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ABSTRACT

A model of wave-CISK consisting of the primitive equations
formulated on an equatorial beta-plane with a resting basic state is
used to compare the relatively simple cumulus parameterization scheme
developed by Stevens and Lindzen (1978) with the relatively complex one
developed by Arakawa and Schubert (1974). The comparison 1is based
mainly on the instability characteristics and vertical structure of the
wave.

Discrete forms of the equations are developed and the inhomogeneous
vertical structure equation is solved as a generalized matrix eigenvalue
problem. The eigenvalues are equivalent depths which are used with the
dispersion relation for an equatorial beta plane to find growth rates.

Results indicate that the growth rates obtained with Arakawa and
Schubert parameterization are smaller than those obtained with Stevens
and Lindzen parameterization. It is concluded that, although there is
some qualitative similarity between the two parameterizations, there are

notable quantitative differences.
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1. INTRODUCTION

The interaction of cumulus clouds with a large-scale atmospheric
disturbance 1is one of the fundamental problems in the study of the
dynamics of the tropical atmosphere. In the classical papers of Charney
and Eliassen (1964) and Ooyama (1964), the mechanism of CISK (Condi-
tional Instability of the Second Kind) was proposed to explain this
interaction. In this mechanism, it is postulated that large-scale
convergence results in the formation of cumulus clouds which, due to the
release of latent heat, modify the large-scale environment in such a way
as to increase the large-scale convergence and correspondingly increase
the amount of latent heat released. The instability results from the
feedback from the cumulus-scale to the large-scale. In the original
formulation of the CISK mechanism the large-scale convergence was fric-
tionally induced. In wave-CISK (Hayashi, 1970; Lindzen, 1974), the
large-scale convergence is assumed to be the convergence which is natur-
ally associated with an atmospheric wave such as a gravity wave or
Rossby wave.

The central element in any mathematical model of the wave-CISK
mechanism is the cumulus parameterization, i.e., the method by which the
release of latent heat by cumulus clouds is related to the large-scale
flow. Many different techniques of cumulus parameterization have been
proposed in previous studies of wave-CISK. Hayashi (1970) related the

lTatent heat release to the large-scale vertical velocity at cloud base



and arbitrarily specified both the magnitude of the heating and its
vertical profile. Lindzen (1974) related the heating to the large-scale
vertical velocity at the top of the mixed layer, and also arbitrarily
specified both its magnitude and its vertical profile. Kuo (1975)
related the heating to the large-scale vertical velocity at the top of
the moist layer, specified its magnitude and let its vertical profile be
determined by the temperature difference between deep cumulus clouds and
the environment. An improvement to these schemes was made by Stevens
and Lindzen (1978). In their study, the heating was related to the
large-scale vertical velocity at the top of the moist layer through on
explicit moisture budget constraint, and, although the vertical profile
of the heating was arbitrarily specified, its magnitude was determined
from the moisture budget. Stark (1976) used a simplified version of the
parameterization developed by Arakawa and Schubert (1974). With this
parameterization, the heating was related to the large-scale vertical
velocity at every level in the vertical and both the magnitude and
vertical profile of the heating were determined from the large-scale. A
similar analysis was also performed by Wada (1977).

In this research a model of the wave-CISK mechanism is developed in
order to compare the relatively simple parameterization scheme developed
by Stevens and Lindzen with the relatively complex one developed by
Arakawa and Schubert. The comparison is based mainly on the instability
characteristics and vertical structure of the wave. The model consists
of the 1linearized, primitive equations formulated on an equatorial
beta-plane with a resting basic state. In Chapter 2 the large-scale
governing equations are presented. Here the vertical structure equation

and its boundary conditions are derived along with the disperion



relation which governs waves on an equatorial beta-plane. Chapter 3
contains the governing equations for both parameterization schemes. The
vertically discrete forms of the governing equations for both the large-
scale and the parameterizations are presented in Chapter 4 where it is
shown that the vertical structure equation, which includes the effects
of latent heat release, can be solved as a generalized matrix eigenvalue
problem. The eigenvalues are equivalent depths, which are used with the
dispersion relation for an equatorial beta-plane to find growth rates.
Results are presented in Chapter 5. Chapter 6 contains a summary and

conclusions.



2. LARGE-SCALE GOVERNING EQUATIONS

This chapter presents the governing equations for the large-scale
motion. In section 2.1 these equations are linearized. Each of the
dependent variables and the diabatic heating are then expanded in a
Fourier series and it is shown that the linearized equations are valid
term-by—term for every term in each of the expansions. The vertical
structure equation and its boundary conditions are derived in section

2.2 along with the dispersion relation for an equatorial beta-plane.

2.1 Linearization and Fourier Series Expansion

The governing equations for the large-scale motion are the hori-
zontal momentum equations, the mass continuity equation and the thermo-
dynamic energy equation. We also consider the atmosphere to be in
hydrostatic balance. These equations, formulated in p-coordinates on an

equatorial beta-plane (f = By), may be written as

du _ 90 _

at - VT O el
v, ofy+ 2029, (2.1b)
at gy

ap p ’

au v W

gL 4 9V 4 W W1
X * ay * ap L (2.1d)

dat _RT_ - Q@
dt pc " cp' L de



Here t is time, x and y are the horizontal bdsitions, p is pressure, u =
dx/dt and v = dy/dt are the horizontal velocity components, w = dp/dt is
the "vertical velocity" in p-coordinates, ¢ is the geopotential, T is
the temperature, f is the corib1is parameter, R is the gas constant for
dry air, cp is the specific heat at constant pressure for dry air, Q is

the diabatic heating and

d 3, 0 4,0 .2
T T YtV Ty (2.2)

is the time derivative following the motion. Symbols are also defined
in Appendix A.
We linearize these equations about the basic state defined below.

Letting basic state quantities be denoted by overbars we have

= \

u=0,

v =0,

w=0, $ (2.3)
6 = ¢(p),

T = T(p), }

where & and T are specified. Requiring that the basic state satisfy the

system (2.1) leads to

99 . KL~ 5 (2.4)

and the fact that the mean diabatic heating Q must be zero.
Now we express each of the dependent variables in (2.1) and the

diabatic heating Q as the sum of a basic state part given by (2.3) and a



perturbation from that basic state. Denoting the perturbations by

primes we have
u(x,y,p,t) = u'(x,y,p,t), \
v(x,y,p,t) = v'(x,y,p,t),
w(x,y,p,t) =w'(x,y,p,t), (2.5)
0(X,¥,p,t) = 8(p) + 0'(x,y,pat),
T(x,y,p,t) = T(p) + T'(x,y,p,t),
Qx,y,p,t) = Q' (x,y,p,t). J

Substituting (2.5) into (2.1), using (2.2) and (2.4), and neglecting the

products of perturbation quantities we obtain the system of linearized
equations

au' ' .

3_{':— - fy!' + 5.)«(_ = 0, (2.(38)

B! 20" _

=+ Ut + ke c, (2.6b)

3¢’ RT' _ -

s Tp -0 (2.6c)

ou' ov' w'

ax Ty Y T 0 (2.6d)

Tt | (T _RT,y v - Q

5t (dp e ) wh o= c - (2.6e)

p p

Now the assumption is made that each of the dependent variables is
periodic in x with period L and is sufficiently smooth so that conver-
gence is assured not only for the Fourier series expansion of each
variable but also for the series obtained by term-by-term integration or

differentiation of the Fourier series. If we further assume that each

iot

dependent variable has a time dependence given by e where o depends

on the summation index of the Fourier series and may be complex,



and that these assumptions also apply for the diabatic heating Q, then

we may write

5 \
® i(—{ﬂ x-a(n)t)
u'(x,y,p,t) = 2 u(n,y,ple ;
n=-o
® i(gEE x-o(n)t)
vi(x,y,p,t) = 2 v(n,y,p)e :
n=-
- i(§EE x-ofnyt)
w'(X,y,p,t) = 2 w(n,y,ple ;
n=-0
$ (2.7)
o i(g%E x=o(n)t)
o' (x,y,p,t) = 2 ¢(n,y,p)e ;
n=-o
m 1(3%5 x-a{n)t)
T'(x,y,p,t) = 2 T(n,y,p)e ,
n=-o
o 1(2E5 x=~oln)t)
Q'(x,y,p,t) = 2 Q(n,y,p)e i
n=-o
)

Because the perturbation quantities are real, it may be shown that the
coefficient in each expansion with index n=-m must be the complex conju-
gate of the coefficient with index n=m and furthermore, that o must

depend on n such that Re{o(n)} = -Re{o(-n)}. Substituting (2.7) into

_; 2m
(2.6), multiplying by e T X, integrating from -L/2 to L/2, using the

orthogonality properties of complex exponentials, dropping the notation

referring to the n dependence of o, and defining k = 2nn/L we find



-iou -~ fv + ik¢ = 0, (2.8a)
-iov + fu + g% = 0, (2.8b)
g% + gl =0, (2.8¢c)
iku + %§ + g% = 0, (2.8d)
-ioT + (%% - gzg)w = 8;. (2.8e)

Note that the system (2.8) is the same system we would obtain if we
eva]uéted (2.6) for any one term in the Fourier expansions. This result
is due to the fact that (2.6) is a linear system with coefficients that
are independent of x. The derivation of the vertical structure equation

and the dispersion relation proceeds from the system (2.8).

2.2 Derivation of the Vertical Structure Equation and the Dispersion

Relation

The system (2.8) may be reduced to a single equation for w as
follows. Eliminating u from (2.8a) and (2.8b) yields

(62 - 2)v + (ic g§ + ikf)e = 0. (2.9)

Eliminating u from (2.8a) and (2.8d) gives

(o §§ - fK)v + ik20 + O gg = 0. (2.10)

Now we eliminate v from (2.9) and (2.10) to obtain

oLl 2l g2y W
Lo =~ 35 (- o%) 5 [2.31)

where Ly is a y-operator defined by

92 2fB 3 K 2Bk f2
Ly =57 " Tt oy T o T oy K L

o(o



Eliminating T from (2.8c) and (2.8e) yields

. 90 = K
io 5 Sw 5 Q, (2.13)

where S is a measure of the static stability and is given by

_ R dT _RT
S = 5 (dp oC ). (2.14)
p
Finally, we operate on (2.13) with Ly and use (2.11) to obtain
- 92w K
-(f2-02) : - SLw==1LAQA. 2.15
(Fo™) g7 = sty = p L8 (2.19)

This single equation for w may be solved by separation of vari-

ables. We write

wly,p) = W(p)Y(y) (2.16)

and

Qly,p) = J(PIY(Y), (2.17)

Here we have assumed that w and Q have the same y-structure. This
assumption is justified by the fact that the governing equations for
both Stevens and Lindzen parameterization and Arakawa and Schubert
parameterization (see chapter 3) involve no y-derivatives. Furthermore,
it may be shown that (2.15) is not separable unless the y-structures are

the same. Upon substituting (2.16) and (2.17) into (2.15) we find

d2w

= =] Y
’Jdﬁg - f2-y2 g = - lﬁ , (2.18)
;_,Jrsw (f2-0%) g

where -1/gh is the separation constant and g is the acceleration of

gravity. The vertical structure equation is then
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d’w S _ ~xJ
aag gn W= ahp (2.19)
and the horizontal structure equation is
. _ f2-¢2
LY - Y = 0. 2.20
y ah ( )

Using (2.16) and (2.17) it may be shown from (2.13) that ¢ and w
have the same y-structure. If we use this fact to combine (2.11) and

(2.20) we find

-igd - gh — =0, (2.21)

or, upon substituting from (2.8d),

-io¢ + gh (iku + gi) = 0. (2.22)
y
Rewriting this equation together with (2.8a) and (2.8b) we have
-igu - fv + ik¢ = 0, (2.23a)
-jov + fu + g.()}} = 0’ (2.23b)
. . IV, _
-io¢p + gh (iku + §§) = 0. (2.23c)

This system is formally the same as the system obtained by linearizing
the shallow water equations and assuming solutions in the form of a
Fourier series as in (2.7). Here h plays the role of the mean depth of
the shallow water fluid, hence h is often referred to as the equivalent

depth. If we rewrite (2.21) together with (2.8c) and (2.8e) we obtain

3¢ . RT _ (2.24a

30 p ’ ( )

igT + <2£ - ) *, (2.24b)
P%p p

—iop - gh X = o, (2.24c¢)

3D
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Now we note that there are no p-derivatives in the system (2.23) and no
y-derivatives in the system (2.24). Thus we have taken the system
(2.8), in which all the equations are coupled in their y and p depen-
dencies, and decoupled it to obtain the system (2.23), which completely
determines the y-structure, and the system (2.24), which completely
determines the p-structure. The sole remaining link between the two
systems is the quantity gh. In some wave-CISK studies, such as Hayashi
(1970) and Stark (1976), the validity of these two systems was antici-
pated and they were used in the analysis without justification. Here a
rigordus justification for their use has been provided.

In order to obtain the dispersion relation for an equatorial beta-
plane, we use the equation which governs the y-structure of v. Because
of the decoupling described above, this equation may be derived from the

system (2.23). Eliminating u from (2.23a) and (2.23b) gives

(02-f2)v + (io %; + ikf)o = 0. (2.25)
Eliminating u from (2.23a) and (2.23c) gives
(io & - ikfv + (& - k2o = 0 (2.26)
5y & 2 .

We now operate on (2.26) with ioc 3/3y + ikf and substitute from (2.25)

Following Lindzen (1967) we define

g

©17 gh’ (2.28)
- . kB _ 2, 0%

CHh =" 3 k2 + ah (2.29)
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Substituting (2.28) - (2.30) into (2.27) we obtain
2 -1
g§§ + (c,c, % - £2)v = 0. (2.31)

We choose the boundary conditions to be

Vv>o0as g >t o (2.32)
By assuming

€2

v(§) = e- /Zv(é), (2.33)

which automatically satisfies (2.32), it may be shown that the solution

to (2:31) is given by

2
v (&) = ety ), (2.34)

where
-5

€,Cq -1 = 2n, (2.35)

and Hn(g) is the Hermite polynomial of order n. Using (2.28) and

(2.29), (2.35) may be rewritten as

a® - (k¥gh + BYgh(2n+1))o - kBgh = 0, (2.36)

which is the dispersion relation for an equatorial beta-plane.
We now derive the boundary conditions for the vertical structure

equation (2.19). At the lower boundary we require

2 = . (2.37)

£

1
@l
Qla
o

Expanding the total derivative as in (2.2), linearizing, assuming solu-
tions in the form of a Fourier series as in (2.7), and using (2.4) we

find
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RT
-i00 -;" w= 0. (2.38)

Now ¢ is eliminated by (2.24c) to yield

" %% ) gl — (2.39)

or, after separating'variables as in (2.16),

h-—-2-W=0. 2.40
sh 3 " o ( )

At the upper boundary we apply the so-called rigid 1id condition which
requires w = 0 or, equivalently, W = 0. Thus, Tletting Poo denote the
lower boundary and Pr the upper boundary, the complete vertical struc-

ture problem may be stated as

dw _ S — . kJ

W AT & e
dW _ RT ,, _ _

gh d " p W=0atp= Poo* (2.42)

W=0atp= Pr- (2.43)

The method for obtaining growth rates may now be made clear. It is
shown 1in chapter 4 that when J is parameterized in terms of W, the
vertical structure problem may be solved numerically as a generalized
matrix eigenvalue problem where gh is the eigenvalue. For any eigen-
value, the dispersion relation (2.36) is solved yielding three roots for
the quantity o. Recalling that o may be complex and using (2.7) it is
easily shown that Re{o} determines the frequency of the wave and Im{o}

determines the exponential growth rate.



3. CUMULUS PARAMETERIZATION

This chapter presents the details of the cumulus parameterization
schemes used in the model. In section 3.1 a modified form of the param-
eterization originally developed by Stevens and Lindzen is presented. A
simplified form of the parameterization of Arakawa and Schubert is given

in sectijon 3.2.

3.1 Stevens and Lindzen Parameterization

Stevens and Lindzen parameterization is based upon the fact that
the net release of the latent heat of vaporization in a column must be

balanced by the precipitation in that column. Thus we write

%8
d
] Q 28 = p, (3.1)
A g
cT

where PeT and pg are the upper and lower boundaries of the heated re-
gion, L is the latent heat of vaporization and P is the precipitation
in units of kgmmzs-l.

We relate P to the large-scale vertical velocity as follows. The

large~scale moisture budget may be written

?ﬂ+x-Vq+waj:E-C (8.2)

ot ap ’

: e < . =] s
where E and C are evaporation and condensation in units of s =, g is the
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mixing ratio, v is the herizontal velocity vector and V is the horjzon-
tal del operator at constant p. If we neglect the storage of water
vapor given by 3q/dt and use the continuity equation (2.1d) we may write

Upon integrating throughout the depth of the model atmosphere, and

assuming either w = 0 or g = 0 at the upper boundary we find

Poo 4 Roo i 1
p=- [0 @ [T va R - Lm0 upyy). (314
Py Py

Linearizing about a basic state defined by P =0, assuming q = a(p),
using the continuity equation (2.6d) and either of the conditions at the

upper boundary given above, we may show, after some manipulation, that

pOO =
I = - -]-‘. ! gg
P g j w dp dp. (3.5)
Py

Careful attention to the details of the above manipulation reveals that
it is not necessary to assume w'(pOO) = 0 since w'(poo) cancels out of
the equation. We have now related the precipitation to the large-scale

vertical velocity.

The profile of q may be specified in many ways. Stevens and

Lindzen originally considered g given by

Gy (= constant), pm <

A
L=
A

ol
]

(3.6)
0,

A
o
J

Pr<P <P,



16

where P is a specified pressure corresponding to the top of the moist
layer. With this profile, (3.5) becomes, after careful evaluation of

the integral,

|_,__]; 1
p! = 3 % ¥ (p,y)- (3.7)

Note that P' is related to the vertical velocity at only one level.

Here we follow Davies (1980) and let g be given by

q, (= constant), Py <P < Py
- =6(p_-p) _
qg=)aq.e ; PqiP <P, (3.8)
g, Pr <P <Py

where & and q, are constants. As &6 > o« this profile approaches the
simpie profile discussed above, thus a finite value for & allows us to
use a more realistic moisture profile. With q given by (3.8), (3.5)

becomes, again after careful evaluation of the integral,

q,0 ?a -6(p,~P) i = |
w'e d - g qlpy) w'(py)- (3.9)

Here we note that P' is related to the vertical velocity at every level
in the interval Pg PP,

We now relate the heating to the large-scale vertical velocity.
Linearizing (3.1), substituting from (3.9), using (2.7), (2.16) and

(2.17), we may show that

PB a
~6(p,7P) ’
Jdp = - Lqg_8 We dp - La(py) W(pd). (3.10)
P

cT Pd

The vertical profile of the heating is specified by writing



¥

p—pB
PeTPg’

J(p) = aebpsinn (3.11)

The constant b determines the level of maximum heating. The constant «
is the magnitude of the heating and is determined by substituting (3.11)

into (3.10). With o determined in this manner (3.11) becomes

" p

p-p a -6(p_-p)
J(p) = - L ePPsinm ~——§—~ [9.6 | W(p)e a dp
é PP @
Pd
+a (P NPT, (3.12)
where
Pg -
p-p
a-= ebpsinn ? dp. (3.13)
PcT7Pg |
p

CT

We have now parameterized the heating J in terms of the large-scale
vertical velocity W.

To summarize, we used a large-scale moisture budget to relate the
precipitation to the large-scale vertical velocity. Then, we specified
the vertical profile of the heating and, using the constraint that the
net latent heat released in a column must balance the precipitation in
that column, we determined the magnitude of the heating as a function of

the large-scale vertical velocity.

3.2 Arakawa and Schubert Parameterization

The parameterization theory developed by Arakawa and Schubert de-
scribes the interaction between an ensemble of cumulus clouds and the

large-scale environment. The reader is referred to Arakawa and Schubert
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(1974) and Schubert (1974) for a complete discussion of the original
theory. Further discussion may be found in Hack (1977) and Silva Dias
and Schubert (1977).

In order to make the probliem more tractable mathematically we make
the following simplifications to the original theory:

(i) virtual temperature effects are neglected,

(ii) surface energy fluxes are neglected,
(iii) radiative effects are neglected,
(iv) the height of the sub-cloud mixed layer is constant,

(v) the thermal properties of the mixed layer are constant,

(vi) «cloud base for all cloud types is at the top of the mixed
layer.

Numerical considerations dictate an additional change from the
original formulation of the theory. In Arakawa and Schubert (1974), the
fractional rate of entrainment was the spectral parameter assumed to
fully characterize each cloud type in the ensemble. In this formula-
tion, the pressure where detrainment occurs (cloud top) for a given
entrainment rate is a function of time. In a vertically discrete model
it is difficult to allow for a cloud top which does not always coincide
with one of the vertical levels, therefore, following Hack (1977), we
let the spectral parameter be the detrainment level pressure instead of
the fractional rate of entrainment. Now each cloud type in the ensemble
is characterized by the pressure where it detrains. As a consequence of
this reformulation, we must consider the fractional rate of entrainment
to be a function of time since a change in the large-scale environment
implies that any cloud type must entrain at a different rate in order to

always detrain at the same level.
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The equations in the theory have been conceptually grouped by
Schubert (1974) into three categories: feedback, static control and
dynamic control.

The feedback category describes the way in which a cumulus cloud
ensemble produces time changes in the large-scale temperature and mois-
ture fields. We define the convective scale fluxes of dry static energy

s, moist static energy h and liquid water £ as

P
Fo(P) = § np,B)s (p,B) = s(p)Imy(p)dp, (3.14)
b
P
Fh(P} = 5 ﬂ(P,ﬁ)[hc(P,ﬁ) - h(p)]mB(ﬁ)dﬁs (3.15)
P1
P
Fop) = § n(p,p)2(p,pImg(p)dp. (3.16)
PT

Here sc(p,ﬁ), hc(p,ﬁ) and 2(p,p) are the dry static energy, moist static
energy and liquid water content at pressure p for the cloud type which
detrains at pressure p. All cloud variables shall have two arguments,
the first being the pressure p and the second being the detrainment
pressure P which is the spectral parameter characterizing each cloud
type. The mass flux at level p due to cloud type p is n(p,ﬁ)mB(ﬁ)dﬁ
where mB(ﬁ)dﬁ is the mass flux at cloud base and n(p,p) is the nor-
malized mass flux having the value 1 at cloud base. Using these defini-

tions we may write the large-scale budgets of s and h as

Q)'Q?
o
]

1
<
&

'
b=
I

+ g g5 (FoLF) + LR (3.17)
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The convective scale sink of 1iquid water (i.e., rain) R is defined by

R(P) =g § nlp,PIr(p,pImy(p)dp, (3.19)

T

Tt

where gq(p,ﬁ)r(p,ﬁ)mB(ﬁ)dﬁ is the rain at level p due to cloud type p.
Thus, if we know the properties of each cloud type and the cloud base
mass flux mp, we can determine the effect of the cloud ensemble on the
time changes of the large-scale temperature and moisture fields.

In the static control category a simple cioud model is used to
determine the properties of the cloud ensemble. The budgets for mass,

moist static energy and total water substance for cloud type p are given

by
MDD - ABIP,H), (3.20)
o [n(p.B)n(p,$)1 = h(p) JARLD, (3.21)
S0P, DA (p.B)2(p,8)] = AL + n(p,pIr(p,B).  (3.22)

Here qc(p,ﬁ) is the cloud mixing ratio which may be determined from

a(psB) = G*(P) + Thbds T [h (p,B)-NX(P)], (3.23)
where
¥(p) = %— (%%i) ; (3.24)

p p
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g* is the saturation mixing ratio and h* is the saturated moist static
energy and A{p) is the fractional rate of entrainment for cloud type p
which can be determined iteratively from (3.20) and (3.21) by requiring

that

h (8,B) = h*(p). (3.25)

Since equations (3.20) - (3.22) are differential equations, they require

boundary conditions which we choose to be

n(pg,p) =1, h.(p,p) = hy,
(3.26)
9.(pg:P) = ay, 2(pg,P) =0,
where hM and qy are the moist static energy and mixing ratio in the
mixed Tayer.
In the dynamic control category of the theory, the cloud base mass
flux mg is determined. We define the cloud work function, which is a

measure of the bouyancy force associated with cloud type p, as

B ..
AGp) = I 2053 th(p,5)-h*(p)IR. (3.27)
p

Then we make the quasi-equilibrium assumption which states that
dA/3t = 0. It may be shown that the time derivatives of n, hC and h* may
be written in terms of the time derivatives of h and s. The prognostic
equations for h and s, (3.17) and (3.18), involve terms of two types:
the Targe-scale advective terms and the cloud terms which depend upon
Mg Thus the quasi-equilibrium assumption may be written, at Teast

conceptually, as
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Pg
§ K(B.pImg(h)dp’ + F(B) = 0 (3.28)
PT

where the kernel K(p,p') depends upon h, s, n, hc’ Se 2 and r and F(p)
represents the large-scale terms.

We now remark that the thermodynamic equation (3.17) is consistent
with the thermodynamic equation (2.le) only if we replace 8s/8t+v-Vs
with cp(aT/at+3°VT). This is equivalent to saying w = -pgw. With this
in mind, we identify Q in (2.1le) with the last two terms on the right
hand side of (3.17).

The linearized form of the parameterization is now derived. We

allow for a mean cloud structure given by X, ﬁ, hc’ Se ac’ ¢ and r and
we recall from Chapter 2 that the basic state given by (2.3) may not
contain mean heating. Therefore, it may be shown from (3.14), (3.16),
(3.17) and the remarks in the preceeding paragraph that &B must be zero.

With this fact the perturbation heating may be written as

p
i_‘_a____ﬁ— ANT A__- _- A VAN a2
Q¢ =955 J n(p,plls (p,p)-s(p)-L&(p,p) Img(P)dp
o
(3.29)
P
S EETCRTERS O
P
and the linearized form of (3.28) may be written as
P8
j K(B,B" Img(B')dp' + F(p) = 0. (3.30)
i

Here F(P) involves the product of several mean quantities with w'.
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We now summarize. The mean quantities A, N, hc’ Sc, e 2 and r
may be determined by requiring that they satisfy the equations in the static
control category. A parameterization of the rain r is also required.
Once these quantities are known, the kernel K may be calculated and the
Fredholm integral equation (3.30) may be solved to find mé in terms of
w'. Finally, using (3.29) we may determine Q' in terms of w', or, after
Fourier decomposition and separation of variables, J in terms of W. We
shall find that J depends on W at every level in the interval Pr<P<PR-
Unfortunately, all of the above calculations must be done numerically.

The following chapter presents some details of these numerical calcula-

tions.



4. DISCRETE FORMS AND SOLUTION TECHNIQUE

The vertical structure problem posed in Chapter 2 may be solved
analytically only for simple profiles of basic state temperature and
simple parameterizations of the heating. Such analytic solutions were
obtained by Hayashi (1970), Lindzen (1974), Chang (1976) and others. In
this research we use basic state temperature profiles and parameteriza-
tions which are sufficiently complex so that numerical techniques must
be used to obtain solutions. For simplicity, we choose to use finite-
difference methods. In section 4.1 the discrete form of the vertical
structure equation and its boundary conditions is presented. Section
4.2 presents the discrete forms of the governing equations for the
parameterizations. It is shown that once J is parameterized in terms of
W, the vertical structure problem may be solved as a generalized matrix

eigenvalue problem where 1/gh is the eigenvalue.

4.1 The Vertical Structure Problem

The vertical grid used in the model is shown in Fig. 4.1. The
atmosphere is divided into K/2 layers, the lowest of which is the sub-
cloud mixed layer. Excepting the mixed layer, the pressure depth of
each layer is the same. The basic state quantities T and a are carried
at every level. The vertical velocity W is carried at odd levels and
the heating J is carried at even levels.

It is convenient to write the static stability S as S = RI'/p2 where

I = dT/dz* + kT is the static stability in z* = -£n(p/p00) coordinates.
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Fig. 4.1. Vertical grid used in the model.
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The static stability I’ is often assumed to be constant; therefore, by
writing S in this way we may compare the results obtained with a con-
stant T with those obtained with a variable T.

For any interior odd level denoted by k, the finite-difference form

of the vertical structure equation (2.41) is

. X i (4.1)
W(k=2)-2 W(k)+W(k+2) _ -RT(k) K _ o
Here I'(k) is determined from
o RT(k) _ T(k+1)-T(k-1) "
709 = P00 (& 5ri = (4.2)
and
Ap ='p(k+l) - p(k-1). (4.3)

The boundary conditions (2.42) and (2.43) are written in discrete form

as
W(K+1)-W(K-1) _ RT(K+1) (4.4)
p(K+1)-p(K-1)  ghp(K+1) ‘
and
W(1) = 0. (4.5)

Using these discrete forms we may write the complete vertical

structure problem in matrix form as
AW=1/gh (B W+ C J), (4.6)

where A, B, and C are matrices of dimension (K/2+1)x(K/2+1), W is a
vector of length K/2+1 containing the values of the vertical velocity at
all odd levels, and J is a vector of length K/2+1 containing the values
of the heating at all even levels. An additional even level above the
model top has been defined solely in order to have K/2+1 levels at which

J is carried.
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It is shown in the next section that the cumulus parameterization

schemes lead to a matrix equation of the form
J=DW (4.7)

where D is a matrix of dimension (K/2+1)x(K/2+1). Using (4.7) and

defining E = B + CD we may write (4.6) as
AW=1/gh EW (4.8)

which is a generalized matrix eigenvalue problem where 1/gh is the
eigenvalue and W is the eigenvector. As mentioned in Chapter 2, growth
rates corresponding to any eigenvalue are obtained by solving the dis-
persion relation (2.36) after substituting for gh. The vertical profile
of the vertical velocity corresponding to any eigenvalue is contained in
the eigenvector W while the vertical profile of the heating correspond-

ing to any eigenvalue is contained in J and may be obtained from (4.7).

4.2 Cumulus Parameterization

In this section it is shown that the discrete forms of the cumulus
parameterization schemes used in the model lead to a matrix equation of
the form J = D W. The derivation of this equation is simple for Stevens
and Lindzen parameterization and relatively complex for Arakawa and
Schubert parameterization.

For Stevens and Lindzen parameterization a discrete form of (3.12)
is used. We choose Pa and Py to be at odd levels, PeT to be at an even
level, and Pg to be at level K-1. Using the trapezoidal rule to evalu-
ate the integral in (3.12) we write the heating at any even Tevel be-

tween Pg and PeT 88
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= - L bp(k) . p(k)-p(K-1)
J(k) = 3 © sinn p(1CT)-p(K-1)

o o T8 )-p(i-1)) C . me(p(i)-p(it))
x [q6 3 ° (W(i-1)e + W(itl)e
1=1

4 (4.9)

x 2+ gy WG

where 1 is odd, ia and id are the odd levels where Pa and py are defined
and iCT is the even level where Pet is defined. Using (4.9) the heating
may easily be written in the form J = D W.

Before proceeding with Arakawa and Schubert parameterization we
must calculate the quantities s, h, h*, g* and y. Calculation of the
first three of these requires knowledge of the mean height z. In the

mixed layer, the temperature lapse rate is adiabatic and z may therefore

be calculated from

B 8 .
= [Ty - T (4.10)

] O

z(k) =

Above the mixed layer, z is calculated hydrostatically using

-t R = - (k+1)
2(k) = 2(k+1) * 5 [T+ T(k+1)1en (BBTES')' (4.11)

Formulas for determining g* and y based on Teton's formula for the
saturation mixing ratic e, are given in Appendix B. Having obtained the
quantities z and g%, we then calculate s, h and h* at any level k from

\

s(k) cp?<k> + gz(k),

i

h(K) = s(k) + Lq(k), ) (4.12)

h*(k) = s(k) + Lg*(k).
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As discussed in Chapter 3, we consider each cloud type to be char-
acterized by the pressure where it detrains. In this model clouds are
permitted to detrain at even levels from k = 2 to k = K-4. The cloud
variables n(p,p), hc(p,ﬁ), qc(p,ﬁ) and 2(p,p) are carried at odd levels
and are denoted by n(k-1,n), hc(k-l,n), qc(k-l,n) and 2(k-1,n).

The discrete forms of the equations in the static control category

are now presented. The discrete mass budget for cloud type n is written
n(k-1,n) = n(k+1,n) (1+A(n)Ap), (4.13)

or, using the boundary condition n(K-1,n) = 1,

n(k-1,n) = (1+a(n)ap) (K7K)/2 (4.14)

The discrete moist static energy budget is written

n(k+1,n)h_(k+1,n)-n(k-1,n)h_(k-1,n) (k-
C = C = h(k) [1(k+1,ngpf](k 1;")’ (4.15)

or, using (4.13),

hc(k+1,n)+A(n)Aph(k)
1 + A(n)Ap

hc(k~1,n) = (4.16)

We now introduce a crude parameterization of the rain r(p,p) by writing
r(p,p) = co(p,ﬁ)z(p,ﬁ) where co(p,ﬁ) is an autoconversion coefficient.
This parameterization essentially consists of converting a portion of
the condensed 1liquid water into raindrops. Note that we have allowed
the autoconversion coefficient to depend on pressure and cloud type.

Using this parameterization the discrete budget for cloud water content
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is written

n(k+1,n)(qc(k+1,n)+2(k+1,n))-n(k—l,n)(qc(k-l,n)+£(k-1,n))
Ap

. n(k+ - -
= q(y MELENUCLN) 4 e, n) ¢ (k,meck-1,m), (4.17)

or, again using (4.13),

(qc+2)(k+1,n)“qc(k-1,n)-A(n)Ap[qc(k-l,n)-q(k)]

2(k-1,n) = 1+A(n)Ap+co(k,n)Ap . (4.18)
Here a. is determined from
g (k-1,n) = q*(k-1) + LD L 1 (41 n)-h*(k-1)] (4.19)
c ’ I+y(k-1) L ¢ ’ ’ ’

Although it is permitted tc have cloud types which detrain as high
as level 2, the actual detrainment level of the highest cloud type is
determined by the h* profile. An even level may not be a detrainment
level for a cloud type if h* at that Tevel is greater than hM since this
would 1imply that the entrainment for such a cloud type would be nega-
tive.

Having determined from the above criterion how many actual cloud
types exist, the following iterative scheme is used to calculate A(n)
for each cloud type n. For any guess of A(n) we calculate hc(n+1,n) and

rc(n-l,n) from (4.16) and hc(n,n) from
hc(n,n) = %[hc(n+1,n) + hc(n-l,n)]. (4.20)
Next we calculate a function G(n) defined by

G(n) ={h*(n) - hc(n,n) . (4.21)
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If G(n) is less than some prescribed quantity &, then we consider A(n)
to be known to sufficient accuracy and we proceed to calculate A(n) for

the next cloud type. If G(n) is greater than &, then the secant method

given by
g (n) 6(n) E+% 6(n)
~ Aln n) - A(n n) . )
A(n) = T = (4.22)
G(n) - G(n)

where 1 is the iteration index is used to calculate a new value of A(n).
For this new value we calculate a new G(n) and test to see if it is less
than ¢. If it is not less than &, we continue to make new guesses from
(4.22) until G(n) is less than €. The entire process is continued until
A(n) for each cloud type is found. Note that the secant method defined
by (4.22) requires two initial guesses. For the highest cloud type
there is very little entrainment so it is best to choose two values near
to zero. For the Tower cloud types it is best to choose, whenever
possible, the final iterative values of A from the next two highest
cloud types. Once A(n) is found for each n, hC is known and n,2, and q.
are calculated from (4.14), (4.18) and (4.19).

The equations comprising the feedback category are written in

discrete form as

9s(k) _ 8s(k)

s . . i
S5t 5t n(k+1l,n')[s _(k+1,n") s(k+1)

-Lﬂ(k+1,n')]-n(k-l,n')[sc(k-l,n')-s(k-l)—LQ(k-l,n')] MB(n')

" (4.23)

+1lg 3 n(k+1,n")c (k,n')2(k-1,n" IMx(n'),

n‘=n .
min
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K-4
+4 3
Ls Apn'=n

g%(k) - %g(k) n(k+1,n")[h_(k+1,n')-h(k+1)]

min

(4.24)
-n(k-1,n")[h (k-1,n")-h(k-1)J{Ma(n")

where k is even, n' is even, n is the Tevel where the highest cloud

min
type detrains and

3e(k PR ICRLOREC §§<k>, e 20
(K = - y(k)-vh(k) - w(k)y 20CKD, % 20
t LS i~ ap
ﬁ(n')+%E
Ma(n') = S mg(B)dp . (4.27)
ﬁ(n‘)-%E

In the dyramic control category, the discrete version of the cloud

work function is written

K-2 -

A(n) = 2 p(k") %n(k"1,n)[hc(k"1,n)‘h*(k')]Ap (k")
o 4 (4.28)
+ n(k'+1,n)[h_(k'+1,n)-h*(k")]ap (k')

where k' is even and
P 1
B(k') = T (kY (4.29)
=iy = 2(p(k')-p(k'-1))
Ap (k ) - p(kl) + p(kl_l) ] (4.30)

+eery = 2(p(k'+1)-p(k')) :
Ap (k ) e p(k|+1) + p(kl) . (4.31)
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A discrete form of the Fredholm integral equation (3.28) is derived
in Appendix C and is written
K-4
2 K(n,n‘)MB(n') + F(n) =0 (4.32)
n'=n_ .
min

where n' is even.

Recalling the discussion in Chapter 3, we write the linearized
form of (4.32) as

K-4

b R(n,n')Mé(n') + F(n) = 0. (4.33)

n'=n_.
min

The mean kernel K(n,n') depends on the mean quantities A, n, hc’ Ec, A
and 2. These mean quantities may be calculated by requiring that they
satisfy the equations in the static control category. The large-scale
forcing F(n) is a complicated expression involving the sum of several
products of mean quantities with w'. Keeping this in mind and per-

forming the Fourier decomposition and separation of variables, we may

write (4.33) in matrix form as

K Mg + FW=0. (4.34)

Here K is a matrix of dimension NxN where N is the number of cloud
types, F is a matrix of dimension Nx(K/2+1), and MB is a vector of
length N containing the cloud base mass fluxes for each cloud type.

Using (4.23) and again performing the Fourier decomposition and

separation of variables, the heating defined by (3.29) may be written in

matrix form as

J=HM (4.35)

~B



34

where H is a matrix of dimension (K/2+1)xN. Solving (4.34) for MB and
using (4.35) we find that J may be written in the form J = D W.
We have now shown that the discrete versions of both parameteriza-

tions may be written in the form J = D W.



5. RESULTS

It was shown in Chapter 4 that when the heating is parameterized in
terms of the vertical velocity, the vertical structure problem may be
solved as a generalized matrix eigenvalue problem. The eigenvalues,
along with the dispersion relation, determine the growth rates and phase
speeds and the eigenvectors determine the vertical structure. In this
chapter we present and discuss some results obtained by solving the
vertical structure problem. Our primary objective is to compare the
results obtained with Stevens and Lindzen parameterization (hereafter
referred to as SL) with those obtained with Arakawa and Schubert param-
eterization (hereafter referred to as AS).

The atmosphere has been divided vertically into 11 layers. We have
chosen the surface pressure to be 1011 mb, the sub-cloud mixed layer to
extend from the surface to 965 mb, and the model top to be at 115 mb.

The profiles of basic state temperature T and basic state mixing
ratio q are shown in Fig. 5.1. By definition, the sub-cloud mixed
layer is characterized by a dry adiabatic temperature lapse rate and a
constant mixing ratio. Above the mixed layer the mixing ratio has a
roughly exponential decrease.

The static stability T', calculated from the T profile of Fig. 5.1,
is shown in Fig. 5.2. In some studies, such as Chang (1976) and
Stevens, et al. (1977), a constant value for I' was assumed. In Table

5.1, the eigenvalues of the homogeneous vertical structure problem are
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Fig. 5.1. Profiles of basic state temperature T (solid line) and
basic state mixing ratio g (dashed line).
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Fig. 5.2. The static stability I' calculated from the basic state
temperature profile of Fig. 5.1.



38

Vertical Constant Static Static Stability
Mode Stability I'=23.79°K of Fig. 5.2
0 282.6 284.3
1 53.54 50.03
2 28.68 25.36
3 19.61 17.91
4 14.69 13.74
5 11.46 11.10
6 9.16 9.50
7 7.43 8.61
8 6.06 7.42
9 4.91 6.06
10 3.56 3.41

Table 5.1 Phase speeds /gh obtained from the homogeneous
vertical structure problem for '=23.79°K=constant
and for ' given by Fig. 5.2. Units are m/s.

Tisted for the case when ' is constant and for the case when I' is given

by the profile in Fig. 5.2. The eigenvalues are written in terms of

Jgh, which is the phase speed of a pure gravity wave. Mode zero is
often referred to as the external mode while mode n is often referred to
as the nth internal mode. We see that the primary effect of a variable
static stability is to decrease the phase speeds of the lower order
modes and increase the phase speeds of the higher order modes. The
eigenvectors, or vertical structure functions, of the external and first
three internal modes for both I' profiles are shown in Fig. 5.3. Here we
see that the levels where the internal modes attain a maximum or minimum
are lower for a variable T'. Later we shall see that varying the T
profile as above produces a very noticable effect on the instabilities.
Unless otherwise noted, all results presented from this point on are for

the T' profile given by Fig. 5.2.
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We now present and discuss some results obtained using SL parame-
terization. The parameters Pet and pg are chosen to be 157.5 mb and
965 mb, respectively. We take the level of maximum heating, which
determines the parameter b in (3.12), to be 455 mb. Chang (1976)
studied the sensitivity to this parameter. Recall that we have chosen
the g profile to be given by (3.8). In Fig. 5.4 several different
profiles of q corresponding to different values of & are shown. By
comparison with Fig. 5.1, it may be seen that curve (a) is a reasonable
approximation to the observed & profile.

In Fig. 5.5 we have plotted the set of eigenvalues gh as a function
of a, for the case where the moisture is constant from the surface to
some pressure and zero thereafter, i.e., the profile originally consid-
ered by Stevens and Lindzen (1978). Since several figures of this
nature will be presented, some preliminary explanation may be helpful.
From the dispersion relation (2.36) we see that complex gh leads to
compiex o and hence instability. Also, it may be demonstrated numer-
ically that the instability generally increases as Im{gh} increases. 1In
these figures we tend to see the coalescence of two modes with real
equivaient depths into a single mode with complex equivaient depth.
This coalescence coincides with the onset of the instability. Although
the unstable modes come in complex conjugate pairs, we have plotted only

th

[$2]

oigenvalue with positive imaginary part. Focusing on Fig. 5.5, it
may be seen that instability first occurs for q, = 8.5g/kg. However,
when 9 increases to 10.5g/kg, the first and second internal modes
coalesce to form an unstable mode. This unstable mode, although the

second mode to become unstable as a, increases, eventually attains a
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Fig. 5.4. Mixing ratio q calculated from (3.8) for P, = 880 mb,
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greater value of Im{gh} and hence a greater instability than the first
unstable mode. As q, increases even further two more unstable modes
develop.

The e-folding time and phase speeds for the most unstable modes in
Fig. 5.5 are shown in Fig. 5.6. Some preliminary explanation is also
helpful here. For any given values of gh, horizontal wavelength and
meridional mode n, the dispersion relation gives e-folding times and
phase speeds for three wave types: eastward and westward moving gravity
waves and westward moving Rossby waves. Since one possible application
of the results of this research is in the study of squall lines and
since squall lines may be associated with gravity waves, we choose to
calculate e-folding times and phase speeds for a gravity wave of wave-
length 300 km and meridional mode n = 1. Returning to Fig. 5.6, we
confirm that the second mode to become unstable as a, increases does
attain a smaller e-folding time, or greater growth rate than the first
mode which becomes unstable. The most unstable mode has the greater
phase speed. The phase speeds are relatively unaffected by changes in
a5 however, as a, increases through certain values the e-folding times
may markedly increase.

The linearized thermodynamic equation consists of three terms: the
local rate of change of temperature, the adiabatic cooling which may be
written, after Fourier decomposition and separation of variables, as
-TW/p, and the cumulus heating which may similarly be written J/c_. In
Fig. 5.7, we show, for the most unstable mode in Fig. 5.6 at q, = 12.0
g/kg, the amplitude and phase of the vertical velocity, the cumulus
heating, and the adiabatic cooling. Here we have assumed q, = 12.0 g/kg

= constant provides a reasonable approximation to the lower tropospheric
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moisture content. Recalling that W is negative for upward motion we see
that the cumulus heating is in phase with the upward motion and does not
tilt with height since it is related to the vertical velocity at only
one level. The adiabatic cooling is greater than the cumulus heating at
almost every level. The vertical velocity has a maximum near the middle
troposphere and has very little tilt with height. Remember that the
vertical profile of cumulus heating for SL parameterization is speci-
fied.

We now note that the eigenvalues discussed above are noticeably
different for a constant I'. For example, when By = 12.0 g/kg, the
eigenvalue of the most unstable mode with a constant I' equal to 23.79K
is gh =171+591 m?/s? while the eigenvalue of the most unstable mode with
variable T is gh = 905+287i m%2/s2. Thus, at least in this case, the
instability is considerably reduced when a constant I' is used.

So far we have presented results only for a very simple moisture
profile. Fig. 5.8 shows the set of eigenvalues as a function of 6.
Note that as & increases there is very little change in either the real
or imaginary parts of gh which implies that middle and upper tropo-
spheric moisture plays a small role in SL parameterization.

Results obtained using AS parameterization are now presented and
discussed. Whenever possible, a comparison will be made with the re-
sults obtained using SL parameterization. Vertical profiles of ﬁ, h*
and Hc are shown in Fig. 5.9. The h* profile, the value of h in the
mixed layer and the number of layers in the model allow for nine cloud
types. This is an improvement from Stark (1976) who had only four cloud
types. The profile of the normalized mass flux ﬁ for each cloud type is

shown in Fig. 5.10. Table 5.2 1lists the value of the fractional en-

trainment rate A for each cloud type.
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B(mb) A(mb 1)

157.5 . 00028626
242.5 .00123231
327.5 . 00175591
412.5 .00221036
497.5 . 00289031
582.5 . 00441187
667.5 .00731829
752.5 . 00873087
837.5 .01517879

Table 5.2 Fractional entrainment rate A and
detrainment pressure p for each
cloud type.

The choice of a profile for the autoconversion coefficient Co is
difficult. A constant value, independent of cloud type, was proposed by
Arakawa and Schubert (1974). Silva Dias and Schubert (1977) showed that
this profile tends to underestimate the precipitation efficiency of deep
clouds while overestimating it for sha11ow clouds. Conseqguently, they
considered a profile where <, varied with cloud type with the deeper
clouds having greater values of o and hence greater precipitation
efficiencies. In this research we consider the case where s is con-
stant and the case when o is variable. For the variable case we let <
be given by

=D ot (B¢
G == cot ~ ( = ) (5.1)

where a, b and ¢ are constants. Fig. 5.11 shows several profiles of Cyo
each of which corresponds to a different value of b for fixed values of

a and ¢c. As b increases, the precipitation efficiency for all cloud
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types increases; however, the increase is greater for higher cloud types
than lower cloud types. The profile for b =5 km-1 agrees well with the
profile shown in Silva Dias and Schubert (1977). The quantity <, used
in the discrete cloud total water budget is a function of pressure and

1

has units of Pa . It may be obtained from the s values discussed

above by multiplying those values by R?/pg.

The set of eigenvalues as a function of Cos where s is constant
and independent of cloud type, is shown in Fig. 5.12. The eigenvalues
as a function of b are shown in Fig. 5.13. The two figures are qualita-

tively the same. Unstable modes first develop for Co = 0.5 km_1

bz 0.8 km .

and
As < and b increase, additional unstable modes develop
and, as in SL parameterization, these modes eventually attain greater
values of Im{gh} and hence greater instabilities than the first modes
which became unstable. Contrary to the results obtained with SL param-
eterization and the results obtained by Stark (1976), the first internal
mode never coalesces to form an unstable mode. A possible explanation
for this behavior is based on the fact that for SL parameterization, the
vertical structure of the heating is specified and Tooks similar to the
vertical structure of the first internal mode. Thus we might expect the
unstable response to this specified heating to manifest itself primarily
in the first internal mode. In AS parameterization, the vertical struc-
ture of the heating is not specified beforehand but is instead deter-
mined internally to the model. Therefore, there 1is no specified
heating profile which might tend to force a response in some particular
mode. Comparing with Fig. 5.5 we see that Re{gh} and Im{gh} for the
unstable modes are smaller for AS parameterization than they are for SL

parameterization.
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Fig. 5.14 shows the e-folding times and phase speeds as a function
of <, for the unstable modes in Fig. 5.12. The e-folding times and
phase speeds as a function of b for the unstable modes in Fig. 5.13 are
shown in Fig. 5.15. Again we have chosen a gravity wave of wavelength
300 km and meridional mode n = 1. These figures are qualitatively
simi]af to Fig. 5.6 for SL parameterization; however, there are impor-
tant quantitative differences. Most noticeably, the e-folding times for
the calculations with AS parameterization are much longer than those for
SL parameterization. Furthermore, the phase speeds of the unstable
modes are smaller for AS parameterization. We do find, as we did be-
fore, that the phase speeds of the unstable modes change relatively
little compared to the changes in the e-folding times.

In Fig. 5.16 we show, for the most unstable mode in Fig. 5.15 at

b=5km1

, the amplitude and phase of the vertical velocity, the cumu-
lus heating and the adiabatic cooling. We have chosen b = 5 km_1 since
it produces a <o profile which agrees well with the profile given in
Silva Dias and Schubert (1977). As in SL parameterization, the cumulus
heating is in phase with the upward motion; however, it now shows a
slight tilt with height in the upper troposphere. The amplitudes of the
cumulus heating and adiabatic cooling are nearly equal. The vertical
velocity has a maximum near the middle troposphere and tilts slightly
with height in the upper troposphere. It is interesting to note that,
although the cumulus heating profile is determined internally in the
model and not specified, it still qualitatively resembles the specified
profile used in SL parameterization.' Amplitude and phase of the verti-
cal velocity, cumulus heating and adiabatic cooling for the most un-

1

stable mode in Fig. 5.14 at Co = 2 km ~ and at g, = 4 km-1 are shown in
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Fig. 5.17 and Fig. 5.18. Although it is not clear what a reasonable
choice for < should be, the two values chosen above seem to lie within
the range of quoted values. When Cy = 4 km_1 the amplitude and phase
diagrams are essentially the same as those for b = 5 km-l. For G, = 2
km_l, however, the vertical velocity exhibits two relative maximums
instead of one and the cumulus heating, which is again nearly equal in
amplitude to the adiabatic cooling, is no longer qualitatively similar
to the cumulus heating profile specified in SL parameterization. These
differences may be explained from Fig. 5.14 by noting that the most
unstable mode at C, = 2 km_1 is not the same mode as the most unstable
mode at Co = 4 km-l.

We have, so far, presented phase speeds and e-folding times only
for a particular horizontal wavelength and a particular meridional mode.
For any given value of gh, we may plot the phase speed and e-folding
time of several meridional modes as a function of wavelength for every
wave type possible on an equatorial beta-plane. Such plots are shown in
Fig. 5.19 and Fig. 5.20. We are primarily interested in the gravity
modes which are the modes with the highest phase speeds and lowest
e-folding times. For a complete discussion of the wave types possible
on an equatorial beta-plane, the reader is referred to Matsuno (1966).
We note here that for gravity waves the instability is always greatest

at the shortest wavelengths. A discussion of this point and a summary

of the results are contained in the final chapter.
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6. SUMMARY AND CONCLUSIONS

A linear model of wave-CISK is used to compare the relatively
simple parameterization scheme developed by Stevens and Lindzen with the
relatively complex one developed by Arakawa and Schubert.

Chapter 2 considers the large-scale governing equations. These
equations, which are formulated on an equatorial beta-plane, are
Tinearized about a resting basic state and the dependent variables and
diabatic heating are expanded in a Fourier series. The vertical struc-
ture equation and its boundary conditions are then derived along with
the dispersion relation for an equatorial beta-plane.

Chapter 3 considers the governing equations for both parameteriza-
tion schemes. Stevens and Lindzen parameterization is slightly modified
to allow for a more realistic moisture profile. Several simplifications
are made to Arakawa and Schubert parameterization in order to make the
problem more tractable. In addition, the parameterization 1is refor-
mulated so that the spectral parameter is the detrainment Tevel pressure
rather than the fractional rate of entrainment.

Chapter 4 considers the discrete forms of the vertical structure
problem and the parameterizations. It is shown that once the heating is
parameterized in terms of the vertical velocity, the vertical structure
problem may be solved as a generalized matrix eigenvalue problem. The
eigenvalues are used with the dispersion relation to determine the
growth rates and phase speeds and the eigenvectors are used to determine

the vertical structure.
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The results presented in Chapter 5 are now summarized. When we
looked at the eigenvalues for AS parameterization as a function of the
autoconversion coefficient and at the eigenvalues of SL parameterization
as a function of mixing ratio, we found that the patterns were similar;
however, the eigenvalues of the unstable modes for AS parameterization
had smaller real and imaginary parts than those for SL parameterization
and the first internal mode became unstable for SL parameterization but
not for AS parameterization. We also found that, for a given wavelength
and meridional mode, the e-folding times and phase speeds of the un-
stable modes with AS parameterization were smaller than those for SL
parameterization. Comparison of the vertical structure of the unstable
modes showed that the cumulus heating was always in phase with the
upward vertical motion, but was more nearly balanced by the adiabatic
cooling for AS parameterization than for SL parameterization. Further-
more, the cumulus heating profile for AS parameterization, which is
determined internally in the model, was remarkably similar to the speci-
fied profile used in SL parameterization. We conclude that, although
there is some qualitative similarity between AS and SL parameterization,
there are notable quantitative differences. Numerical modellers who use
cumulus parameterization schemes should be aware of these differences.

There are several shortcomings in the model. First, a mean wind
has not been included. Second, the process of momentum mixing by cumu-
lus clouds, which was shown by Stevens, et al. (1977) to be important,
has been neglected. Third, since the mean heating is zero, negative
perturbation heating corresponds to negative total heating which is
physically unreasonable. This negative heating is a characteristic of
many wave-CISK studies and its effect on the results is not clear. In

- addition to these shortcomings, there is the problem that the shortest
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wavelength gravity waves are the most unstable which implies that at
short wavelengths, CISK degenerates into CIFK (Conditional Instability
of the First Kind). If we reascn as follows, this problem may not seem
so serious. By definition, cumulus parameterization describes the
interaction between the cumulus-scale, which is not explicitly resolved,
and some specified large-scale. If we allow our specified large-scale
to become so small that it approaches the cumulus-scale, then we are, at
least in theory, resolving the cumulus-scale and the concept of cumulus
parameterization becomes invalid. Therefore, evén though the shortest
wavelengths will be the most unstable, our large-scale is limited in how

small it may become by the very definition of cumulus parameterization.
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APPENDIX A

PRINCIPAL SYMBOLS

cloud work function

condensation

evaporation

large-scale forcing term in Fredholm integral equation

convective scale fluxes of dry static energy, moist
static energy, and liquid water

vertical structure of perturbation diabatic heating

kernel of Fredholm integral equation: total, basic
state

latent heat of vaporization
precipitation: total, basic state, perturbation
diabatic heating: total, basic state, perturbation

gas constant for dry air or convective scale sink of
liquid water (rain)

temperature (absolute): total, basic state, perturba-
tion

vertical structure of perturbation vertical velocity

horizontal (y) structure of perturbation diabatic
heating and perturbation vertical velocity

parameters used in determining autoconversion co-
efficient profile

autoconversion coefficient
specific heat at constant pressure for dry air

coriolis parameter
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g acceleration due to gravity

h,ﬁ equivalent depth or moist static energy: total, basic
state

h*,ﬁ* saturation mixing ratio: total, basic state

hc’ﬁc cloud moist static energy: total, basic state

hM mixed layer moist static energy

k horizontal (x) wavenumber

2.2 cloud liquid water content: total, basic state

mB,iB,mé mass f1ux_distribution function: total, basic state,
perturbation

n Fourier summation index, meridional and vertical mode
number

p pressure

) detrainment pressure

Poo fixed surface pressure

Pt model top pressure

Pg mixed layer top pressure

PeT upper bouqdary of heated region for Stevens and Lindzen
parameterization

Pa:Py pgrameters for mojsture profile used in Stevens and
Lindzen parameterization

q,a mixing ratio: total, basic state

q*,a* saturation mixing ratio: total, basic state

qc’ac cloud mixing ratio: total, basic state

Ay mixed layer mixing ratio

q, mois?ure parameter for Stevens and Lindzen parameter-
ization

r,? rain distribution function: total, basic state

s,g dry static energy: total, basic state

s_,s cloud dry static energy: total basic state



71

time

horizontal velocities: total, basic state, perturbation
horizontal velocity vector

vertical velocity in z-coordinates

horizontal positions

geopotential height: total, basic state

log-pressure vertical coordinate

static stability in log-pressure coordinates

magnitude of cumulus heating in Stevens and Lindzen
parameterization

df/dy

_ L ,ag*
=GP
P P

exponential rate of moisture decrease with pressure in
Stevens and Lindzen parameterization

normalized cloud mass flux: total, basic state

= R
/cp

fractional entrainment rate: total, basic state
complex wave frequency
geopotential: total, basic state, perturbation

vertical velocity in p-coordinates: total, basic state,
perturbation



APPENDIX B

DETERMINATION OF THE SATURATION MIXING RATIO AND GAMMA

Teton's formula for the saturation mixing ratio e, is

a(T-273.16)]’ (B1)

e, = 610.78 exp [ R

where e is in units of Pa, T is in units of degrees Kelvin, a = 17.269

and b = 35.86 K. Once e, is determined, g* may be obtained from

e

X = S
q 0.622 be, - (B2)

Using (Bl), (B2) and the definition of y given in (3.24), we may write

X
—iLé— ﬁ—?sv . (B3)

y = 4098.3
c p s

p



APPENDIX C
THE DISCRETE FORM OF THE FREDHOLM INTEGRAL EQUATION

We begin the derivation of the Fredholm integral equation (3.28)
by writing the discrete moist static energy budget in the form
K-2

n(k-1,n)h (k-1,n) = hy+ k'Ek h(k')[n(k'-1,n)-n(k'+1,n)]. (C1)

Here, and in all summations that follow, the summation index takes on
only even values. Substituting (Cl) into the discrete form of the cloud
work function (4.28) we find

K-2

3Bk’ J(ap” (k" )ap (k' )hy,
=n

A(n)

) K-2
(Ap (K')+ap (k') S h(K")[n(k"-1,n)-n(k"+1,n)]
K'=k'+2

Ap (k')h(K')[n(k'-1,n)-n(k'+1,n)]

+

+

W% (k') nCk'=1,n)ap (k' )+n(k'+1,m)ap (k')1] . (C2)

We now apply the quasi-equilibrium assumption and set the time
derivative of A(n) equal to zero. Time changes in B are neglected.
The terms in the resulting equation are divided into two types: those
directly involving the time derivatives of large-scale quantities and
those involving the time derivatives of n. The quasi-equilibrium

assumption may thus be written
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K-2 _ s K-2
2 (k') j(ap (k')+ap (k")) 3 [n(k"-1,n)-n(k"+1,n)]
k'=n K'=k'+2

oh(k”)

+ 8p7 (kM [Ck'-1,)-n (k' +1,m) 120K

- [n(k'-1,n)Ap (k' )*n(k'+1,n)Ap (K’ 1 20 Oh (k")

K-2 ) .
+ 3 B(k') |(ap (k' )+ap" (k"))
l:n
o 'Y haen2(K1n) | an(k'+1,n),
Bkt 4 3t 3t

+ Ap—(kl)h(kn)[g%(k"l,n) at(k +1, n)]

- (k) Eap (k') AL Mgty JTLMY =g (c3)

The time derivative of h* may be written

BHECKD) = (1ayqtyy 2K, (c4)

and (4.14) may be used to write the time derivative of n as

aA(n)‘

n(k"1on) = (po-p(k-1))n(k+1,n) (c5)

Using (C4), (C5) and the discrete large-scale budgets of s and h (4.23)

and (4.24), we may rewrite (C3) as

K-2 i . K-2
3 B(k'){(ap (k')+ap (k')) 2 [n(k"-1,n)-n(k"+1,n)]5
k'=n k"=k'+2

ah(k )

LS

+ ap (k")[n(k'-1,n)-n(k'+1,n)] ah(k )

LS

- [n{k'-1 n)Ap (k' )+n(k'+1 n)Ap (k') J(1+y(k")) 35(k )l S‘
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K-4 K-2
+ 3 3 B(k') J(ap (k' )+ap’ (k! ))
n'=n . [k'=n
min
K-2
x 3 [n(k"-1,n)-n(k"+1,n)ICF (k"+1,n")-F (K"-1,n")]
k'=k'+2

+

ap”(KIN(k'=1,m-n(k'+1,m)ILF (K'+1,n' )-F, (k'-1,n")] L5

[n(k'=1,n)ap (k' )+n(k'+1,n)ap (k')T (1+y(k'))

X

[ & I p(K +1n')-F | o (K'-1,n)]

" Lgn(k‘+1,n')c0(k',n')ﬂ(k'-l,n'ﬂ t MB(n‘)
K-2 K-2

+ 3 B(K') (ap (K )+ap (k') 3 h(k")[(pg-p(k"-1)n(k"+1,n)
k'=n k"=k'+2

(pg=p(K"+1))n(k"+3,n)] + Ap-(k')h(k')[(pB'P(k"l))n(k'+1,n)

(pg-p(k'+1))n(k'+3,n)] - h*(k')[Ap_(k')(pB-p(k'-l))n(k'+1,n)

8A(n)

+

ap” (k! )(pp=p(k'+1))n(k'+3,n)] = 0. (C6)

Here

Fh(k'~1,n) = n(k'-1,n) [hc(k'-l,n)-h(k'-l)], (C7)
s Lz(k' 1,n) = n(k'-1 n)[s (k'-1,n)-s(k'-1)-L2(k'-1,n)]. (C8)

Note that the terms have been divided into three types: those involving
the large-scale advection, those involving the cloud base mass flux MB
and those involving the time derivatives of A. If we let the first term

be denoted by Fl(n), everything inside the outermost brackets in the
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second term be denoted by Kl(n,n') and everything in the third term
multiplying dA(n)/dt be denoted by 9A(n)/9A we may write

K-4
Fl(n) + 3 Kl(n,n')MB(n') +

n'=n_.
min

9A(n) aa(n) _

9A ot 0. (C9)

An expression for 9A(n)/dt may be derived from the cloud top
condition
n(n,mh*(n) = n(n,n)h_(n,n), (C10)

which may be rewritten

K-2
n(n,n)h*(n) = hy + A(n)ap 3 h(k'Jn(k'+1,n)
k'=n+2
+ % h(n)A(n)Apn(n+1,n). (C11)

Taking the time derivative of (C1l) we may show, after some considerable

manipulation, that

K-2

@A(n) - 4 ; _a_h(k')
3t F(n) A(n)Ap k§=n+2 n(k'+1,n) ST ”
* ARG (el ) g%(n) - n(n,n)(1+y(n) %%(n) LS

K-4 1 K-2
3wy {Mmg 3 ak'+Ln)IF (k'+1,n')-F (k' -1,n")]

n'=n_. k'=n+2

min

+

%A(n)gn(n+1,n)[Fh(n+1,n')-Fh(n-l,n')]

A, m) Ly [ & TF_ (01,0 )-F o (n1,n)]

+ Lgn(n+1,n')co(n,n')z(n-l,n')] MB(n') (C12)

where

f(n) = ap | (M a(mL, )+ -Dn(ne3,n) (1G]
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AR K-k’
-AMmsp 2 h(k') (S - Dn(k'+3,n)
'=n+2

- b 50 - Dapn(n+3,n)

= K;Z h(k'In(k'+1,n) - %h(n)n(n+l,n)} . (C13)
k'=n+2
Here again we note that the terms in (C12) are of two types: those
which depend on the large-scale advection and those which depend on the
cloud base mass flux MB’ If we let the product of dA(n)/8A with the
first term be denoted by Fz(n), and the product of 3A(n)/9A with every-

thing inside the outermost summation in the second term be denoted by

Kz(n,n') we may write (C9) as

K-4
Fl(n) + Fz(n) + .§ (Kl(n,n')+K2(n,n'))MB(n‘) = 0. (C14)
N = Mmin
Letting
F(n) = Fl(n) + Fz(n), (C15)
K(n,n") = K;(n,n") + K (n,n'), (C16)
we have
K-4
3 K(n,n')MB(n‘) + F(n) =0 (C17)
n'=n

min

which is the discrete form of the Fredholm integral equation given in

the main text.






