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ABSTRACT

Bulk models of the planetary boundary layer (PBL) conventionally rely on diagnostic forms of 
the turbulence kinetic energy (TKE) equation to determine the entrainment rate. During episodes of 
rapid deepening or shallowing, the local time rate of change of the vertically integrated TKE becomes 
significant compared to the difference between gross production and dissipation. Entrainment theories 
that neglect this term therefore require revision. A method is presented to determine the entrainment 
rate in a bulk PBL model that includes a prognostic TKE. Relative to earlier closures, the new method is 
not only more realistic but also easier to implement. An analytical expression for the entrainment rate 
is obtained for a broad class of cloud-free boundary layers. '

A Wangara simulation is presented to illustrate the behavior of the model. The Simple 
Biosphere model (SiB) is used to predict the temperatures of the soil and vegetation at the Wangara 
site. The prognostic TKE leads to a slight improvement in the simulation.

The role of shallowing in a large-scale model is discussed. Tests of the prognostic TKE in the 
CSU general circulation model are briefly described.
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1. Introduction

Neglecting horizontal advection and gravity-wave losses, the vertically integrated 
conservation law for the turbulence kinetic energy (TKE) of the planetary boundary layer (PBL) can be 
written as

( 1 . 1 )

Here g is the acceleration of gravity; 8 p ^  is the pressure thickness of the PBL; E is the entrainment 
mass flux; eM is the vertically averaged TKE; P is gross production of TKE by convection and shear; N 
is consumption by downward buoyancy fluxes; and D is dissipation. Transport terms arising from 
pressure-velocity correlations and triple velocity correlations have dropped out of this vertically 
integrated equation, because we have assumed that the transports vanish at the earth's surface and 
above the PBL top. The definitions of P and N, and methods to determine them, are discussed later.

In most situations, both terms on the left-hand side of (1.1) are quite negligible. During brief 
but important episodes of rapidly changing PBL depth, however, the Ee^ term of (1.1), which is 
sometimes called the "storage" term, can become significant. This was pointed out by Zilitinkevitch 
(1975) and Kim (1976), who nevertheless assumed that the local time rate of change of e^ can be 
neglected in (1.1) even when the PBL depth is changing rapidly. A simple argument suggested by J. W. 
Deardorff (personal communication, 1979) shows that this assumption is not generally valid. Let R be 
the ratio of the two terms on the left-hand side of (1.1), i.e.

( 1. 2 )

Our goal is to demonstrate that it is quite possible for R to be of order 1. For convenience, define a2 = 
eM, so that

Using (1.3) in (1.2), we obtain

Consider the clear convective PBL, and suppose that a ~ w. , where w. is the convective velocity scale 
of Deardorff (1970), which can be written as

(1.5)
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Here k is Poisson's constant, Fsv is the virtual dry static energy flux, p is density, p is pressure, and 
subscript S denotes a surface value. Consider a case in which

( 1 .6 )

The time change of the PBL depth satisfies

(1.7)

when large-scale divergence and cumulus convection are negligible. Use of (1.5-7) in (1.4) gives R = 
2/3. This strongly suggests that on occasions when the PBL depth is changing rapidly, the local time 
rate of change of eM can be significant in (1.1). Confirmation of this by numerical examples will be 
given later.

Keeping the local time rate of change essentially means developing a bulk PBL model that uses 
(1.1) to determine the TKE prognostically, i.e., by time-stepping from an initial value. The remainder 
of this paper describes such a model, presents numerical results to illustrate its performance, and 
provides further evidence that a prognostic TKE can be useful in modeling the bulk structure of the PBL.

2. Closure

Following the approach of Randall (1979; also see Suarez et at., 1983), the vertically 
integrated dissipation rate and the vertically averaged TKE are assumed to be related by

where p^ is the vertically averaged PBL density, and â  = 0.163 is a dimensionless constant.

In conventional entrainment theories, it is assumed that dissipation is proportional to gross 
production; i.e.,

(2.2a)

where a2 = 0.96 is a second dimensionless constant (Randall, 1984); and it is also assumed that the 
local time-derivative term of (1.1) is negligible (Zilitinkevich, 1975; Kim, 1976). With these 
assumptions, (2.2a) can be combined with (1.1) and (2.1) to obtain

where
(2.2b)

( 2 . 1 )
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(2.3)

This result states that the sum of "storage" and consumption is a constant fraction of dissipation. When 
the local time-rate-of-change term of (1.1) is neglected, (2.2a) and (2.2b) are equivalent.

If we use (2.1) and (2.2a) in (1.1), we get

(2.4a)

Inspection suggests and experiment confirms that the last term on the right-hand side of (2.4a) leads to 
exponentially growing TKE; our assumptions have thus led us to an unrealistic result. This means that, 
in a sense, (2.1) and (2.2a) are not consistent with (1.1).

(2.4b)

According to (2.4b), if P varies slowly with time, e^ will approach a quasiequilibrium value such that 
(6m)3/2 is proportional to P. In fact, the same quasiequilibrium relationship between P and e^ can be 
obtained by eliminating D between (2.1) and (2.2a). From (2.4b), it is clear that the time scale for the 
equilibration of eM with P is

(2.5)

where SzM is the geometrical depth of the PBL. Using the values of a! and a2 given above, with SzM = 
500 m and e^ = 0.5 m2 s '2, we find that is about 5 minutes. Of course, xadj increases with 
increasing PBL depth, and decreases with increasing turbulence intensity. Clearly, (2.4b) predicts a 
realistic coevolution of e^ and P that is consistent with conventional entrainment parameterizations so 
long as 9eM/9t is negligible in (1.1). In the present model, (1.1) [or (2.4b)] is used to predict the TKE, 
and (2.2b) is used as a closure condition to determine the entrainment mass flux.

Since eM is nonnegative, (2.2b) implies that the sign of E is the same as the sign of 6 - N. 
Negative values of E imply a "shallowing" of the PBL that, according to (2.2b), occurs when the

consumption rate exceeds D. The physical mechanism of shallowing and the role of shallowing in the

present model are discussed in Section 5. For now, we note that D depends only on e^ and is 
parametrically independent of E; and we assume that N is a nondecreasing function of E for E > 0, and is 
independent of E for E < 0. A justification of these assumptions concerning N(E) will be given later. The 
assumptions imply that the smallest possible value of N occurs for E = 0. Then, as indicated in Figure I,

there is always a unique solution for E, whose sign agrees with that of 6 - N (E=0).

4
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Figure 1:

(a)

(b)

Diagram illustrating the existence of a unique solution for the entrainment rate, E: a) E 
> 0; b) E < 0 .
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3. Method of solution

a) Analytical solution for cloud-free mixed layers. The preceding discussion has not made use of any 
particular definitions of P and N; it has only been assumed that N is a nondecreasing function of E. We 
now adopt "Eulerian partitioning," as discussed by Randall (1984), in order to study some particular 
solutions of the model.

For cloud-free convective well mixed layers, it is well known (e. g., Ball, 1960) that FSv(p) is 
linear. The consumption rate can be written as

(3.1)

where Asv is the "jump" in virtual dry static energy at the mixed-layer top, which is assumed to be
nonnegative^ . Substituting (3.1) into (2.2b), and rearranging, we find that E satisfies a quadratic 
equation with known coefficients:

(3.2)

(3.3)

Generally, (3.3) holds whenever N = 0 [see (3.1)]. In solving (3.2), the plus sign must be chosen for 
the discriminant. For (Fsv)s = 0, (3.2) reduces to

(3.4)

which is positive. This shows that a necessary condition for E < 0 is (Fsv)s < 0.

"* When applying the results of this Section, negative values of Asv should be replaced by zero, and it is 
assumed that Asv =0 for E < 0. Here a comment is needed concerning the assumption that the "jumps" 
vanish for E < 0. In the case of sv, for example this implies that (sv)B+ = svM for E < 0. However, we 
cannot make the analogous assumption that eB+ = eM for E < 0, since eB+ must always be equal to zero. 
Instead, we must assume that e decreases continuously to zero at the PBL top, at least for E < 0.
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Now suppose that Fsv(p) < 0 throughout the PBL. We continue to assume that Fsv(p) is linear. 
Then the consumption rate is given by

(3.5)

Use of (3.5) in (2.2b) gives an expression for the entrainment rate:

(3.6)

For (Fsv)s = 0, (3.6) agrees with (3.4). The denominator of (3.6) is positive, so the sign of E is 
determined by the sign of the numerator; E < 0 occurs for

(3.7)

According to (3.7), E < 0 is associated with or forced by a sufficiently negative surface buoyancy flux.

The required negative flux increases as the TKE increases, since 6 ~ (eM)3/2. Interestingly, the
required negative flux decreases as 5pM increases. This means that it is "easier" to cause a boundary 
layer to undergo shallowing when it is deep than when it is already shallow.

b) Cloud-topped mixed layers. The cloud-topped mixed layer has a complicated buoyancy flux profile, 
featuring abrupt changes at cloud base and just below cloud top. Negative values can occur in various 
places, depending on the entrainment rate and other factors. When presented with buoyancy flux 
profiles of such complexity, Eulerian partitioning does not provide an analytical solution for E. A unique 
solution is nevertheless guaranteed, as long as N is a nondecreasing function of E. This is the case when 
the inversion is sufficiently strong. The solution can be obtained by a straightforward iterative 
method. Further details are given by Randall (1984) and references therein.

4. Tests w ith a one-dim ensional model

To illustrate the behavior of the prognostic model [which keeps the time derivative in (1.1)] 
and to show how it differs from the more conventional diagnostic model [which neglects the time 
derivative in (1.1)], we consider the "standard" Wangara Day 33 case that has been studied by so many 
authors. The surface-flux parameterization used is based on that of Deardorff (1972). The time- 
differencing methods are described in Appendix A. The time-step used is 100 s. Lower limits of 0.2 
m2s‘2 and 1 mb are imposed on the TKE and PBL depth, respectively, unless otherwise specified.

The surface temperature and evapotranspiration are predicted using the Simple Biosphere (SiB) 
model of Sellers et al. (1986), modified slightly to use the "force-restore" method (Bhumralkar, 
1975). The data of Clarke et al. (1971) are used to prescribe, as functions of time, the sounding of the 
free atmosphere, the geostrophic wind, and the net surface radiation. The starting time for the
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Fig. 2 shows the simulated time-evolution of the PBL depth; TKE; screen temperature at 1.3 m 
above the surface; inversion strength; soil heat flux; and the adjustment time scale defined by (2.5). 
Also shown for comparison are the corresponding results with the diagnostic model described by 
Randall (1979), as well as available observations. The two models give generally similar results, as 
would be expected. The prognostic model predicts a more rapid morning deepening, a greater afternoon 
depth, slightly later shallowing, and a greater nocturnal depth. The TKE reaches larger values during 
the day in the prognostic model; the imposed minimum also ensures larger values at night. The 
nocturnal screen temperatures are considerably warmer in the prognostic model. The afternoon 
inversion strength is greater, reflecting the deeper penetrations of the PBL into the stratified free 
atmosphere, but the nocturnal inversion is weaker, since the PBL is warmer. The nocturnal soil heat 
flux is more strongly negative in the prognostic model. Both models produce afternoon adjustment time 
scales on the order of 1/3 hour, decreasing rapidly at sunset to values on the order of a minute. The 
predicted afternoon adjustment times are on the order of the lifetime of a large thermal.

Fig. 3 shows the ratio of we (the entrainment velocity) to w- (the convective velocity scale), 
as simulated by the prognostic model. During rapid deepening, when the inversion has been wiped out 
by surface warming and the PBL is entraining into an isentropic layer, this ratio approaches 0.2, as in 
the large-eddy simulation of Deardorff (1974). Fig. 4 shows the relative magnitudes of the local time- 
rate of change of e^ and the conventional storage term. During rapid deepening and shallowing, both 
expressions are of order 1, confirming the analysis presented earlier.

After sunset, the TKE remains constant at its prescribed minimum value of 0.2 m2s-2, while the

PBL depth remains nearly constant at about 90 m. This is the depth for which N and D balance in (2.2b),

where 6 is determined by the prescribed minimum TKE. The effect of using a larger minimum TKE is like 
that of turning on fans in an orchard at night: stirring is produced through a deeper layer, the surface 
is warmed, and sensible heat is transported downward.

Considering its extreme simplicity, the prognostic bulk model reproduces the observed 
evolution of the boundary layer remarkably well.

simulations is 0900 local time (LT). The initial conditions are given in Table 1. The SiB input
parameters for the Wangara site are given in Tables 2 and 3.

5. Comments on shallowing

The concept of shallowing is closely identified with the "evening transition" that 
characteristically occurs as part of the diurnal cycle of the PBL over land, although rapid decreases in 
PBL depth may also occur (at any time of day) in conjunction with weather events such as warm- 
frontal passages. Observations of the evening transition are discussed by Mahrt (1981). Shallowing 
also occurs in the upper ocean; in fact, shallowing was first modeled as a continuous rapid decrease of 
the mixed layer. The effects are similar: a deep turbulent layer is replaced, over a short period of 
time, by a shallower turbulent layer. The deep well mixed layer is typically observed to persist long 
after the turbulence that produced it has decayed.

Bulk models of the PBL are capable of simulating some of the observed features of both deep 
convective mixed layers and shallow shear-driven nocturnal PBLs. It seems unlikely, however, that 
they can also simulate the actual mechanisms of the shallowing transitions between these PBL types. A 
premise of all bulk models is that the PBL is well defined and, in particular, that it has a well-defined 
top. This may not be true during shallowing. Some observations indicate that, as the evening transition 
begins, turbulence is extinguished most rapidly near the surface, leaving a detached and decaying 
turbulent layer above. At this point, does a turbulent PBL really exist, and if so where is its top?
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Table  1: Initial conditions for the Wangara simulation.

18 mb 
277.6 K 
3.7 g kg-1 
7 m s-1 
0.3 m s-1 
0.2 m2 s-2 
286 K 
286 K 
276 K 
0.1 
0.1 
0.1 
0 

0

g



Table 2: SiB input parameters for the Wangara site, obtained from the following sources:
variables marked with * were obtained from the data set described by Willmott and 
Klink (1986), as modified by Dorman and Sellers (personal communication): variables 
marked with + were estimated from the photographs and descriptions of the site as 
published by Clarke et al. (1971).

Parameters Units Numerical Value Remarks

PLANT MORPHOLOGY

Height of canopy top m 0.4 +
Ground roughness length m 0.005 +
Leaf area index 1.0 \  +
Leaf angle distribution 0.1 #

factor
Leaf drag coefficient 0.106 *, +
Leaf shelter factor 4.0 * , +
Upper storey cover 0.3 +

fraction
Root density m m-3 3600. *
Root depth m 0.5 *
Root cross section m 2 4x107 •
Root resistance s n r1 4x1012 •

Stem resistances 2.5x10s *
Leaf reflectance 0.28,0.48 *

(VIS, NIR)
Leaf transmission 0.018,0.068 «

(VIS, NIR)
Live leaf fraction 0.20 *

SOIL

Soil moisture potential m -0.167 *
at saturation

Soil moisture potential 4.80 *
parameter

Soil sat. condition. m s"1 7.65x1 O'5 *
Porosity 0.435 *
Soil moisture store m 0.02, 0.48, 0.50

depths
Soil reflectance 0.25, 0.30 +

(visible, near infrared)



Table 3: Derived aerodynamic parameters for the Wangara site, calculated using a modification
of the methodology described in the Appendix of Sellers et at. (1986).

Roughness length zo 0.022 m

Zero plane displacement do- 177 m

Canopy transfer coefficient Ci 81.97 s m

Soil to canopy transfer coefficient C2 80.50
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Figure 2: Results for Wangara Day 33: a) PBL depth; b) TKE; c) screen temperature; d)
inversion strength; e) soil heat flux; f) adjustment time scale for the TKE. Solid and 
dashed lines show simulations with the prognostic and diagnostic models, respectively; 
dotted lines show the observations of Clarke et al. (1971), where available, except 
that for the PBL depth the dotted line shows results from the large-eddy simulation of
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After the shallowing event has ended, a shallow, shear-driven turbulent layer grows upward from the 
surface, and the residual upper-level turbulence is quenched.

For large-scale modeling, the actual mechanisms of a shallowing event are not important; the 
event is brief, and it occurs at a time when the turbulent fluxes are weak anyway. The most important 
consequence of shallowing, from a large-scale point of view, is that air which has been inside the PBL 
and subject to strong turbulent coupling with the boundary is released by shallowing into the 
nonturbulent free atmosphere. The daily cycle of deepening and shallowing "captures" free atmospheric 
air, charges it with surface-like properties, and then releases it. A large-scale model must simulate 
this process. In addition, the shallowing must occur at the right time and place, and must provide 
suitable "initial conditions" for the nocturnal PBL. The Wangara simulation presented in Section 4 
provides evidence that the bulk model can meet these requirements.

6. Tests with the CSU general circulation model

As described by Suarez eta/. (1983), the UCLA GCM contains a PBL parameterization with a 
prognostic PBL depth whose time rate of change is determined, in part, through an entrainment 
parameterization. A parameterization of PBL stratus clouds and an explicit coupling of the PBL and 
cumulus parameterizations are important features of the model. Baseline results and sensitivity tests 
were presented by Randall et al. (1985). A modified version of the model, now called the CSU GCM, is 
being used in climate studies at Colorado State University. The most important difference between the 
UCLA GCM and the CSU GCM is that the latter uses the terrestrial and solar radiation parameterizations 
described by Harshvardhan et al. (1987).

A prognostic TKE and the entrainment parameterization described in Section 2 have been tested 
in the GCM. The simple interactive biosphere model (SiB) used in the offline tests discussed in Section 
5 was not used in the GCM run; tests of SiB in the GCM are currently under way and will be reported 
elsewhere. The initial conditions used were for 1 June (taken from an earlier long run with a different 
version of the model). Generally, the GCM's performance is similar with and without the prognostic 
TKE. The PBL variables are slightly smoother, and the entrainment calculation executes faster. A few 
results are presented here to illustrate the model's behavior.

The PBL deepens, on the average, over both land and ocean; the globally averaged PBL depth 
increases by about 70 meters. Recall that we also obtained a greater depth in the Wangara simulation. 
The mean potential temperature of the PBL rises, while the mean mixing ratio decreases and the mean 
wind speed increases. Each of these changes is small; each is consistent with slightly more vigorous 
entrainment of air from the warm, dry, and windy free atmosphere.

The surface sensible heat flux increases by 10 W rrr2 over land, but it decreases by 4 W n r2
over the oceans; the global mean hardly changes. The surface latent heat flux increases by 4 W rrr2
globally. The net surface energy flux, due to both turbulence and radiation, increases slightly, mainly 
over land. The surface energy budget has, overall, been noticeably perturbed by the introduction of the 
prognostic TKE. Unfortunately, the available observations are not reliable enough to show whether this 
perturbation amounts to an improvement in the model results.

In concert with the increased surface evaporation mentioned above, the precipitable water 
content of the global atmosphere increases by 1.5 mm, and the precipitation rate also increases, mainly 
over the tropical oceans.

These results should be regarded with caution, because they are based on a single monthly 
mean. Nevertheless, they illustrate two things. First, the prognostic TKE is behaving itself in the
GCM. Second, the energy budget and hydrologic cycle of the global model are quite sensitive to the
details of the boundary layer parameterization, which therefore should be formulated very carefully.



7. Sum m ary and conclusions

We have presented a bulk boundary-layer model with a prognostic TKE; this can be described as 
a very poor man's second-order closure model. Development of the model was motivated by an 
analysis which suggests that the time-rate-of-change term of the vertically integrated TKE equation 
becomes significant during rapid deepening and shallowing. Our numerical results confirm this point, 
yet they also show that the overall behavior of the prognostic model differs only slightly from that of 
the diagnostic model. The prognostic TKE allows slightly more accurate simulation of rapid changes in 
the PBL depth; perhaps of more practical significance is the fact that it simplifies solution for the 
entrainment rate. In addition, it opens the door to further generalizations of the PBL parameterization, 
such as including the effects of small-scale fractional cloudiness.
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APPENDIX A

T im e -D if fe re n c in g  S chem e

An implicit time-differencing scheme is needed to avoid computational instability with long time 
steps. A suitable scheme can be based on (2.4b), which is repeated here for convenience:

(A. 1 )

The gross production rate, P, depends on the entrainment rate and, therefore, on the TKE, since the 
entrainment closure assumption involves the TKE. Experience has shown that this dependence of P on 
eM must be taken into account in order to obtain a sufficiently stable time-differencing scheme.

Let P0 be the value of P obtained if E = 0; clearly, P0 is independent of eM, because it is 
independent of the entrainment rate. We enforce

(A.2)

A simple backward-implicit-differencing scheme can be applied to (A.3), giving

(A.4)

Here superscripts n and n+1 denote succeeding discrete times. This scheme has proven to be very 
stable, provided of course that (A.2) is satisfied.

This is equivalent to limiting the shear-production of TKE that occurs as a result of entrainment. We 
can write (A.1) as

(A.3)
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