATLAT=ACIS(CUSS(S)/SORT(1.0-(E*SIN(S))**2))/ROPDG
    KEAL J2,N4,INC,MMC,MANOML
    CONTRUL KEYS AND BRGUWER MEAN ORGITAL ELEMENTS
    IUSAT = SATELLITE TYPE
        SET POSITIVE FOR INITIALIZING NEW SATELLITE TYPE
        SET NEGATTVF FOR BETALNING ULD SATELLIIE TYPE WITH NEW ORRIT PARMS
    lusat IS THEN SE'L puSITIVE
    IMORI = O FOR ORBTT AMOMALY GIVEN AS MEAN ANOMALY ( E.G. NASA )
    IOSEC =1 FOR ORBIT ANUMALY GIVEN AS TKUE ANOMALY (EEGGE ESAS)
    IOSEC = U FOR ZERUU URDER SECULAK PERTUKBATIDN THEDRY
        = 2 FOR SECOND URUER SECULAR PERTURIATION THEORY
    IEDAIE = EPOCH UATE (YMMDO IN CALENDER FURM)
    # DATE FOK NILCH FULLUWIIGG !REITAL FARAMETERS ARE VALID
    IEIIME = EPUCH TIME ( hHMMSS IN GMT
    = LIME FOR WHICH FOLLONING UKEITAL PARAMETERS ARE VALID
    SEmINA = SEMI-mAJOK AXIS ( KM
    = HALF IHE UlSTANCE HETWEEN TWO APSES OF AUO-FUCUS AND PERI-FOCUS
    DECCEN = ECCENTRICITY DF EARTH ORISIN (UNITLESS )
    OROINC = GYGREE OF ELLIPIICITY CIF ORBIT
    ORGINC = UROIT INCLINAIIGN (DEGKEES)
    OANCIML = UNGGF BETWEEN THF UKUITAND EQUATGRIAL PLANES
        = AMGLE IN UREITAL PLANE BEIWEEIV PERI-FUCUS AND SATELLITE POSITIUN
        GIVETV AS EITHER A MEAN ANUMALY OK A TRUE ANOINALY
```



```
    = ANGLr IN GOUAIUKIAL PLAAE DETINER V VERNAL COUINGX(PRINCIPHE AXIS)
        ANB vaR[HWAKU EWHADLR CKOSSING
```



```
    = STATEMYNT WF KEPIEHS THIRD LAW
        THIS PARAAR.IER IS LALCULATED IG SAFPUS
APEKUU = ANGAALLSIIC:KEHIUU (MDNGIYS)
```



```
        IHIS PARAMEIER IS CALCULAIED IN EGCROS
    COMAOM/OKHCUM/IUSAT,IMORI,IOS:C,IFUAIR,IFIIME,SEMIMA,OECCEN,ORGINC
```



```
DEFLVITIUNS
MEAN ANLImALY(M) - ANGLE IG URBITAL PLANE WITH RFSPECT TU THE CENTER
                                OF A Mr,AN CIRCULAK URBIT(HAVING A PERIOD EOUIVALENT
        Tu Trit ANC{iALISIIC Pexiluyjfrtin PERI-FUCUS TU PHE
        SATitLLITE PUSIIIINN
IRUE ANGMALY(M) - HNGLR. IN UKNITAL, FLANE NITH RESPECT TO A FOCUS OF
        DHE rLLIPTIC FHUA PEKI-FOCUS TO IHE SATELLITE
        puSI PLUN
ECCENTKIC ANOMALY(E) - ANGLEINOORHITAL FLANE WIIH RESPECITTU IHE CENIER
        UF A CIKCIAE CIICUNSCRIBING THE ELLIPSE OF MOTION
        FKOM FERIEUCUS I'U THE SATELLITE POSITIUN.
ORBIIAL CUHSTAMIS
PI = VAlHE DF PI
ÖHLÖR = WLIGNER OF O&YS IN SIJLAR YEAK (TAYS )
SIUYK = WUABER OF {AYS IN SIDEKECLL YEAKG ( DAYS )
RE = HU|ATURIALS EARIH RADIUS (KM )
GKACUN二= IERKESTRIAL GRAVITAIIUYAL CUNSTANT (KE=SORT(G*ME*6U**2/RE***)
        VHERE RE = TERRESTRIAG GRAV CON ( 0.U7436574 EN**.5*ER**1-5/MIN )
                        G = UNIVRKSAL GRAV COHSTANS (6.673E-8 DYNE*CM**2*GM**-2)
                        NE = MASS DF EARTHG 5.973.3726E27 GM PER EM )
                            HE F iKADIUS OF EAKTH (0.31O214tO CM PER ER )
```



```
        WHEREFF=FLATIENINGOF EARTH (3.35<AYYE-3)
            E = ECCENTRICITY OFFAKNH(*8.1220157E-2)
            A #SEMI-MAJUR EARTH AXIS = GQUATORIAL ( 0378.214 KM )
            H = SEMI-MIWGR EAKTH AXIS - PMLAR (6356.829 KN
            C= MEANKAHJ!M RADIUS ( 6 371.080 KM)
                =(2*A+E)/3
J2 = SECUND HARMONIC COEF UH EARTHS ASEREKICAL GRAVITATIGNAL POTENTIAL
J4 = FIUKTH HARMONIC CUEF UF EAR'THS ASPHERICAL GKAVITATIUNAG PUTENTIAL
IRFUAY = YYDUD WAEH CELESTIAL CGUK SYS CDINCIINS WITH EARTH COGR SYS
IRFHMS = HHMMSS WREN CELESTIAL CGIJR SYS COINCIDES WITH EARTH COOR SYS
            l_E. TRANSII UF FIKST PIINT OF AIRES WIIH GRERINNICH MERIDIAN
CHKANG = CEIESTIALA HGUR ANGLE - ZERU AT TRANSIT TIME ( DEGREES
```



```
OBCLIF = UBLIQUITY OF IHE ECLIPFIC ( UEGREES
NUCLIF = MAXIMUM NUMREK OF ITERATICINS ALLUWED FOR CALC ECCENTRIC ANUNALY
EPSILN= CUNVFKGONCE CRITERION USED FOR CALC ECCENTKIC ANOMALY
EPSILN = CUNVEKGENCR CRITERIUN USED
LYRDAY = PREVIUUS VALUE OF IGMDA
DATA EI/3.14159263.358479/
DACA SULYK,SİYK/365.<4214879.360.24<19875/
DA1A Kए/O3/n.214/
DAl'A GričsiN/0.07436574/
DATA F/3.3つ289E-3%
```

```
    DA1% c/E.18201S7r-<1
```



```
    UALA I'FUAY.iNrimis/7000L,i710U0/
    DAIA GHRANG/O.u/
    DATA Prit.VEQ/257n1.6/
    DALA UECLIP/2.3.4う/
    DAIA WUMIT,EPS[T,i//20.1.OE-%/
    DALA}LYRUAY,LUSA'T/-1,-1
    DAI'A lNLI/U/
C
    IF(INJI.NE.U)GO TO 1
        INIT=1
        KDPDG=r1/180.0
        TWטP{=2.u*PI
        SOLSI[G=O1UYR/S:]LYK
        RHMS=FTLME(IKFHMS)
        CHA=KLごG*CHR4*G
    ROTATJON KATE OF IHE VEHNAL ENUINOX IN TERMS OF SIDEREAL TIAE
    VE゙け=1'WUR1*SOLSID/(PGEVEGO*SULYA*1440.0)
C TEKKESIFIAL ROTATIOH RAJE IN IERMS OF SIDEREAL TIME
    ROI=IVUH1*SuLSID/1440.0
C TEST TU SEE IF DAY UK SATELLITE HAS CiANGED NECESSITATING PARM UPDATE
1 IF(IXRDAI.t.U.LYRDAX.AND.IOSAT.EO.LOSAT.AND.TOSAT.GT.O)GO TO Y
    IOSAL=\ABS(DOSAI)
    LYKDAY=IYKDAY
    LUSA'A=\USA'I
nnnnan
    COINERT EPUCH IO JULIAN DAY-TIME
    IEPDAY = YEAR-DAY UF EPUCH (GYDDOIIN JULIAN DAY )
    IEPDAY=MUCUIv (1,1EUATE)
    IEPHMS=IETJME
    dEFIINE MEAN ANOMALY
    EXYISICIT RELATIUNSHIPS BETWEEN V,E, AND M ARE GIVEN BY THE FULLOWING
        Cus(V)=(COS(E)-I)/(1-I*COS(E))
        SL:(V)=S(N~\Gamma(1-I**2)*SIN(E)/(1-I*CUS(E))
        CuS(E) E(CUS(V)+I)
        SIN(E)=SNK'I(1-I**2)*SIN(V)/(1+I*COS(V))
```



```
    IF(IMORI'EQ.O)MANOML=OANOML
    IF(IAOKI,NE.U)CNA=COS (RDPHG*OANOML)
    IF(IMUN'T.NA,O)EANUML=ACOS((CTA+OECCEH)/(1.0+OECCEN*CTA))
    IF(IMURT:NE,U)MANOML=(EANGML-OECCENGSIN(EANOML))/KDPDG
    MANITAL=AMLD(AANDAL,36O.0)
    MANIML=ANLI)(AANDAL, 3KO.0)
    DEFINF: ECCENIRICI'PY FACTOR AND DRHITAL, SEMI-PARAMETER
    EFACTK=SURT(1.0-1JFCCEN**2)
    OS*AK!=(SEMIMA/EE)*EFACT之**2
uvu
    CALCULATE INCLINATIUN SIN AND COS TERMS
    INC=rDऐんG*|RBINC
    SI=S1N(JNC)
```

```
C
C MAC=GKACUN*(RE/SEMINGA**
C PEKI|JN='L HUP{/MMC
C
    CALCOLLTE ANUMALISTIC MEAM QUGIOR CUNSTANI ANG UEKIVITIVES BASED
```



```
    IF(IUSEC.EN.0)GG TO 2
    Gilou4
C
    ZERU DruEK
    AMMC= =, WC
    D&RK二口.U
    DASN=0.U
    Gl. fu 5
C
    FIKS'' Uirbtik
```



```
    GU TU 5
C
SECOND UKLERR
    AFAC=MMCF(1-U+(1,5*U2*EFACIR/USPARM**')**(1.0-1.5*SI**2) +(0.0234375
```



```
        * j*CI**4j-(0.j515625*J4*EFACI'*OECCEN**2/USPARM**4)*(3.0-30.0*CI**2
        *+35.U*C(1**4))
        DPEH=+((1.5*J2*AM&C/OSPAKM**2)*(2.0-2.5*SI**2)*(1.0+(1.5*J2/USPARM
```



```
        *4ETAC'K
```



```
        *S7-1-S*SI**2)*CI)/RロPDG
C
    CALCULATE ANÓMALISTTC PERIOD
5 APEKUI=Tw!HPI/AMMC
C DETEKMINE IIME OF PEKI-FGCAL FASSAGE
    IPFDAY = YEAR-DAY UF PEKIFOCUS ( YYDUDDIN JULIAN DAY )
    IPFHMS = HCUK-MINUTE-SECOND OF PERIFDCUS (HHMMSS IN GMT )
    JYEAK=1N&LJV(IERPUAY, 1000)
    JLAYY=MOD(JEPGAM,1000)
    EHMS =FIIME (I EPHMSS)
```



```
    IF(TIME-GC-U-0) IS=+1
```



```
    If(1LAE(IUME)*O)IS=-1.0
    ID=ADS(1TIME
    IDAY=1S*IT
    IF(IUAY`(;T*9)IDAY=IUAY-1
    PHMS=1IME-IDAY*Z4.0
```



```
    JUAX=UUAI+IDAY
    IF(JUAY.LT.1)GU TO O
    JTUI'=ivUM&N(JYсан)
```

```
        lr(vuar.us.J(rif)GU IU 7
        Gi)iu%
        JEAR=, YLAK-1
        JOAY=, 的Y&(UYEAK) +Jl,AY
        GO I'0 o
        YcAir=JicaR+1
```



```
        IDEUAY = IUUO#JYEAAR+JHAY
        prnMS=1,1mE(pH*S
        p!as=rillme(1,%4%;)
C
    ADUUST PEKIGEE AVD ASCENDING HUDE IU I'fME UF EEKI-FGCAL PASSAGE
        DIrTIH=TIMUIF(IFPDAY,EHMS,IPFDAY, PHMS)
```



```
        PEKPFH=AKGN(PHRPFOP,360.0)
```



```
        ASNHFH=AMUO(AS:ULFH,jbu.U)
```



```
        KEX=1
    CALCULATE DELTA-IIME ( FROM IIME OF FERI-FOCUS IO SPECIFIED IIHE)
    DIFIIM=1LmDIF(IPFOAY, PHAS,TYRDAY,SATIIM)
    IF(IUSEC.OU.U.AWD.NEY.E(.(i)GU TO 10
    KEy=u
C C CALCULATE TIME DEPENDEIN'T VALUES OF PERIGEE AND ASCEIULNG NUDE
    PER=RDPDG*(PERPFP+DPEK*i)IFTIAA)
    ASN=KDPUG*(ASNPFP+DASN*UIFTIM
C
CALCULATH PEKIGEE AND ASCFGUING NUDE SIN AND COS TERMS
    SP=SIN(PとK)
    CP=CUS(PER)
    A=S IN(ASA
    CA=CUS(ADN)
    CALCULATE IHE (P,O,W) ORTHOGQNAL UKIENTATION VECTORS
```



```
    Q IS IN THE OKGIT HLANE ADVANCED FROM P BY A RIGHT ANGLE IN THE DIRECTIUN
    OF INCKLASING TRUE AHUMALY
    W CUNFiEIES A RIGHT HANDED COORDINATE SYSTEM
    PX=+CH*CA-SH*SA*CI
    PY=+Cい*SA+Sr#CA*CI
    PV=+SP%Si
    QX=-SP*CA-CP*SA*CI
    Y=-SP*SA+CY*CA*CI
    Q=+CP*S
    W=+SA*SI
    WY=-CH*SI
    WZ=+Cl
    DERINF NEAN ANOMAJY(M) AI StECIFIED TIME
10 MANOML=AMOLINMMC#UIFIIM,TWUPI)
    CALCULATE ECCENTKIC ANDIAALY(E) AT SPECIFIED TIME
    IME SGILUIJIN IS GIVEN EY A SIMPLIFIED NUMERICAL (NEWSONS) METHOD
    AN FAHLICIT KELAIIUNSHIF INVULVES A BESSEL FUNCIIUN OF THE FIRST KIND J(N)
    E=N+2*SUM(N=1,INFINITY)(U(N)(N*I)*SIN(N*M))
EOLD＝MANOML
```



```
smanan monnonon
    12 XUNE.GA=SEMI#A* (C.S(HANUML)-UFCCEN)
        TuntGA=SEMJMA*(SJA(t,ANUNL)*EtACTR)
        ROMEGA=0
```



```
    XSAI =XUMRGA*PX+YUM品GA*OX
    YSAT=XUMEtiA*SY+YDGEGF*QX
```



```
    IF(ICUUR.NE.O)GけTU13
C
C
    XSAS=+CRA*XS+SKA*YS
    YSM'=-SKH*XS+CKA*YS
C ZSAI=+ZS
13 SS=XSAD*XSAI+YSAT*YSAL
    SAILAT=ATAN<(ZSAT,SGKI(SS))/RUPDG
    SAMLUN:=AIANZ(YSAT,XSAT)/KIPWG
    SATHGOT=SUKI'(SS+ZSAT*2SAT)
    HERUKN
    F:\ij
```


APPENDIX C

COMPUTER SOLUTION FOR FINDING A SYNODIC PERIOD

APPENDIX C

COMPUTER SOLUTION FOR FINDING A SYNODIC PERIOD


```
    ENPIKICAL URTERGIHATLUN UF EUUATLH CRHSSINGS ANU WMDAL WEKIUD
    EKIC A. DHITH
    DH,PARJMENI OF ATVISFHERIC SCleIvCE
```



```
    rukT (ULLJNS, CULIIR&DIJ rubz3
    TFL 303-4y1-d533
    INEU'L PAKAMERFRS
```



```
    IF PUM IS SHI TU ZERU WU &UUATUK CRUSSIWG INFOFMATIUN IS PRINTËD
    IOKGIT = URAIT NUMGEK UF INITTAL GUESS EQUA'UR CRUSSING
    IGUAY = YEAR-GAY (HF IWITIAL GUESS (GYIDDD)
    COMMU:G/HKICOM/IOSAI,INGKT,IIIScC,IFINAIF,IE.TIME,SEMIMA,UECCEN,URGINC
```



```
    0A14 CKil/0.00001/
    IPASS=1
    IYKDAY=IGDAY
    SATT1M=GHMS
    NEG=0
    XINC=0.02
1 CALL SATPUS(IYRDAY,SASTIM,O,XSAT,YSAT,ZSAT,SATLAT,SATLON,SATHGT)
```



```
    IF(SATLA'L.G'S.O.0)GUTU TO
    NHG=1
    IUDAY=1YRUAY
    XOHCM=SATTI啇
    SA'TIM=SAITJM+XINC
```



```
    IF(SATIIMM.GE.%4.0)SATJJM=SA'LIMM-24.0
    Gi) TU }
    IF゙(NEGGNE.U)GOTO4
    SATT1m=Sn171:A-XINC
    IF(SATHIM.L'S.O.C)JYRDAY=IYRDAY-1
    1F(SATIIM.LT.0.0)SATTIM=SA'I'IM+24.0
    G0 IO 1
    XINC=XINC/1%.0
    IYKWAY=IUWAY
    SAITIM=XU'IM
    GTTTU2
    IF(IHASS.E(U.2)GO TO 6
    IPASS=2
    1EDAY=1YRDAY
    EHMSS=SATHIM
    IYRDAY=1LDAY
    SALIIM=ENHS
    SAITlN=SATIIA+APEROL/bO.0
    IK゙(SAITIM.GF..24.1) ISRDAY=IYRUAY+1
```



```
    NFG=0
    XINC=U.02
    AINC=U
    IFUAY=IYRDAY
    FHMS=SATHIM
    EPEPUO='IMDIF(IEDAY,EHMS,IFDAY,FHMS)
    IF(NUM.LI.1)REIURN
    WKITL(Ó,IUU)PERIUD,APEROD,EPERUD F
    *15.0./,* NUUAL YFKIOD = **F15.6.%%)
101 FORMATC** ORSIT DATE YYDUD HHMMSS LATITUDE LUNGITUUE SAT
    *HELGHi*,/J
    LELT=EPY.KUN/60.0
    ISRB=IULOI'
    IORB=IUROIN
```

SALT1A＝EMNS

IF（i．f．j．i）GO IU 7
IUK内ニ1 UKロ +1
SAIILM＝SA1C1N＋DEL．T
SA（SATILM－GE－＜4－U） 1 KKDAY $=I Y K D A Y+1$

IDATE＝MUCUN（SAY（XDAX）
IHMS＝IT1FE（SA子TJA）
CALL SALYUS（LYKGAY，SATIIM，O，XSAT，YSAT，ZSAT，SATLAT，SATLUN，SATHGT）

COVIINUE
HFIUKN
END

APPENDIX D

COMPUTER SOLUTION FOR A SOLAR ORBIT

(PERTURBED TWO BODY)

APPENDIX D

COMPUTER SOLUTION FOR A SOLAR ORBIT (PERTURBED TWO BODY)

 * , SuivhGi)

EKIC A SMITH

FIRT Culatids CQLBPaDU dub23
TEL 303-4y1-8533
REFERTRICES.
EOWOIZCM, NATHANIFL, 196?
A:AEKICAN YRACTICAL JAVIGATOR - AN EYITUMIE UF NAVIGATION.
U.S. NAVY HYDHGGHAPHIC UFFICF,H. N. HUB. ND. 9.

USITED SNATES GUVEKYMENT PRIMTING GY'FICE, 1524 PP.
ESCUGAL, PEDHO KAMO! , 1965.
MEIHIDS UF JKGIT DEIEKMINATIUN.
JUHN WILEY ANO SUMS, IWC. NEW YORK/LUNDUN/SYUNEY, 463 PP.
THE AMERICAN EPHEVEKIS AND NAUTICAL ALHANAC,1y78.
ISSUELE EY THE NAIJICAL, ALVANAC IFFICE
UBITED STATES NAVAL OBSEKVATGRY
HER MAJESTYS ${ }^{A N D}$
ROYAL GKFEYS NAUJICAL ALMANAC DFFICE NMENT GKINTING OFFSEEVATUKY
U.S. GOVERNMENT PRINTING GFFFCE,WASHINGTON DC,573 KP.

INPUT PAKAMETERS
IYKUAY = YEAR (YYDLD IN JULIAN DAY)
SOLTIM = TINE (HOURS IN GNT)
ICUGK $=$ U FOP PEREESTHIAL CUURDINATES
$=1$ FGH CELESIIAL COORULAATES
OUPPUL PARAMETERS
XSUH $=X$ COMPUNFNT LF SUN PUSITION VLCTOR (KM)

SUNIAT = sua LATITUUE (DEGRESS)
SUNLUN = SUN LQEGITUDE (DEGREES)
SUNHGI = SUN HEIGHT (KH)
LATITUUE IS GIVEN IN TERNS OF SHHERICAL COORDINATES

$S=R D P D G * S A T L A T$
SATLAT=ACISS(CUS(S)/SQRI(1.0-(E*SIN(S))**2))/RUPDG
KEAL MMC, MANOML, INC
BROUWER REAN ORBITAL ELEMENTS
IEYDAY $=E P D C H$ DAY (YYDDD IN JULIAN DAY)
IEPHinS = EVCBH TIME (HHMMSS 1N GMT)
SEMIMA = SEM-MAJOR AXIS (KM)
OECCEM = ECCRHTRICITY OF SOLAR ONHIT (UNIMLESS)
ORBIVC = OREITINCLINATION (UEGKEES

ASHDLE $=$ RIGHT ASCEIUSION OF ASCENDING NSDE: AT EPOCH TIME (UEGREES)
DATA JEYUAY, IEPHMS/7E001.2030000/
DAT'A SEM1MA/149596138.2\%
DALA UECCEN/0.010751
DATA OKEINC/23.4521
DATA PERHEL/Z Bi. $221 /$
vaía asinvuejo.0\%

```
    UROITAL CUNSIANIS
    PI = VALUE UF PI
    SOLYK = NUMSER GF UAYS IV SULAK YEAF (UAYS)
```



```
    GRACUN= GPUSSJA!J GRAVITAIIONAL CONSHANT (KS=SURT(G*MS*8G400**2/RS**3)
        wHriRF; KS = GhNSiSIAIN GHAV CUN (G.U17ZUZUYG SM**.5*&U**1.5/DAY )
            G = UMIVFRSAL GKAV CONSIANI (o.t,7SE-8 DYNE*CM**2*(%M**-2)
```



```
            KS = ASTRTJUOMICAL UNIT ( 1.4YGE13 CM PEK AU )
                KEAN EAKTR-SLN DJSTAMCEEIS 1 00000003&AU
            SE:M1-mAUUK AXIS 1S 0. YGg974186*AU
```



```
        WMERE SHMJMU = MASS CORRECTION FACTOR (1.0OUOO152 SM**.5)
```



```
            FN| MASS OF HOLNN (7. 7.3473216E25 GM
```



```
    ECCEHTRICITY GF THE EARTH (EFSQKT(A**2-B**\angle)/A,E=SGRT(2*F-F**2)
```



```
            C = A# = (1-F゙)
                =(2*A+tz)/3
    IRFDAY = YYDDO WHEN CELESTIAL COUR SYS COINCIDES WITH EARTH COOR SYS
    I.E.TRANSII'OR FIRST PIINT OF AIPES WITH GREENHICH MEFIDIAN
    IRHHMS = HHMMSS WHEN CELESTIAL COOR SYS COTNCIDES WITH EARTH COOR SYS
    I.E.TRANSIT UF FIRSI POINT OF PIRES WITH GREENWICH MERIDIAN
    CHKANG = CELESTIAL HUUR ANGLEF - ZENO AT TKAISIT TJME (DEGNEES )
    SATA PREVEQ/257H1-N/
    ABCLIP OGHLIOUITY GF THE ECLIPTIC ( DEGKEES
    KEI = O HOK COMPUJING ECCENIRIC ANOMALY WIIH ITEHATIVE METHOD
        = SIMPLIFIED UENTUNS METHOD
        =1 PUR CUARUTING ECCENTKIC ANOMALY WITH EXPLICIT METHOD
        = L FOR COMPUTING ECCFNTKIC ANOMALY WITH ZNO ORDER EXPANSION OF
        = FUNKIER-BESSEL SEKIESS GODMALY WITH GRD ORDER EXPANSION OF
        - FUR COMPOIING ECGENIRIC ANOMALY WITH SRD ORDER EXPANSION OF
        =4 FOK CDMPIJTING ECCRHTKIC ANOMALY WITH 4TH URDER EXPANSION UF
HOULIER-SESSEL SEKIES
NUWIT = MAXIMUM NUGBEK OF ITERATIONS ALLOWED FOF CALC,ECCENTRIC ANOMALY
DAIA P1/S.14159265350979/
DASA SULYE,SIDYR/305.24<1987Y,366.24219879/
DAL'A KS/149000000.0%
DA1A GRACUM/0.01720205y/
DAIA SOR'LMU/1.0000G15</
DATA F 13.35284E-3%
DALA E/B.1H20157E*2/
DALA IKFLAY,IRFHMS/78001.171000/
DAIA 1KFDAY'IRFHMS/7
DAGA FREVEO/25791,0/
DATA \BCLIP/73.45%
DAI'A KEY/Z/
l
טu
NIIIALIZE CUNSTANTS
IF(INIT.NE.U)(;O [O 3
INST=1
RDrDG=&I/1R0.0
TWUPI=2.0**)
SOLSI!=SUNYYK/SOLY%
```

```
    EHNiS=FLIm&(IEHAMS)
    RHImS=FIIPit.(INtymG)
    CH4=RコHVG%CHMA:\G
nno non
ROIALIUN KATE UF IHE, VERNAL EWUINUX IN TERMS UF SIDEREAL TIME
    VEG=1WUPI*SiJSID/(HKEVEG*SGLYF*144U.U)
```



```
C DEOINE ECCH:HIKICI'JY FAC'TUR
C MEAIV RUTIUN CONSTANT
MAC=SGKTmU*GRACON/1 440.0*(RS/SEmIMA)**1.5
C C
    INC=RDUDG*INGINC
    PEK=RDUDG*PRKHEL
    ASH=KLIPLG*AS:HODt
    SI=SIN(1NC)
    CI=CUS(INC)
    SY=SIN(PEK)
    GP=CUS(PとK)
    SA=SIN(ADN)
    CA=COS(ASN)
    YX=+CP*CA-SP*SA*CI
    FY=+CP*SA+SD*CA*CI
    P2=+SP*Si
    UX=-S\cup*CA-CP*SA*CI
    OY=-SP*SA+CP*CA*CI
    QZ=+CP*SI
    WX=+SA*S 
    WY=-CA*SI
    WC=+Cl
    DEFINE ME'AN ANUMALY(M) AT SHECIFIED TIME
    DIFTLM='ILMDIF(IEYOAY,EHmS,IYRDAY,SULTIM)
    MANOML=AMUU(MMC+DIFIIM,TWOPI)
C C CALCULATE ECCENTRIC ANUMALY(E) AT SPECIFIED TIME
    IF(KEY.GE.1.AND.KEY.&E.4)GU TU 3
C
ITE゙RAIIVE MEEHOD - SIMPLIFIEG INEWTONS METHOD
E!|D=MANOML
DC < N=1,NUMIT
    EANUML=HANDML+OECCE!*SIN(EUL[?)
    IF(ABS(EANOML-EDLD).LT.ERSILNSGO TO }
    ELLLU=EANUNHL
    GO JO y
    GG TU Y 4, (4,7,8), KEY
EXPLICIT METHOD - FUURIEK-BESSEL SERIES
EAWUML=NANOML
EOLD=EANUML
DO 5,N=1,NUMIT
X=is FUECCEN
EANOmL=EAINOML+2*BESFR (N,X,EPSILN})*SI iv (Y)/N
IF(ABS(EANOML-EOLD).LT.EXSILN)GO TU Y
EOLD=EANUML
```

```
    Gu ruy
C 2NU UNLEK ERPANSTISA
    S:M=SIN(MANUNL)
        C:A=Cus(mAm(Nind)
        EAROML=mANIMLL+SM*iJECCES+SM*CM*UECCEIN*OECCEN
        g0 Tu g
C BHD UHUEK E:XPANSIOH
    7 SM=SIN(MANUML)
    CM=CUS(MANOML)
    E1=utCCEN
    E2=ueccrn*E1
```



```
    G0 Tu y
C
    4TH UKDEK EXPaNSION
    Su=SIN(MANUML)
    CM=CUS(@ANUML)
    SMCM=SM*CM
```



```
    E1=0leccen
    E2=0tccrn*E1
    E3=DECCEN*EZ
    E4=UECCEN*E3
    EANOM!=NMANUML+SM*E1+SMCM*E゙く+(SM-1.5*S3M)*E3+(SMCM-8*S3M*CM/3)*E4
nonn
    generate a puSition vectur vith reshect to the focids and in the orbital
    HLANE. NUTE THAT THE Z CJURDINATE IS BY DEFINITION ZEKO.
    XOMEGA=SEMIMA*(COS(EANOML)-UECCEN)
    YOMEGGA=SEMIMA*(SIN(EANLHL)*EFACTR)
    ZUMEGA=0
```



```
    TRANSPUSE OF THE (P,Q,N) OR'SHOGONAL TRANSFIGMATION MATRIX. NOTE THAT
    THE THIKL RUN CONTAINING W IS NOT RFQUIRED BECAUSE ZOMEGA IS ZERO.
    XSUN=XUMEGA*PX+YOMEGG*QX
    YSUNN=XUNEGA*PY +Y:JAEGGA*UY
    YSUN=XUMEGA*PY+YOMEGG*GY
    IF(ICOUR.NE.D)GU TO 10
    DEtERMINE TRANSFIRMATION MATRIX FUR ROTATION TO GERRESTKIAL COORDINATES
    DIFTIM=TINDIF(IRFDAY, KHMS,IYRUAY,SOLTIM)
    RAS=CHA+UIFT[M*(ROT-VEQ)
    KAS=A:1UD(RAS,TWOPI)
    SRA=SIN(RAS)
    CRA=COS(kAS)
    XS=XSUU
    XS=XSUN
    YS=YSUN
C
    kOTAIIUN to rerrestrial poInting vectok
    XSUN=+CKA*XS+SRA*YS
    YSUN=-SRA*XSS+CRA*YS
    ZSUN=+ZS
    CuNvERI tu spherical Coumdfliates
    SS=XSUM*XSUNiv + SU:N*YSUM
    SIONLAT=AMAH2(ZSUN, SNM'I(SS))/HUYDG
    SHivLUf=A1ANZ(YSUM'XSUH)/RDPDG
    SUNHGT=SUKT(SS+ZSUUN*ZSUN)
```

```
        REIUMN
        Eidu
        FUNCDIUN NFAC(N)
        n?O
        CALCUiATES is FACPOKJAL
        NFAC=1
        IF(iv.LE.U)RHTUKH
        OU I I=1 SN
        KW'1UरN
        END
        FUNCIIUN BESFK(IS,X,LPS)
    C CALCULATES BESSFLL FUNCTLINN UF FIRSI KIND OF ORUER N USYNG ARGUMENT
    C X TO A YHECISION TULEKENCE UF EOS
    REAL NLIAER
        F'AC=X**推/(2.0**ツ*NFAC(N))
        BESrn=rac
    xSu=x*x
    TWル=<*N
    \
    ISN=(+1
    NU|EN=
    NUMER=1
BOLD=DESFR
    IS:v=(-1) # ISiv
    IN'T= INT+2
    NUMER=NUMERY*XSQ
```



```
    BESFK=BLSFK+ISN*FAC*NUMER/DENOM
    IF(AHS(VESFK-HOLL)).(VE.EFS)GO TO 1
    RE'IUK!N
    RHD
```


APPENDIX E

COMPUTER SOLUTIONS FOR A SOLAR ORBIT
(APPROXIMATE AND NON-LINEAR REGRESSION)

APPENDIX E

COMPUTER SOLUTIONS FOR A SOLAR ORBIT (APPROXIMATE AND NON-LINEAR REGRESSION)

```
    SUBRUUTINE: SJLARI(IYNUAY,SDLTIM,ICOOR,XSUN,YSUN,ZSUN,SUNLAT,SUNLON
    *,SUNHGI')
```



```
    COMPUTE SUN PGSITIUI VECIOK ACCURIJNG TU EMFIKICAL RORMULAE
    ERLC A.SMITH
    DFPANTNENT OF ATAIUSPHERIC SCIENCE
    COLOHAUO STATE HNJVERSISY/FUUTHILLS CAMPUS
    FGKI CULLINS, CULGKADO SOS23
    TF.L 303-492-8533
    INPU'S PARAMETERS
    IYKDAY = YEAR (YYUOL IN JULIAN DAY )
    SOLTIM = TIME (HiUGS IN GMI
    ICUUR = U FUR IFRRESIKIAL COORDINATES
        = 1 FUR CEFESIIAL COUKDINATES ( NUT AVAILABLE )
    OURPUT PARAMESERS
    XSUN = X COMPOHENT UF SUN PLISITIGN VECTIOK (KM )
    YSUN = Y COMPONRINT UF SUN POSITIGN VECIOK (KM KM
    SUNLAT = SUN LATITUUE ( DEGKEESS)
    SUNLUN = SUN LUNGITUUE ( DEGREES )
    SUNHGT = SUN HEIGHT ( KM )
    DAlA P1/3.14159265/
    DALA AVEMGL/149600000.0/
    RDPDG=YI/180.0
    IYEAK=INIDIV (IYRDAY,1000)
    IUAY=MUU(IYRUAY,1U00)
    TOT=NUMYK(IYEARS
    DAY=1DAY-1+SDLTIM/24.0
    THE11=2*トI*DAY/T以I
    THET\2=2*1HE.T1
    THET3=3*LHET1
    C1=CUS(THETM)
    S1=SIN(THEN1)
    C1=SIN(THET2)
    C2=CuN(THETR)
    S2=S1N(THEJ2)
    C3=CUS('TETT3)
    SUNDEC=0.0UG918-0.39y*12*C1+0.070257*S1-0.006758*C2+0.000907*S2
* -0.UC<Oy7*C3+0.00148*S3
    DISCUH=1.00011+0.034<21*C1+0.0012H*S1+0.000719*C2+0.000077*S%
    SUINLAT=SUNDEC/ROPDG
    SUNLUA=-15*(SULTIM-12.0)
    SUNHGJ=AVEHGT/SOKT(DISCGR)
    XLAT=KDPDG*SIJALAT
    XLAT=RDPUG*SUNLAT
    XLUN=NDPUG*SUNLON
    \, (UN=SUNHGT*CGS(XLAT)*COS(XLON)
    YSUN=SUNHGT*COS(XLAT)*
    RETUKN
    END
```


＊．Suntigis
Cimpute suは PISITILA VECIMA ACCUKDING TU NGN－LINEAK REGKESSIUN
EKIC A SwIIH
DELAKTMENT OF AJ＇TISFRヒKIC SCIENCE
CULUKADL STATE INIVERSITY／FUUTHILLS CAMPUS
FORI CULLINS，CJLIJKAOO 80523
TEL $303-4$ צ1－ 5633
MODIFICALIUN UF \＆KSUIINE SURHLIED NY IHE NASIUNAL EAVIRONMENTAL SALELLIIE SERVICE（NESS）

INPUI ヒAKAMELERS
IYKDAX＝YFAR（YYiAID IN UUfIAN DAY）
SULTIM＝IIME（HGUHS IN GUT）
ICUOK＝U FOR TERKHSJKIAL CSURDINATES

OUTPUT YAKAMETEKS
XSUN $=X$ COMPDNFWL OF SUN PUSITION VECTOK（KM ）

SUNLAT＝SUN LATIJJUE（DEGKEES）
SUNLUN＝SUN LGNGITUDE（ DEGREES）
SUNHGT $=$ SUR HEIGHI（KM）
REAL LP
ORBIIAL CUNSTANTS
PI＝VALUE IJF PI

SIGYK＝NUMDER YYDDV WHEN CELESTIAL COUK SYS COINCIDES WITH EAKIH COUR SYS
IRIDAY＝YYDDD NHEN CELESIIAL COUK SYS COINCIDES WITHEAKIH COUR SYS
IRFHMS＝HHMMSS WHEN CELESIIAL CODR SYS COIVCIDES WITHEARTH COUK SYS
C IFFTRANSIT UF FIRST YGIN GF AIXES WITH GREENWICH MERIDIAN

OOCLIE＝UKI」INIIX GFTHE ECHIPTIC（DEGKFFS ）
（lEYUAY，íFHUS）＝EPOCH＇IME ヵASE EOR REGKESSION
（CU－Cy，E\＆－E7）＝REGKESSIUN CUINSTANTS
DALA PI／3．14159265358y79／
DALA SULYK，SIUYR $365.44219879,360.24219879 /$
DATA IKY，AY，IREHMS／78001，171600／
1）ATA CHEANGノO．O\％
DA＇A FkEVEO／25781．0／
DA」A GDCL1H／23．45\％
DASA IEYOAY，IEPHIS／S8261，01
ЈAI＇A C1／U．17064978490Y4000E3／
DATA C2／U－9656473449550UU7E0／
DAIA C $3 / U .2259569821254403 E-121$
DAIA C4／U．2544366103435000E3／
DAIA $\because \zeta / 0.9856002620002031 E U /$
DA1＇A Co／U． $11 / 4374039889479 E-12$
DAIA C C7／U．22 $244176405 \cup 4500 E 37$
DALA $C 甘 / U .5275365653618060 E-1 /$
DATA CY／U． $1557465202662415 E-11 /$
DA＇A F． $1 / 0.33502000000!0000 E-11$
DAJA EZ／U．2344478059422770E21
DATA E3／U． $3564529622024484 E-61$
UAİA r．4／U． $2554333333333333 E-21$

DAL＇A E7，0．7274120000000000とー21

```
        DATA INJJ/O/
C
        TF(INTM.NE.O)GD TO 1
        INST=1
        RDFDG=2I/180.0
        TWUPI=&.O*トI
        SOLSID=SHHYR/SOLYK
        EHMS=rTJMr:(1E.P!mS)
        RH0S=FIImE(IKF'riMS)
        RHMS=FIGME(IKF'iAS
C CHA=KGKUG*CHRANG
        VEG=I~UPI*SOLSIN/(PKとVEO*SOLYR*1440.0)
C THKKESIRIAL ROTATIUN KATE IN TERMS UR SIDEREAL TIME
ROT=2WUP1*SOLSIU/1440.0
C C CALCULATE TIME IIIFFERENCE IN DAYS
1 DIFTIM=TLMDLF(IEYDAY,EHMS,IYRDAY,SOI,TIM)
    D=UIFT1m/1440.0
C
        DSU=U*D
        LP=C1+C'*DD+C 3*DSG
        ALP=C4+CO*D-Cb*DSQ
        0M&GA=C7-C8*D+CG*DS0
        LP=ROFDG*AMOD(LP,3n(1.O)
        ALY=KDYDG*AMDD(ALD,360.0)
        \, l
        XEPS=KUPUG*(E2-E3*D +E4*COS(OMGGA) +E5*CUS(2*LP))
        RSUN=F6*10.0**(-E7*CUS(ALP))
C C COMPUTE A CELESTIAL POSITIUN VECTOR
    XSUH=KSUN*CUS(XSOL)
        YSUN=HSUN*SIN(XSOLH)*COS (XEHS)
        ZSUN:ROUM*SLiN(XSOL)*SLN(XEPS)
C IF(ICUUK.INE.OSGO TO 2
    DTFTIN=TLMIIF(IRYDAY,RHMS,IYRDAY,SOLIIM)
    KAS=CHA+UIFTIM* (RII-VEG)
    RAS=AMON(KAS,TWCPI)
    SRA=SIN(MAS)
    CRA=CUS(RAS)
    XS=XSUN
    YS=YSUN
C ZS=ZSUN
C COPALIUN TO LERRESTKIAL PUINTING VECTOR
    XSUN=+CRA*XS+SRA*YS
    YSUN=-SRA*XS+CRA*YS
C 2SUN=+ZS
C2 SS=X\UN*XSUN+YSUN*YSUN
    SUNLAL'=ATAN2(ZSUA,SOR'L (SS))/KUPDG
    SUNLUN=ATANL(YSUN:XSUN)/KDYDG
    SHAHGT=SWRT(SS+ZSUN*ZSUN)
    RETURN
    END
```


APPENDIX F

LIBRARY ROUTINES FOR ORBITAL SOFTWARE

APPENDIX F

LIBRARY ROUTINES FOR ORBIT SOFTWARE

```
    FUNCTIO.N FLALO(M)
nnonnon
PACKLD INIEGRH ( \thereforeIGN DUI) MAN SS ) LAIETULE-LGNGITUDE TO FLUATING PUIN'T
INPUT PAKAMETFHS
M = NACKEV IUTEGEK ( SIGN DDD MA SS ) LATITUDE-LGNGITUDE
    IF(M.LT-0)GUTU 1
    N=M
    X=1.u
    GU TU 2
    N=-M
    X=-1.0
    FLAIU=FLUAT(LNIDIV(N.10000)) +FLOAI(MUD(INTDIV(N,100),100))/60.0+FL
    *OAL(MUD(H,10U))/36UU.0
        FLALU=x*FLLALU
        RETUKN
        END
        F(DNCIIUN FTIME(M)
C PACKED INTE:GER (SIGN HH MM SS ) TIME TO FLOATINGG PUINT
    INPUI PARAMETERS
    M = PACKED INTEGEK (SIGN HH AM SS ) TIME
        IF(M.LH.U)GO TD 1
        N=M
        X=1 % N N
        M= -M
        X=-1.U
        FTIME=FLGAT(INTDTV(N,10000))+FLOAT(MOU(INTDIV(N,100),100))/60.0+FL
        *OAI(MUL(N,10U))/36UU.0
        FTla&=X*FTIME
        RETURN
        ENO
        UNCTIUN GCIKC(XLAT1, XLUN1,XLAT2,XLON2)
C
    GREAI CIHCLE ARC DISTANCE IN KILOMETERS
    INRUP RAKAMETERS
    XLATL = LATITHDE OF FIRST PUINT ( DEGREFS)
    XLUNI = LUNGITUDE UF FIHST PUINT ( DEGKEES
    XLAT2 = LATLIUDE OF SECOND PUINT DEGKFES S
    XLUNZ = LOHGITUDE OF SECOND PUINT (DEGREES)
    DATA P1/3.14159205/
    DAIA XKMiPDG/1111.12/
    DAIA AMLIvi2.0%
    KDHDG=YI/1&0_OMUG*XLATAV(XLAT1,XLAT2))
    COSLAT=CUS(KDYUG*XLATAV(
    YLUN=XLONSH(XLON2,XLON1)
    X=XKMPUG*YLAI
    Y=XKMFOG*YLUN*COSLAT
    GCIFC=SGRT( X X X + Y *Y)
    IF(GCIKC.ITTXMLIN)RETURN
    Y1,A'1=RD'VO**LAT
    YL,AT1=RDEVS**LLAT'
    YLAT\angleZRUFDG*XLA'I
    YLUN=RDYUG*YLON
    GCIKC=XKMPDG*ACOS(
        RELUKN
        END
        F|vC'iIUN GEOLAT(IDIF,XLAN)
```



```
    GEUUETIC-GEOCENTRIC LATITUDE CUIVFIRSION
```

```
C DiFUN PAKABH:PERS
C IDIK = . FUR GEGOEIIC TU GEUCEHTRIC
    = 2 FUR GEUCENTKIC TO GERUETIC
    xLatl = Lm'limbee(voGntes)
        VALA K1/3-1415926S/
        DALA KE,KK/OS7x-3*2,6330,y12%
```



```
        SDP0G=r1/18U.0
        F=(re-kP)/kr:
        FAC=(1.0-r)**2
        YLAT=RUNUG*\LAT
        GUTU(1,2),IU1R
        GEULAT=ARAAG(PAN(YLAT)*FAC)/RDPDG
        HtTusN
        GETUNN
        GEMLAT
        RHS
        END
        Flincliung ilalo(x)
C F Fluatling pulnt latitude-longitude to packeo foreger ( sign dud mm Ss )
    INPBT PAKANETERS
    X = fluailng pular latitude or longlivde
    IF(X.LIT.v.O)GO TO 1
    Y=x
    GOTTU 2
    Y=-X
    I=-1
    J=30v0.U*Y+0.5
    ILALU=i00U(1FINTUIV(J,36OU)+100*MOU(INTDIV(J,0U),60)+MOD(J,60)
    ILALU=1*LLALIJ
    RETUNN
    END
    Funcirion Intoiv(i,u)
C INIEGEK uIVIDE WIPHuUT RDUNDOHF PROELEmS
    Infut rakameters
    I = NUMERATOR
    J = vEMUMLNATOR
    DATA CUN/1.0E-11/
    K=1%*J.LT.0)K=-1
    x=140S(J)
    INID)IV=1ABS(I)/X+CON
    INHOIV=KFINIUIV
    RETUKN
    END
    FUNCTIUN IRGUND(X)
manno
    IF(x)1,2,3
    IRUUND=x-0.5
    RESUKiN
    IRUUND=0
    RETUKN
    LRUIJNU=X+0.5
```

```
    REJUR\
    END
    FuNuCILuiN 1IIAE(X)
annmnnon
    FLUATING POINT TIME I'U HACKED L|LEGMR (SIGN HH MAN SS )
    INPUP YAKAMEIERS
    X = r'LUALING PUINT T\ME
    Ir(X.LI-U.0)GO) IU 1
    Y}=\hat{\
    G0 TO 2
    M=-X
    1=-1
    ITlmE=i OUU0*INIUIV (J,3600)+100*m01)(INT9IV(J,6u),60)+M00(J,60)
    1HM=I*ITI息
    REIUKN
    END
    SUBROULINE JULDAY(IYKDAY, ILIT)
nonmnnon
    FORMAT(2O,IUN,ITIT)MONIHS(I,IM),MONTHS(2,IM),ID,IY,JDAY
        FURMAT(2A2,12,4H,19,12,1H(,13,4H)
        RETURN
        END
    FUNCTION MDCJN(IOIR,IDATE)
    CONVERSIGN BETWEEN YYMMDD (YEAR-MONTH-DAY) AND YYDDD (YEAR-JULIAN DAY )
    INPUI PAKAMETERS
    IDIR = 盾 FOR YYMMDU TU YYDND 
    IDA'HE = NATE
    DIMELGSION NUM(12)
    UA'I'A NUM/31,59,90,120,151,181,212,243,273,304,334,3051
```



```
    GO TU(1, 2),LDINR,IUGOO)
    IM=INTOLIVTODIV(IDATE,1(00),10U)
    IM=MUU(INTDIV(INA
    IF(1H.LI.1)IM=1
    IF(IM.G1:12)Im=12
    LEAP=MUD(IY,4)
    1TUT=0
    1F((IM-1), NEE.0)IMOT=NUM(IM-1)
    IF(IEAR.EN.O.AND.IN.GH.2)ITO'I=ITAT+1
    IJU=ITU'T+10
    MGOUN=1GU0*IY+IJD
    MLCUN=
2 IY=IHIUIV(IDATE,1000)
    IJD=MOD(1DA'E,100U)
```

```
        L.tiAR=mbN(1Y,4)
        mAA=300
```



```
        IF(l山|.L゙.l)Iju=1
        IF(1JU.G1.mAX) IJD=MAX
        INuT=0
        ITUT=01=1,12
        DU 3 1=1,12
        IF(N-TN-1)WUAY=10UM(I)
        T-(1-H-1)NLAY=NI)M(J)-N(1m(1-1)
```



```
        ITUI=1TU1+Mi)AX
        Ir(IJ[..G.|IOT)GO IUJ 3
        IM=1
ID=1JD-IINT+NDAY
MDCUN=1UUUO*II+1OU*1m+ID
GGTU4
3 CunrlNu%
MDC(14=1UUUO*IY+100*12+31
RETuKG
END
FUNCTIUN WUMOY(IYD1,IYD2)
IIME UIFHFRGNCE IN DAYS ( SECUND BIRUS FIRST )
INPUT RAKAMETERS
IYD1 = FIKST YEAR-DAY ( YYDDD,
IY1={NTUIV(IYD1,1000)
IDL=MOD(1YO1,1000)
IY\angle=INTDIV(IYO2,1000)
ID L=MGD(1YD2,1000)
1二1
IF(XY1.GT.IY2)I=-1
IF(IY1, EU.IY2.AMD.IDI.GT.IDL)I=-1
IF(I-LI-USGOTOM
JY1=1Yi
JD1=101
JY = =1Y2
GO2=1W2
1 JY1=IY2
JO1=10
U1<=iY
NO<=1D1
2 NUMDY=0 IF(UY1-GE.JY2)GOTO
```



```
    U1=\Y1+1
    J!i=1
    GUTU 3
    NUMDY=NUPMOY+JD2-JD1
    NUMD }\textrm{X}=1*||MD
    RETURN
    EMO
    ENUUCLIUN NUMYR(IYEAK)
Mnnnon
NUMBER UF DAYS IN A YEAR
IWPUT PAKAMETERS
IYEAR = YEAR
NUMYR=305
LEAP={OM(1YEAR,4)
IF(1,EAP.CG.0)NUMYR=366
RETUKN
RND
ENDICTJON TIMDLF(IYD1,IIME1,IYD2,TIME2)
```

```
ดnกmดnoman
```



```
    INYU& PAKAAETERS
    IYDI = FLRSJ YEAR-DAY (YXDUL )
    TLMED = rIHST IImE IN HUUKS
    IYDZ = SECONO). Yiam-i,AY (YYODD) )
    TImEL& = SECUNO JINE IU HUURS
    T1FO1FF=144U.O*VUABY(1YU1,1IW%)+60.0*(T1ME<-IIME1)
    RELUKN
    FND
    FbNCIIUN XLATAV(XLA11, XLAT2)
Mnmnnana
```



```
    INFUI PAKAME'TERS
    XLATI = MINUEYD
    XLAT2 = SUGTRAHEND
    XLATSB=XL&T1-XLAT2
    REIURN
    END
    FUNCIIUN XLONAV(IDIR,XLON1,XLON2)
    Averages Twu Lulvgitulue values
    LUNGITJDE RUNS FROM + LYO.G EASY TO - 180.0 WEST
    INPUT YARANETERS
    IDIK = 1 TU COIMPUTE AVERAGE LONGITUDE ASSUMING SHORTEST VECTUR BETWEEN TWO
        =1 MERIDIANS AVERAGE LONGITUDE ASSUMING SHORTEST VECTUR BETWEEN TWO
        IO XLONZ IN IHE WEST TO EAST DIRECIION
    XLUN1 = ETRSI LCINGITUUE
    Xluiv2 = SECOND midNGiTUDE
    IF(IOLK.LT.1.OR.IDIR.GT.2)KETURN
    GUTU(1,4),IDIR
    IF(ABS(XLOM1-XLO&2).GT.180.0)GU TO }
    XLUNAV = (XLJN1+XLUN2j/2:0
    RETUKN
    XLUNAV=(XLUH1+XLUG2+300.0)/2.0
    IE(XLUNAV.G'll.150.0)XLUNAV=XLLINAV-300.0
    RETUKIN
    IF(XLON1.GI.XLON2)OO TO 3
    GOTO 2
    END
    FH|C[1UN XLGNSB(XLIN1,XLON2)
    SUnTKACTS TWO LONGITUDE VALUES
    LONGITUUE KUNS FRGM +18U.0 EAST IU -18U.0 WEST
    INHUI PAKAMETERS
```

```
c \(\quad x_{\text {xi,uri }}=\) miviend
```



```
IF(ADS(XLUNSA). (Gr.10U.0)
```



```
KELUKは
```



```
KEIUK心
END
```


APPENDIX G

COMPUTER ROUTINE FOR DETERMINING THE INCLINATION REQUIRED FOR A SUN-SYNCHRONOUS ORBIT

APPENDIX G

COMPUTER ROUTINE FOR DETERMINING THE INCLINATION REQUIRED FOR A SUN－SYNCHRONOUS ORBIT

```
    Prutikam Sunsr.cCm
    HEAL NR,MS:C,JL2,LHS
```



```
    |MTA trios7म.<14/
    UATA NM/U.O7430514%
    JAIA J</1OH2.2Bt-0/
    LA1A tyI),
```



```
    DATA NAX,CRJT/500,1,9E=5%
    *1It(0.100)
    F゙(INNAIG*I REKIUD Hr.LGHJ LNCIINAIIUN*,//)
    *GP|=2*&I
    FDPOG=P J/180.U
    Xト=2.0/3.0
    LHS=3n(1.0/365.24219n)%
    P=PITvI!-&INT
    Lu 3 i=1, hum
    H=H+ん1AT
    A=(K+:4KノT~UPI)**EXP
    H=RE*A=FE
    AMC=300.0/P年144u
    GY=A*(1.(i-E゙**2)
    N=0
    XINC1= %0
    X1NC2=1d0
N=N+1
IF(G.GT.MAX)GO TU 2
xINC=(xinC1+xINC2)/2.0
KH=HHS(XINC,JO,MN,MMC,E
KHEHHS(XINC,GSO,SN,MMC
IF(AOS(KH-LHNS) INI:CKIN)
If(KM-GE.LHS)XINC2=xINC
GOTG1
*RITE(6,101)r,H,XI*C
101 FUKMAN(ix,Fi(0.2, 2A,F1U.4,2X,F1S.6)
CONfINUF:
w1TE(6,102)
FiJMMAT(ini)
STUP
ENU
FUNCTION KHS(XINC,J2,SP,MMC,E)
REAL J2,MMC
DATA RUPQG/0.017453243/
XJ=HDFDG*XINC
RHS=-1.5*(J2*CuS (XI)/SP**2J*MmC*(1.0+(1.5*J2*SuRT(1.0-E**2)/5P**2)
**(1-0-1.5*SIN(x])**Z)
KETUKN
END
```


17. Key Words and Document Analysis

Orbital Mechanics
Satellite Navigation
Meteorological Satellite Orbits
Analytic Orbit Models

17c. COSATI Fjeld/Group

19. Securixy Class (Ihis Report UNCLASSIFIED	21. No. of Pages
20.Security Class (This Page UNGLASSIFIED	22. Frice

FCRM NTIS-35 IREV. 3.7ム

