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ABSTRACT

The problem of the adjustment of the mass and wind fields in a
divergent barotropic model is solved on the equatorial B-plane.
Contrary to the traditional f-plane analysis, the motion does not
tend to a perfect geostrophic balance on a short time scale. However,
the B-plane approximation allows for the presence of Rossby waves and
since these waves are quasi-geostrophic, they may be regarded as the
adjusted state. It is also shown that the concept of an adjusted
state on the B-plane is dependent on the dispersive properties and
energetics of Rossby and gravity waves.

Two basic experiments are shown: the first is a perturbation in
the geopotential field, and the second is a perturbation in the
rotational part of the wind field. When perturbing the mass field
on a small scale compared to the equatorial Rossby radius of deforma-
tion, most of the initial energy is dispersed by gravity waves; but
altering the vorticity field is a very efficient way to localize the
energy input. The adjusted state shows asymmetries that cannot be
obtained on an f-plane analysis. The circulation patterns produced
by steady mass and momentum sources and sinks are also shown. Pos-
sible cbnsequences of the results for tropical dynamics are discussed

in terms of the effect of clouds on the environment.
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1.0 INTRODUCTION

The nature of tropical motion has excited the imagination of
researchers for a long time not only because of its presumed importance
for mid-latitude phenomena but also for the challenge of understanding
the unique role of latent heat release in driving large-scale circula-
tions. A considerable amount of effort has been devoted to the develop-
ment of theories on how small-scale convective motions interact with
large-scale motions. However, when one examines the Tliterature, only
a few references to the problem of the adjustment of the mass and wind
fields at low latitudes can be found. The objective of this research
is to study the dynamical adjustment of the mass and wind fields at
low latitudes. This is a relatively simple problem that can be studied
without having to resort to complicated scale interactions. When one
studies the problem of the adjustment of the mass and wind fields, the
large-scale dynamics of the atmosphere are isolated and possible
effects of small-scale convection are taken as a known forcing. Thus,
this research may be regarded as a study of the basic dynamics of the
tropical region.

The process of the adjustment of the mass and wind fields is
closely related to the problem of energy dispersion in the atmosphere.
This theory was developed by Rossby (1945) and Yeh (1949) but with the
advent of the baroclinic instability theory by Charney (1947), which
consists of energy conversion rather than propagation, the theory
lacked further development. Only recently has the problem of energy

dispersion been revisited by Hoskins, et al. (1977), who studied the



linear barotropic vorticity equation on the sphere. 1In the following
sections, we briefly discuss the current theories of tropical motions
from an energetics point of view and discuss the reasons why we believe

that the process of adjustment might be important.

1.1 Energetics of Tropical Motion

The current theories of tropical motions can be easily understood
in terms of energy generation and conversion. Some researchers (Nitta
and Yanai, 1969; Burpee, 1972) have suggested that the kinetic energy
of wave disturbances in the trades is supplied through barotropic
instability, which involves a conversion of zonal kinetic energy (ZKE)
to eddy kinetic energy (EKE). Another possible source of EKE has to
do with boundary terms through the divergence of wave energy flux.
This possibility was suggested by Mak (1969) who showed that in a two-
layer model large-scale tropical waves can be forced laterally by pres-
sure interaction with middle Tlatitude disturbances. The next possible
mechanism for increase of EKE is the conversion from eddy available
potential energy (EAPE). With the advance of numerical models incor-
porating moist convection it was suggested that eddy available potential
energy in the tropics is maintained chiefly by the release of latent
heat and is converted to eddy kinetic energy (Manabe and Samagorinsky,
1967).

Observational studies of the energetics of the tropics have given
a somewhat inconsistent picture concerning the maintenance of easterly
waves. In the classical baroclinic and barotropic instability processes
in middle Tlatitudes it is clear that the basic state flow must give up

potential or kinetic energy to the perturbation. However, Nitta (1972)



showed that the generation of EAPE over the Marshall Islands due to
condensational heating and the conversion from EAPE to EKE plays the
most important role in the energy balance of the disturbances. Reed
et al. (1977) and Norquist et al. (1977) found that baroclinic and
barotropic conversions contributed almost equally to the maintenance
of the kinetic energy of the African waves.

Theoretical studies (Rennick, 1976; Pedgley and Krishnamurti,
1976; Simmons, 1977) indicate that the wavelength of the African dis-
turbances can be explained by barotropic instability of the basic flow
because the barotropic conversion term is about one order of magnitude
larger than the baroclinic conversion term. However, other character-
istics of the model results, such as horizontal and vertical structure
and growth rates, are not as well reproduced and cne could argue that
the effect of latent heat is not properly handled.

Thus, it seems that the mechanisms responsible for the maintenance
of tropical waves are dependent on the basic state on which the distur-
bances are superimposed. The dynamics of tropical waves in the Pacific
region seem to be related to internal energy conversions in which the
so-called CISK mechanism (Conditional Instability of the Second Kind)
is the primary cause. The CISK mechanism proposed by Charney and
Eliassen (1964) and Ooyama (1964) involves an internal convective feed-
back which enhances the vertical motion.

The energy equations imply a continuous generation, conversion,
and dissipation of energy, but nothing is implied with respect to the

scale of the atmospheric response to forcing.



1.2 Scale and Organization

An interesting example of the problem of scale and organization
of tropical motions is the CISK mechanism. The concept of CISK as
initially visualized by Ooyama (1964) and Charney and Eliassen (19564)
involved a cooperative behavior between the small-scale latent heat
release and the large-scale dynamical field in such a way that the
condensational heating drives the low level convergence (tﬁrough
boundary layer processes) which in turn supplies moisture to the
clouds. In the wave-CISK hypothesis (Yamasaki, 1969; Lindzen, 1974;
Stevens et al., 1977; and many others) the convergence is produced by
the wave dynamics. It has been suggested by Gray and Jacobson (1977)
and McBride and Gray (1979) that the cluster-scale feedback through
latent heat release and radiative gradients is a powerful forcing
mechanism which ultimately controls the disturbance.

The critical point in the development of the tropical depression
through the CISK mechanism is the need to lower the surface pressure
by the heating of a hydrostatic atmospheric column. Increasing the
intensity of the Tow pressure requires small dispersion ¢f the heating
perturbation. In other words, if a heating perturbation at the center
of the depression is quickly wiped away, and the associated energy
dispersed to a large area, the intensification of the system will be
hindered. Thus, we are interested in the processes which occur after
a heating perturbation, not only in terms of the ability of the atmo-
sphere to retain the initial signal, but also the type of circulation
generated by such forcing.

Observational studies of the tropical region have indicated that

the local warming is approximately zero although the implied heating
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by the release of latent heat in the column (inferred from precipita-
tion reaching the surface) is on the order of several degrees per day
(Reed and Recker, 1971; Gray, 1973; Yanai et al., 1973). Thus, there
is observational evidence that the dispersion of thermal energy (or
equivalently the dispersion of the geopotential perturbation) is
important in the real atmosphere.

In the momentum field we know that dissipation acts on a longer
time scale (on the order of several days) but there is considerable
evidence from cloud modelling that kinetic energy may be generated
by clouds under appropriate conditions of wind shear (Moncrieff and
Miller, 1976; Moncrieff, 1978). A recent observational study on
tropical cyclone formation (McBride, 1979) suggests that the cloud
influence on cyclone genesis is not only through the latent heat
release but also through the generation of momentum by clouds, a
process that ultimately inhibits the energy dispersion as we will
see later.

Thus, it seems that one of the basic questions that we have to
answer in order to grasp the dynamics of tropical motions concerns the
ability of the atmosphere to adjust to imbalances between pressure
and wind.

In any of the mentioned theories of tropical motions (boundary
effects, conversion Qf ZKE to EKE, or generation of EAPE and conversion
of EAPE to EKE) an adjustment of the mass and wind fields is implied.
However, the nature of the resulting motion such as its scale and
organization are not explained by the energy transformation equations.
The growth of a tropical depression through the CISK mechanism is an

example of the importance of the organization of the mass and wind fields.



The task of explaining the nature and scale of motions generated
by such imbalances in the pressure and wind fields in a generally
stratified atmosphere is certainly difficult. However, in certain
simplified physical systems the process of dynamical adjustment of the
oressure and wind fields has been studied with success. An example is
the so-called geostrophic adjustment problem first discussed by

Rossby (1938) and Obukhov (1949).

1.3 The mass-wind adjustment problem

In general, the geostrophic adjustment problem has been studied
with the so-called shallow water equations on an f-plane since this
is the simplest context in which the problem arises. Rossby's work
(1938) considers only the relationship between the initial unbalanced
state and the final geostrophically balanced state. The linear tran-
sient adjustment was studied for the one dimensional case by Cahn
(1945) and for the two dimensional case by Obukhov (1949). The effect
of horizontal shear of the basic flow (Blumen and Washington, 1969)
and the effect of non-linear terms (Blumen, 1967) have also been
considered. Blumen (1972) has extensively reviewed studies of the
geostrophic adjustment problem.

For the type of mass-wind adjustment that occurs in the equatorial
region the traditional f-plane analysis seems inappropriate in view
of the small Coriolis parameter. On the other hand, the B-effect is
maximum at the equator suggesting that its inclusion in the problem of
equatorial mass-wind adjustment might be important. In fact, the

g-effect has been considered in the traditional geostrophic



adjustment problem by Matsumoto (1960), Dobrischman (1964), Geisler
and Dickinson (1972) and others, but none of these works treat the
equatorial case explicitly.

A variable Coriolis parameter introduces a turning point into
the differential equation for single frequency waves (Longuet-Higgins,
1965). As a consequence the wave character of the solution is con-
fined to a certain domain determined by the turning points; outside
this domain the solution is exponentially decaying. As shown by
Longuet-Higgins (1965) there are in general two turning latitudes
when spherical geometry is considered. The usual mid-latitude B-
plane approximation (Lindzen, 1967) implies no turning points, i.e.,
the solution is wave-like over the whole domain and therefore energy
is allowed to disperse to infinity as in Matsumoto's and Dobrischman's
work. On the equatorial B-piane there are two turning latitudes
located symmetrically with respect to the Equator and therefore the
energy is trapped (Matsuno, 1966; Bretherton, 1964). Since the
energy is trapped, we do nét expect a steady geostrophic current to
be established on the equatorial B-plane because the energy in
ageostrophic motion (or gravity waves) is not allowed to disperse to
infinity. Geisler and Dickinson (1972) use a linear approximation
for fz and only one turning point is situated north of the reference
latitude. Thus, there can be dispersion of gravity waves towards
the south.

It should be remarked at this point that the introduction of the
B-plane approximation into the shallow water equations implies that
the steady geostrophic solution must be zonally directed (Dobrischman

1964; Blumen, 1972). The more accurate solution on a rotating sphere



also gives the same result for steady geostrophic flow. However, the
B-plane approximation allows for the presence of Rossby waves and
since these waves are quasi-geostrophic, they may be regarded as

the adjusted state (Matsumoto, 1960).

Thus, our main concern will be to study the characteristics of
the motion that is left after the energy in ageostrophic motion
(gravity waves) is dispersed.

The use of the shallow water equations to study the mass-wind
adjustment problem is not overly restrictive because the governing
equations for a stratified fluid, linearized about a basic state at
rest, can be separated into horizontal structure equations and a
vertical structure equation; the horizontal structure equations are
the shallow water equations and the separation constant H is the
depth of the homogeneous ocean (Taylor, 1936; Eckart, 1960).

A considerable amount of work has been done in oceanography on
the response of the tropical ocean to atmospheric forcing. (Yoshida,
1959; Lighthill, 1969; Moore and Philander, 1976; Anderson and
Rowlands, 1976; Cane and Sarachick, 1976). The emphasis is however,
on the effect of wind stress in generating ocean currents and although
the equations and method of solution are akin to our problem the

objectives are different.

1.4 Qutline
In this study we shall solve an initial value problem governed
by the linearized shallow water equaticns on an equatorial 8-plane

(Matsuno, 1966; Lindzen, 1967). The basic state is assumed to be at



WO

rest although some considerations on how the inclusion of & horizon-
tally sheared basic state might modify the results are discussed in
Chapter 7. The normal mode technique is employed to solve the initial
value problem since the free wave solutions of the governing equations
form a complete set (Matsunoc, 1966).

In Chapter 2, we review the governing equations and discuss the
method of solution including a generalization to the three dimensional
case (stratified atmosphere).

The equatorial B-plane is known to be a valid approximation for
internal modes having small H (the so-called equivalent depth). For
the external mode of an isothermal atmosphere, H is approximately
10 km (Lindzen, 1967) and the inclusion of the full effects of the
geometry of the earth are necessary. In Chapter 2, we also show that
the Tinearized initial value problem on the sphere is a simple gen-
eralization of the equatorial B-plane solution. The generalization
is accomplished by replacing the 3-plane free wave solutions with
the spherical free wave solutions, which are called Hough functions
(Kasahara, 1976). In Chapter 3, we discuss the process of dispersion
of energy on the equatorial B-plane and on the sphere (for the exter-
nal mode) under the assumption of zonal periodicity.

The initial value problem with an initial condition in the geo-
potential field and no wind is discussed in Chapter 4. The opposite
case, i.e. no geopotential perturbation but wind perturbation initially
is treated in Chapter 5. The initial value problems discussed 1in
Chapter 4 and 5 can also be interpreted as an impulsive forcing in

the geopotential and momentum fields respectively. In Chapter 6 the
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adjustment of the mass and wind fields in the presence of a steady
‘mass sink/source is studied.

It turns out that the internal mode of a two level baroclinic
model with typical parameters of the tropical atmosphere can be
well represented by the equatorial B-plane shallow water eguations
{Chapter 2) provided we interpret the geopdtentia] as thickness (or
temperature) and the momentum field as the wind shear between the
upper and lower Tlevels.

Finally, in Chapter 7, we analyze the results of Chapters 4, 5,
and 6 in a unified way, discuss the implications of this work, and

suggest future research in this area.



2.0 GOVERNING EQUATIONS

In this chapter we discuss the solution of the linearized primitive
equations on the equatorial B-plane for a basic state of no motion.
These equations are separable inte horizontally and vertically
dependent parts (section 2.1) . The vertical structure is dis-
cussed in section 2.2 and the horizontal structure which is given by
the so-called shallow water equations is treated in section 2.3. The
free wave solutions so constructed form a complete and orthogonal set.
Therefore, an initial condition can be represented by a superposition
of such free waves and the solution for the initial value problem can
be easily obtained as shown in section 2.4. The inclusion of Rayleigh
damping terms and thermal forcing can also be easily accomplished as
shown in section 2.4.

The generalization of.the solution of the initial value problem
to the sphere can be done using Hough functions computed by the method

of Kasahara (1976). In section 2.5, we show how this can be done.

2.1 Perturbation Equations
The perturbation equations on an equatorial B-plane for a basic

state of no motion are

u 00 _
o Byv+ = 0, (2.1.a)
v a0 _
5 T Byurgr =0, (2.1.b)
ou 4 VoL W g (2.1.c)

X oy ap



12

2 (-%y_.Fu=0, (2.1.d)

where (u,v) are the eastward and northward velocity components and

1)=g%— is the vertical velocity in the p-coordinate; ¢ is the geopoten-

tial, f is the Coriolis parameter (f=2Qsin¥) where ¥ is the lati-
o 96

tude, and o= (- = 3p ) is the static stability parameter of the basic
5 _

\/

state atmosphere. For a statically stable atmosphere ¢ is'a positive
parameter.
Equations (2.1.c) and (2.1.d) can be combined to eliminate w

resulting in
3 [_i (_l_ﬁﬂ)]+ velWW=0 (2.2)
o

where W= (u,v). Equations (2.1.a), (2.1.b) and (2.2) constitute a
system of three equations for the three unknowns u, v and ¢ . The

next step to solve (2.1.a), (2.1.b) and (2.2) is to assume

2 (L. _ 1 ,
(F8) -7 (2.3)

where c"2 is a constant of proportionality. Equation (2.3) is formally
equivalent to assuming that the solution of (2.1) is separable into
horizontal and vertical dependent equations as is usually done (e.g.
Lindzen, 1967). Given suitable vertical boundary conditions, the
constant c2 can be defermined as an eigenvalue of (2.3). The constant
¢ has the dimension of speed and therefore we can write c2==gH where

H has dimension of height. Equations (2.1.a), (2.1.b) and (2.2) reduce

to a system of equations independent of pressure, namely



du _ 9

v 3 .

S BYV g =0, (2.4.b)

Bsgivw =0, (2.4.c)
- :

for each eigenvalue H of (2.3).

The system (2.4) is the so-called divergent barotropic model, i.e.
the governing equations for a layer of incompressible and homogeneous
fluid with a free surface in hydrostatic balance. Egquations (2.4) are
also known as the shallow water equations. The coefficient H in
(2.4.c) is known as the equivalent depth after Taylor (1936). For the
sake of completeness, we discuss the free wave solutions of (2.4) in
section 2.3; these solutions were originally discussed by Matsuno
(1966).

Alternatively, (2.4) can be interpreted as the system of equations
governing a two level baroclinic model in p-coordinate, as shown by
Matsuno (1966). Let us first divide the atmosphere into two discrete
layers as shown in Figure 2.1. The u and v components of the wind
and the geopotential are defined at the odd levels; the vertical p-
velocity w is defined at the even leveis. The boundary conditions are

Wy = Wy =0 . The linearized governing equations about a basic state at

rest are
au] 3¢1
—a_t—_B‘y V_I+_§_>_(_ = i R (25&)
8u3 8¢3

_a.t_ _By V3 + _.é-x—- = O 5 (2.5-b)
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Figure 2.1 Vertical stagaerina of variables in a
two-Tevel baroclinic model.
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CV-I a'{b*l
Tﬂ;'+.3YLH + 7%7“ 0, (2.5.c)
v il
3 3 _
3{+6vu3+-—§y——0, (2.5.d)
u v w
-l L -,...l _.2._:
s =t 5 0, (2.5.e)
au v W
3 ,_-3_2.
£ i %~ &p 0, (2eBuf)
B () 5,000, (2.5.9)
AP i

where 3, = (- —%‘—;—S— ), . Subtracting (2.5.b) and (2.5.d) from (2.5.a)

and (2.5.c) respectively and defining

Uy = Uy - Uz, (2.6)
Vg = Vy o V3 (2.7)
¢d = ¢] - ¢3 s (2 8)
we get
ou ¢
d d _
.ﬁ_gyvd+_§;-_0 s (2.9.a)
v 3
d d _
—B—E--+Byud+‘-a—y'—o . (2-9b)

The objective now is to reduce (2.5.e), (2.5.f) and (2.5.g9) to
one single equation in Ugs Vg and ¢d similar to (2.4.c). This can be
achieved by subtracting (2.5.e) from (2.5.f) and substituting the

result in the thermodynamic equation (2.5.9). The final equation is



where “hj= (ud, vd}. Comparing (2.9) with (2.4) we see that the equiv-
alence is perfect provided we interpret u and v in (2.4) as the wind
shear and ¢ as the thickness (or temperature). The speed of pure

gravity waves on the fluid of depth H in (2.4) is now

c=+vgH = Ap J_g , (2.10)

and represents the phase speed of an internal gravity wave in the two
level baroclinic model.

Although the main concern of this research is the horizontal
structure of (2.1) for a specified vertical mode H, it is useful to
consider some particular solutions of (2.3). This is the objective

of the next section.

2.2 Vertical structure
Let us first consider the solution of (2.3) under the boundary
conditions

w=0 at p=0 and p=p (2.11)

o °

The boundary conditions (2.11) can be easily seen to be equivalent to

9 - 0 at p=0 andp=p

5 {2.12)

o0
If we further assume that the static stability is constant with pres-

sure the solutions of (2.3) are given by

b5 = A; cosy/ 1 (2.13)
J



where the Aj are arbitrary constants and the eigenvalues Cj are such

that

Es & =5 3 =B F 15 e . (2.14)

The horizontal divergence has this same vertical structure according
to (2.4.c) since we can also assume a separable solution in time. The:
J =0 mode has constant divergence with height and corresponds to the
barotropic non-divergent mode because of the boundary conditions (2.11).
The equivalent depth of the j=0 mode is infinity according to (2.14)
since gHj = czj .

The j=1 mode has one level of zero divergence at p =500 mb while
the j=2 mode has two and so on. The barotropic divergent mode (or
the so-called external mode) has been eliminated from this analysis

because of the boundary condition (2.11). Had we assumed gw==§%*=0

as the boundary condition, (2.12) at P=p, would be replaced by

_ag P = =
5t TO 0.0 0 at p P, (2.15)

where Pq is the air density at p= po. The usual approximation of
applying the lower boundary condition at a pressure surface p= Py =
const. has been applied in (2.15). In this case the functional form
of the vertical structure of ¢ is still given by (2.13) but the eigen-

values cj are defined by the transcendental equation

p
= b B (2.16)
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Table 2.1 contains a summary of the results for the first five values
of the eigenvalue Cj with the boundary condition (2.11) at p=0 and

with (2.15) applied at the lower boundary p= Py - The numerical values

- Ed 2 «
of po, o and o, are respectively 1000 mb, 1.6 x 10“m%s“kg : and 1.2

kgm™ . It is clearly seen that the effect of having w=0 at p=p

0
is simply to eliminate the barotropic divergent solutions of (2.1)

while the internal modes are practically unchanged.

; c(ms-])

| w=0 at w=0at p=0

| J p=0 and p=p w=0at p=p ‘
i O O |
o

0 w 322.5

1 40.5 39.9

2 20.2 20.2

| 3 13.5 13.5 |

|4 10.1 10.1

Table 2.1. Eigenvalues ¢ of (2.16) with w=0 at
p=0 and p=p0 and with w=0 at p=0

and w=0 at p=p_. The value of o is

1.6 x 10" %n%s%kg~2 .

The results obtained above are dependent on the assumption of
constant static stability o with pressure. Jacobs and Wiin-Nielsen
(1966) have shown that (2.3) with the boundary conditions (2.11) can
be solved in terms of Bessel functions if o is evaluated for a basic
state characierized by constant lapse rate. Wiin-Nielsen (1971
generalized their solution to the more realistic lower boundary condi-
tion (2.15). In both cases the spectrum is discrete. For an iso-
thermal basic state the spectrum consists of a discrete part given

by the barotropic mode and a continuous part. However, for the
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purposes of this research the assumption of constant o is sufficient
and therefore there is no need to enter into the details of the more
realistic basic state discussed by Wiin-Nielsen (1971).

Our main concern for this research is that (2.3) with the boundary
condition (2.11) or (2.15) at P=Pp, form a Sturm-Liouville type bound-
ary value problem (Morse and Feshback, 1953). Thus, the corresponding

solutions ¢j are orthogonal in the sense that

pO
0[ 65 05 dp = 8 5 (2.17)

(where 61 i is the Kronecher delta function) and form a complete set

bl

in the interval [o, po]. Consequently, any function of p can be rep-

resented by a series of eigenfunctions ¢j in the interval [o, pd] as
6(p) =20 a5 45 (p) » (2.18)
j=0
where G(p) is the arbitrary function of p and

pO
a; = [ Se)os(p)dp - (2.19)
o _

In (2.18) we have assumed that the Qj are normalized such that

v B
f 95 (P)dp = 1. (2.20)
0
As a consequence of the completeness and orthonormality of ¢j , any
initial condition which is separable in vertical and horizontal struc-

ture can be projected onto the vertical modes given by (2.13) with cj
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given either by (2.14) or (2.16). We now proceed to solve (2.4},

\
which gives the horizontal structure of any sclution of (2.1). ' 1
\

2.3 Horizontal structure w
The horizontal structure of the solution of (2.1) is given by the |
shallow water equations (2.4). These equations on the equatorial 8-
plane were first successfully solved by Matsuno (1966). His method of
solution is employed in this section and an extention to tﬁe zonally
symmetric case is performed in section 2.3.3.
It is convenient to transform the shallow water equations (2.4)

to non-dimensional form. The natural scaling for system (2.4) is
[l = (£9%, [¥] = [=)® (2.21)
B 9 CB 3 LA /

where ¢ is an eigenvalue of (2.3) corresponding to the wave speed of
pure gravity waves on a fluid of depth H (c=/gH ). The length scale |
[L] can be interpreted as the usual Rossby radius of deformation

A=% evaluated at latitude [L] i.e.,

—hH|O

(L] = 0L = #0072y (2.22)

and [T] is the inverse of the Coriolis parameter at the latitude [L]
(Cane and Sarachik, 1976). Figure 2.2 shows the number of non-dimen-
sional time units per day (left scale) or the time scale [T] (right
scale) in days as a function of the eigenvalue c=vgH. The number of
non-dimensional length units per 1000 km as a function of ¢ is dis-
played in Figure 2.3 (left scale). The length scale [L] is shown on

the right scale of Figure 2.2.
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Figure 2.2 Number of non-dimensional time units per day
(1eft scale) or time scale [T] in days (right
scale) as a function of c=/gH .
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Taking gH as the scaling for ¢ in (2.4), the non-dimensional forms

of the shallow water equations become

W _yy+-g, (2.23.a)
ot 3x
A _yeerlag, (2.23.b)
ot ay
_23;()+3_U+§_\/_= 0, (2.23.C)
ot X Ay

where the symbol (") refers to non-dimensional quantities. After

dropping the symbol (~) for simplicity, we write (2.23) in vector form

as
%+ 0g =0, (2.24)
where
u(x,y,t)
E(x,y,t) = | vix,y,t) 3 (2.25)
o(x,y,t)

and the Tinear operator Q is defined by

3
0 y Tc)—X—
q = B (2.26)
oy ’ )
p) p)
- 3% By 0

We shall first assume that £(x,y,t) is cyclic in the zonal direc-

tion with zonal period Lx‘ Thus, £(x,y,t) can be represented as a

series in the zonal direction as
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£ (x,y,t) =2, £ (¥st) ol B8 , (2.27)
k
where k is confined to multiple values of fﬂ— since we have imposed
%
zonal periodicity of length LX,i,e.,
k=2§"'”" , m=0, £1, £, ... . (2.28)
“X
The boundary condition in the meridional direction 1is
E (¥st) »0 as yorie (2.29)
compatible with the infinite equatorial B-plane.
'i(.:) t
We now seek solutions of (2.24) proportional to e , where the

w are the eigenfrequencies associated with the zonal wavenumber k.

The system of equations to be solved takes the form

1mkuk -y, t ik¢k =0, (2.30.a)
. oy
fw vy + yu + e 0 s (2.30.b)
dvk
fw gy + 1kuk % T =0, (2.30.c)
or in vector form
iwkik + ngk =0, (2.31)

where Qk is defined as in (2.26) except that g%—+ ik .  Solving (2.31)
subject to the boundary condition (2.29) poses an eigenvalue problem
which can be easily solved as shown in section 2.3.1. The eigenfunc-
tions of (2.31) form a complete and orthogonal set (Matsuno, 196C; Cane
and Sarachik, 1976) and therefore, any mathematically "well behaved"

initial condition &(x,y,0) can be represented by a series of the



eigenfunctions. For the objectives of this research, it is sufficient
to consider a square integrable function in the interval (-« ,+«) as
a "well behaved" function.

In section 2.4, we use the completeness and orthogonality of the
eigenfunctions of the linearized shallow water equations about a basic

state at rest to formulate the initial value problem.

2.3.1 Eigenfrequencies
The vector equation (2.31) can be reduced to the single ordinary

differential equation in the meridional velocity v

2
d-v
k 2, k 2
+ (w, ~k"+ — -y )v, =0, (2.32)
dy2 k Wy k
with the boundary condition derived from (2.29)
v+0 as y-—-zxo, (2.33)

The original system of three equations and three unknowns has
been reduced to an equation of the Sturm-Liouville type known as the
SchrBdinger equation. The customary way to solve that equation is to

factor out the behavior of the solutions at infinity by setting

which reduces (2.32) to a Hermite differential equation. The final

solution is

2
.
2

v (¥) =e Ho(y) (2.34)
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and

(“i ke + X = o+, n=0,1,2, ..., (2.35)

where Hn(y) is the Hermite polynomial of order n. The definition of
Hermite polynomials and some of their properties are shown in Appendix
A. (2.35) is a third order polynomial in Wy provided the Tongitudinal
wavenumber k and the index n are specified. For each n, we have a
definite meridional structure which is called mode n. Two of the
roots of (2.35) correspond to inertia-gravity waves: one which
propagates to the west (w > 0) and the other to the east (w < 0). The
third root corresponds to a westward propagating Rossby wave {w > 0).
Therefore, the eigenfrequencies of (2.32) are perfectly characterized
by three indices k, n, and r where k is the zonal wavenumber, n is the

meridional mode, and r is 0, 1T or 2, i.e.
U no 7 Rossby wave
%,n,d T Westward propagating gravity wave
Bn,2 Eastward propagating gravity wave.
An approximation for the three roots of (2.35) can be 2asily

obtained using the following relationships

+u = 0,

O .n,0 %, 0,1 %, n,2

02
Y0, 0%, 1 T %k,n,0%,n,2 T Ck,n,1%,n,2 T Tk,

W .n,0%.n,1%,n,2 - K >
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and assuming that O 01 T 9.2 The results are

JKke+om+1 (2.36)

Or,n,1(2) - X

k
By o o B e (2.37)
Kala0 2y on+

The plus sign in (2.36) gives the frequency of the westward propa-
gating inertia-gravity wave and the negative sign corresponds to the
eastward moving inertia-gravity wave. The third root given by (2.37)
is the westward moving Rossby wave. Note that the frequency of the
Rossby wave is zero if the wavenumber k is zero. For Rossby modes the
zero frequency exhibits degeneracy since there is more than one eigen-
function corresponding to it as we will see later.

The three roots of (2.35) for n=0 are

Wy o " k , (2.38)

k
T2 (2.40)

5 e
= k / k
(L)k,O = o 3 * ‘—"‘4 + 9 (2.39)
[ 2
- k4 1 3

The classitication of the roots is based on their behavior as a function

of n assuming that n is a continuous parameter, i.e.

= Tlim W : (2.41)

w
Kol 050 sn
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Thus, ]
k for k < —
v 2 |
Wy 0,0 = — ) : (2.42)
\/(T) +1 - —2“ for k > e
' T2
5,/(%)2” - % for k < -
& /r\
Y £
wk,o,] = -i . ((1.4\:;)
k -FOY\ k > b s
- _"/'2 |
| i K\2 Koo , |
U022 " " (7?0 *1 - - forall k (2.44) |
where w

K,0.0 corresponds to the Rossby wave, 0,1 to the westward
propagating gravity wave and Y,0,2 to the eastward propagating gravity
wave. The peculiar behavior of the n=0 mode Tled Matsuno to inspect
more carefully the character of the associated eigenfunctions. He
showed that the ¢-eigenfunction associated with the root Gy 07 k does ;
not satisfy the boundary condition ¢+0 as y-»+« and therefore has to
be neglected. Blandford (1966), in a similar study, failed to recog-
nize the peculiar behavior of the n=0 mode and considered the w=k
solution as being valid.

In view of the peculiar behavior of the n=0 mode, we see that
©k.0,0 does not exist for k < 2'% and Y 0.1 does not exist for

- .
k > 2 "z and that Wy merges continuously to By 0.0 at k=2 ~.
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Thus, for small k the westward moviny solution of the n = 0 mode

oscillates with higher frequency (in the gravity wave regime) while
for large k the frequency is Tow (Rossby wave regime). This is the

so-called mixed Rossby-gravity wave.
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Matsuno (1966) also points out the existence of another possible

solution not included in (2.35). Putting v=0 1in the system of govern-

ing equations (2.30), we get

k1 il = 2.45.
jw U, + ke =0, ( é)
do ,

'k 2.45.b
Wt gy 0, ( )
fw b, + iku =0 . (2.45.¢)

The first and third equations form a system of two algebraic

equations which has a non-trivial solution only if

(wk - k) (wk +k) =0,

and therefore

|
A~

-4 if

(ol
1}

mk =
or

]

e
]

o if ) -k
Equation (2.45) can now be written as

ddy i

and the solutions are

2
B fop w =k (2.46)

=
=

i

£ =
P

|

Q

.
1,
& = -up = ae Y for w =k (2.47)
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where a is an arbitrary constant. However, the solution corresponding
tO(uk= k is not bounded as y++*« and it has to be rejected. Matsuno

points out that the solution Wy = -k can be obtained from the frequency
equation (2.35) if we set n=-1. This particular solution is called

the n=-1 mode and can be considered an eastward propagating wave with
v=0, which is also called the Kelvin mode. The eigenfrequency as

associated with the Kelvin wave is labelled w,  _, , since it is an

eastward propagating wave.

2.3.2 Eigenfunctions for k#0

Multiplying (2.30.a) by iw, and (2.30.c)by -ik and adding the

k
results, we get
‘ ( " (2.48)
u, = Wy, YV, F k=] ;4 2.48
k 1(w£- k2) kY "k dy
provided wk# . If Wy = -k the associated eigenfunction has already
been found (2.46). Analogously,
1 k"
FYRRERIN S S Q
b 7 7 kvt ) Iy
'l(wk - k)

The next step is to substitute Vi into (2.48) and (2.49) by the already
known solution given in terms of Hermite polynomials (2.34). The

result 1is

dH Ly

Uy ='j‘_§“‘—§5 {mkyHn(Y)-'kyHn(Y)+ k —gy—

and

- 1 dHn(y\ Lyt
q)k = - “—_2“77—)' kyHn(Y) +wk}/Hn(y) +U)k dy—_ e nd ¢ (?51)
Ko
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Making use of the recurrence formula and the differentiation formula

for Hermite polynomials, we obtain

= 1 il '}iy I
ue = = | Bk o 00+ o B (0 ]e™ L (2.52)
i(w,. - k")
. 1 o _;,yz
b = = [ MoK H ) - ) B ()] e (2.53)
Hwk - k%) =
In vector form, the eigensolution gk - is
oy B -
I/Z(wk,n,r k) Hn+'l (y) + n(mk,n,r+k) Hn_‘l (Y)
2
- » 2 2 _1~‘y
En, ) = [ 1 (o 7 -KT) B (y) e

Kl K) Hoaq () = nlay o FKOH L (y) | - (2.54)

“ion,r” n-1

where the indices k and n refer, respectively, to a particular zonal
wavenumber and meridional mode, and r=0, 1 or 2 depending on whether
we are considering the Rossby mode, westward or eastward propagating
gravity wave,respectively.

The parity of the eigensolutions Ek . (y) follows from the parity

W7 P
of Hermite polynomials because Hn(y) is even or odd if n is even or odd
respectively. When n is odd the u and ¢ fields are symmetric relative
to the equator and the v-field is antisymmetric. This case is called
symmetric after Longuet-Higgins (1968). The Vi field is even if n is
even and the associated Uy and ¢k fields are odd; this is called the
antisymmetric mode.

Equation (2.54) is valid for n=0 but the index r takes the value

1
=3

L
1 and 2 if k<2 2 or 0 and 2 if k>2 * as described earlier. The

eigensolution associated with the Kelvin mode (n=-1) can be written as
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N
—
3

B

(82

o
—

Ek,«],Z(y) = 0 e"lfy

since Ho(y) is a constant according to A.3.

The magnitude of the eigenfunctions Ek,n,r are arbitrary so far.
In order to normalize the eigenfunctions, we require that the total
energy integrated over the y-domain (-« ,+« ) is invariant for each
mode corresponding to each eigenfrequency. The integrated total energy

E is easily obtained by the kinetic energy equation (multipiying

Kis N5
(2.30.a) and (2.30.b) by up and Vi respectively), adding the result
to the available potential energy equation (multiplying (2.30.c) by ¢)
and integrating over the whole domain (- ,+« ) using the boundary

conditions (2.29). The result is

2 s
B = W8 VT = ey ) gy ) DD (2.56)

where the symbol < > indicates the inner product

/ * % * N % i g
- (uk,n,r° uk,n,r Vk,n,r' vk,n,r ¢k,n,r Qk,n,r‘ J -

In (2.57) the symbol (*) denotes the complex conjugate. Thus, the
magnitude of the normalized eigenvectors can be easily obtained by

dividing the previously obtained gk g~ by its norm defined by (2.56).

3 S

The norm of gk -~ is
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2
n L [ g 2 2 2 ]
= | 2 = -
Ek,n,r 2 nlq (wk,n,r k)® (n+1) +n (wk,n,r+k) 4-(wk,n,r k™) |-
(2.58)
From now on, when we refer to the eigenfunction Ek _— should
interpret it as the normalized eigenfunction
[ty (KB ) 0 (0 o #K)H ()
2 2 5y
g (y) = |1 (w - k%) H (y) -
Ksn,r k,n,r n JE
kon,r
-%(wk,n,rmk)Hn(y)_ n(wk,n,r+k)Hn-1(y)~ (2.59)

2.3.3 Eigenfunction of the zonally symmetric case (k=0)

As we have already discussed, the zonally symmetric case (k=0)
presents a degenerate behavior since the eigenfrequencies of the Rossby
mode are all zero. Also, the distinction of eastward and westward
moving waves Tooses meaning when k =0; the eigenfrequencies of gravity
modes appear in pairs of positive and negative values for the same
meridional number n.

The objective of this section is to construct a set of orthonormal
eigenvectors associated with the zonally symmetric degenerate mode.

Remembering that w=0 when k=0 for the Rossby mode, (2.30) is reduced

to
d¢0

yuo + _a_y— = 0 s (2.60.&)

v0 = 0 . (2.60.b)

which is the governing equation for a zonal geostrophic current. The
Rossby mode for k=0 is called the geostrophic mode after Kasahara

(1978) since the same governing equation is obtained with spherical
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geometry except for the curvature terms in (2.60.a). Kasahara's
approach for constructing the normal modes of (2.60) is to assume poly-
nomial functions of various degrees for Uy and calculate ¢O or vice
versa. The geostrophic modes so obtained are not orthogonal but a
simple vector orthogonalization routine based on the Gram-Schmidt
process can be applied. Tribbia (1978) retained the normal mode ex-
pansion for the zonally symmetric case considering that any gecstrophic
u and ¢ are eigenfunctions of (2.60). The resulting eigenvectors can
also be orthogonalized.

Although Kasahara's or Tribbia's approach could be applied to our
problem, a close look at the normalized eigenfunctions defined by
(2.59) suggests an alternative procedure.

The eigenfunctions (y) form a complete and crthonormal set

F’k,n,r
if k#0 (Matsuno, 1966; Cane and Sarachik, 1976). The orthogonaiity
proof however, fails if degeneracy occurs. This is exactly the case
for Rossby modes if k=0. But we might speculate on the nature of

the eigenfuncticns Ek (y) as k tends to zero. First, we shall

s 50
prove that such a 1imit exists and then that it satisfies the govern-
ing equations for zonal geostrophic current. Secondly, we consider
the orthogonality and completeness of the Timiting set of eigenfunc-
tions.

The frequencies of Rossby type waves have the following asymptotic

behavior for small zonal wavenumber k,

__k
“eon,0 ~ 2n + 1

(2.61)

In order to obtain (2.61) we use the fact that inertia-gravity waves

for k=0 have frequency
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and the relation

# K ., (2.63)

w w
k,n,0 “k,n,l “,n 2

The normalized zonal wind component of the eigensolutions gk,n,O(y)

is
2
rl/ w k) H 1(y)+n (w +k) H (y)] ety
u = L 2\ % n,0 n+l k,n,0 "/ "'n-1
k,n,O 1
‘/2{ 2 2 2 2 2] :
I "‘ =
2 nl r ) wk . 0 (n+1) +n (‘”k,n,0+k) + (‘*’k,n,o k™)
(2.64)

Let us consider now the asymptotic behavior of U oo @S k-+0. Sub-

stituting w from (2.61) in (2.64), taking the 1imit as k-0 and

ksin 0
applying L'Hopital's rule we find that

11 [atne1)]*% [20m1) W () -4 f>] %y’
im _ Ln(n+ n y) - (y) | e
k>0 uk,ﬂ,O(‘y) = n+1 n-1
L
[2”(2n+1) n!ﬂ%] (2.65.a)
Analogously, we obtain
ot Vo) =0, (2.65.b)
and
g o
1im (y) = [ n+]] 2(n+1) n+]()’)+Hn_](Y) e
k=0 "k,n,0" ] e

Thus, as k=0 the eigenfunction associated with the n'th meridional
mode of the Rossby wave tends to a function which is a combination of

Hermite functions of order (n-1) and (n+1). It is an easy task to
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prove that (2.65) satisfy the zonal geostrophic equation (2.60) if we
use the recurrence relation (A.4) and the differentiation formula for

Hermite polynomials (A.5). The orthonormality is also easily proved

using (A.1). The completeness follows from the completeness of Hermite

functions. We can now write
i Tim i
k=0 Yk.n,0l¥)

- Tim 3
80.n,0) = | a0 VinoW) | =

Tim
ksQ (bk’n,O(Y)

=

[n(n+1)] [2(n+1) Hoep () + B,

[2"(2n+]) n! Trlél/2
0 e 2y, (2.66)
[n(n+1)] 2 [2(n+1) OE Hn_]cyﬂ

n nk
N 2°(2n+1) n! 7w° .

and £

- r(Y) form an orthonormal and complete set of eigenfunctions

over the whole range of k.

The completeness of the eigenfunctions (y) in the interval

] Ek,n,.“
(- ,+ ) and the completeness of e?kx in the interval (-LX, LX) with

k giver by (2.28) allows to expand an arbitrary function G(x,y) in the

serijes

+ © © 2 »
63 = ¥ Y T iy bone@) e (2u67)
k=-o n=-1 r=0
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with
3 n,r “SEW g L )0 (2.68)
where
L
6,(y) = 2 [ Glx,y) e Tk d (2.69)
k 2L > . . ‘
-L

The dimensional form of the eigenfunction gk i r(y) is clearly

seen to be dependent on Cj and therefore it can be written as

cj 0 0 ) )
S knr¥) = [0 ey 0 g ([Ly), (2.70)
2
0 0 Cj

where the symbol () has been replaced over the non-dimensional

variables.

2.4 Initial Value Problem - Equatorial R-plane
Let us consider now the solution of system (2.1) with a specified
distribution of diabatic heating Q and momentum forcing (Fx, F-J.

y
More precisely, we propose to solve

ou 99 _ _
st CBYvtor=-kutF o, (2.71.a)
oV, 9% _ _
at+gyv+ay KU"‘Fya (2.71.b)

> [L3 (1 38 welafaN.
"a‘f[ ap(;,; ap>]+V\V chp(g) |<’ap<

where k is a Rayleigh drag coefficient in (2.71.a) and (2.71.b), and
the rate coefficient for Newtonian cooling in (2.71.c). These linear

terms are not necessary for the method of solution here described
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but they correspond to the simplest form of restoring forces that
might arise as the system. is disturbed from rest.

We will make use of the completeness of the eigensolutions of
the vertical structure equation (2.3) and the eigensolutions of the
linearized shallow water equations to solve (2.4). We first expand
Uu(X,yspst), vix,y,p,t), o{x,y,p,t) and the term on the right hand side

of (2.71.c) into a series of the eigensolutions ¢j(p) of the vertical

w

tructure equation as in (2.78) obtaining

(x,¥,t) ¢.(p) ,

Jd J
U 2 uL(X,y,t) 6.(p) , vR Dy
: d = J J

=0 . j=
]

. J
or Lo oyt o) . HZE N agtait) o)

~

[«

J
PR D Lyst) 0:p) » FL R 2L F c(xuyst) 6s(p) s
ey R J y 5T v j

(2.72)
where u., v., ®., q., F

J J J J X
generally functions of x,y and t defined by (2.19) and J is the trun-

j and F ,j are the expansion coefficients,
cation 1imit of the vertical modes. In order to write (2.72) we have
assumed that the eigenvalues of the vertical structure equation form
a discrete set. However, if the spectrum of the vertical structure
equation is continuous as in an unbounded atmosphere (Eckart, 1960),
the sum in (2.72) is replaced by an integral. If the spectrum is
part discrete and part continuous, (2.72) should be rewritten as com-

bination of sum and integral respactively.
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The series expansion (2.72) 1is assured by the completeness of ¢j
as discussed in section 2.2. Substituting (2.72) into (2.71), multi-
plying (2.71.a), (2.71.b) and (2.71.c) by ¢i(p), integrating over the

interval [o,pO] and using the orthogonality of ¢j(p) we obtain

auJ 8®J .
o - Byvj + s & -Kuj + FX,j 5 (2.73.a)
BVJ 8<I>j
— . .+ —L = vy, + F . o3
5t 3YUJ 5y <VJ .3 (2.73.b)
99.
_.‘1. + 2 ° " = ? L - r@_‘
T CJ v \VJ ¢ (qJ K J) i (2.73.c)

where (2.3) has also been applied.

We now see that after projecting the solution (u,v,) onto the
vertical modes, we get a system of equations for the expansion‘coef—
ficients which is simply the linearized shallow water equations dis-
cussed in section 2.3 with non-homogeneous terms in representing the
external forcing and the linear damping terms.

It is convenient to work with the non-dimensional form of (2.73)
using the time and length scales shown in section 2.3 and write it

in vector form as

9g ”
""_E‘ +Q£ = 'Fj—K.Jg C; <2'74)

where £ and Q are defined by (2.25) and (2.26), respectively, and

.3
. 5 -k
Fj Fos| (e 8)77, (2.75)
q
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e, = (g2 gy ¥, (2.76)

In the two-level baroclinic model discussed in section 2.1, the
inclusion of Tinear damping terms and a specified external forcing

yields the vector equation (2.75) with

(2.77)

The main concern of this research is the solution of (2.71) for
a specified equivalent depth; we thus drop the index 'j' on the right
hand side of (2.74) for simplicity. It should be remembered that the
solution of (2.74) can either be interpreted as one particular internal
mode or as the wind shear and thickness of the two-level baroclinic
model of section 2.1.

We can clearly assume that the solution £(x,y,t) and the forcing

\Fj(x,y,t) can be represented by a series of the eigenfunctions
(v) o TkX as discussed at the end of section 2.3. According to

E’k,n,r
(2.67) we have

K N 2
E(x,y,t)%z Z Zo
Y‘:

k=-K n=-1

and
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where K and N are the truncation limits of the Fourier series in the
zonal direction and of meridional modes,respectively. Substituting.
(2.78) and (2.79) into (2.74), multiplying the result by gfiz,m(y),

integrating over the whole domain S (S={(x,y)/ xe[-L,L], ye(-o,+=)})

and applying the boundary condition (2.29) we obtain

-K) Ck,n,r(t) = f (t) (2.80)

d

at Sk,n,r k,n,r
for each k, n and r in (2.78). The above eguation is familiar from the
theory of the linear harmonic oscillator problem. The general solution
of (2.80) is

(t)

t
Ck,n,r - Ck,n,r,(O) £xp [(iwk,n,r—K)'t] ﬁ}r fk,n,r(s)
0

exp [-(1wk,n’r'K) (s-t)] ds . (2.81)

This is the solution presented by Cane and Sarachik (1976) except for
the damping term k.

Let us consider now some particular solutions of (2.81). If there
is no external forcing and there are no damping terms in (2.74) the

solution of (2.80) reduces to

Chon,rlt) = ¢ o (0) exp Gy 8 C (2.82)
where ¢, (0) is determined from the initial conditions £(x,y,0) as
Cy,n,r(0) =<E (y,0) - g L (y)>, (2.83)

where

L
X .
£ ¥,0) = 5 [ E(x,y,0) e ¥ dx . (2.84)
X 'Lx
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Thus, the solution of (2.74) reduces to a superposition of the free
wave solutions, each oscillating at its own frequency.
If the initial condition is £(x,y,0) =0 and the forcing is at a

single frequency v such that

Flxoy,t) = Flx,y) eV, (2.85)
the solution of (2.80) is simplified to
f l: . "('i(l) +K)tJ
- k,n,r =1k _ kon,r
Skonrt) = A T L e . (2.86)
where
fk,n,r = <|Fk(.Y) = gk,n,r(y»’ ‘\287)
and
<X .
IF, (y) = e IF(x,y) L ' (2.88)
k 2 "
-L
%

is the Fourier component of the forcing IF at wavenumber k. The second
term within brackets in the numerator of (2.86) is the transient solu-

tion; if «>0 the asymptotic behavior of (2.86) is

£ e-ivt

k., 1

c (t) = = e = ’ (2.89)
k,n,r 1(wk,n,r V) - K
for a steady forcing we have
_ ]

“konor T ;5——543%?5— : (2.90)

kon,r

If there is no damping, (2.90) is singular for geostrophic modes. How-

ever, for a steady forcing we have
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-iw £
k,n,0
tk,n,0(1' e )

0 1wk

- Tim

w Ea
k.n,0

= % f

CO,n,O(t n.0

Thus, at resonance we have the algebraic or secular growth represented
by (2.91). We clearly see that the closer the frequency of the forcing
is to the natural frequencies of the system, the larger is the response.
Our main concern in this research is the horizontal structure of
the solution of (2.71) for particular values of j. The quatoria] R-
plane is known to be a good approximation for the internal modes of
small equivalent depth (Lindzen, 1967). For the external mode (or
large equivalent depth H) the meridional structure of the eigensolu-

-

tions Qk,n,z(y) is not trapped near the Equator except for low n and
therefore a more accurate geometry and Coriolis term in (2.71) is
necessary. In the next section, we show that the solution on the
sphere is formally the same as on the equatorial B-plane except that

the eigensolutions of the horizontal structure equation are now

given by Hough functions (Longuet-Higgins, 1968).

2.5 Initial value problem-sphere
The perturbation equations on the sphere using the same basic

state as in (2.1) are

du 3 - (2.92.a)

A cosY ar 0

v 9%

Nt fut =0, (2.92.b)
Vel + X =g, (2.92.c)
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Sop Hy = g, (2.92.4d)

where the notation is the same as in (2.1) except that ) is the Tongi-
tude, ¥ is the latitude, a is the radius of the earth, f is 2Q siny

and

oW = 1 du_ dvcosy /
VeV 2 o5 P (ax+ 3¢ ). (2.93)

Combining (2.92.c) with (2.92.d) we obtain (2.2) except that the diver-
gence is now defined by (2.93). The condition for separability into
horizontal and vertical structure equations is seen to be the same as
before and therefore the vertical structure equation is given by (2.3)
where c;f= gHj is the separation constant. The horizontal structure

is now given by the linearized shallow water equations over a sphere

i.e.,

auj ' 1 B¢j
st - 2asing U sy T (2.94.a)
avj _ 8¢j . )
Eal ZQs1n?uj-+ a9 i (2.94.b)
3¢ -
_J . = )
st * gHj v \Vj 0, (2.94.c)

where V- Vj is given by (2.93). We can scale (2.94) by

ug = uycs o, Vi= Ve s
. = 4. c2 t = t2q, (2.96)
iT% 5

where Cj= /gHj is the j-th eigenvalue of the vertical structure

equation (2.3) and Hj is the equivalent depth. As in the equatorial



B-plane case, we write (2.94) 1in vector form as

OX .

] ) ,
s (9. t) + 05 x (LP.t) =0, (2.96)

where the symbol (") has been dropped for simplicity. In (2.96) we

have
u (Y, t)
J %
XJ()\:\Pat) = VJ(A,\P’ t) (2-97)
6,009, 1)
and
= _}é -
€.
J )
0 sin oS¢ X
1 a
Q. = i . )
3 siny 0 € 5 (2.98)
whe -
€as " e
J 9 J 9
cos® 3\ cos® 3¢ L{ Jeos ] O
with
2 2
s = -4-&—2—‘3—— . (2.99)
¢

Equation (2.96) is usually termed Laplace's tidal equations and
the solutions have been discussed in great detail by Longuet-Higgins
(1968) and more recently by Kasahara (1976). The solution X; of (2.96)

dropping the subscript j, is expressed by

x(A, P, t) = HS,R(X,f) exp (i O .9 t) , (2.100)

where HS 2(A,‘P) represents the horizontal structure of normal modes

wjth s denoting the wavenumber in the zonal direction (s=0,1,2,...),
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% the meridional index and O o the dimensionless frequency of the

normal modes. The longitudinal dependence of HS 2(A,$D is given by

9

Hg o (A P) = @s,z(‘?) exp (isA), (2.101)

where 63’2 is called the Hough vector that has three components, namely
U, o F)

6 ,(9) = | v ,(¢) . C (2.102)
9,20 F)

The eigenfrequencies o are divided in two different categories:

Sl
eastward and westward gravity waves and westward propagating Rossby
waves, the so-called waves of the first kind and waves of the second
kind, respectively.

Clearly the analogy between the shallow water equations on the
equatorial B-plane and on the sphere is perfect. Thus, the method of
solution shown in section 2.4 for the initial value problem can be

easily extended to the sphere provided we notice the following cor-

respondence

0> £

One important difference between the linear operator Qj on the sphere
and Qj on the equatorial B-plane is the inclusion of Lamb's parameter
ej on the sphere. On the equatorial B-plane the non-dimensional form

of the shallow water equation does not depend on cj explicitly,and
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therefore the dimensional form of £ is simply obtained by a matrix
multiplication as in (2.70). On the sphere, however, we have to solve

for o and GS for each vertical mode j and then make a matrix

S &
multiplication analogous to (2.70) to obtain the dimensional form

2

X

since £ appears in the linear differential operator Qj (2.98).

It should be remarked that the fortuitous happening on the equatorial
B-plane is a consequence of the boundary condition at infiﬁity; had
we chosen a finite R-plane the determinaticn cf the eigenfunction and
eigensolutions would be dependent on the particular vertical mode
through the horizontal scaling.

Thus, the computer program to solve (2.74) can be easily organized
in such a way to accept different sets of eigenvalues and eigenfunctions
with minor modifications. Provided the eigenvalues and eigenfunctions
of the shallow water equations are given, the only part of the program
that depends on the particular version being used is the integration
routine in the meridional direction to compute the inner product. On
the infinite equatorial B-plane the integral in y is from - to += and
an appropriate weighting function (e’yz) in the Gauss-Hermite quadra-
ture method can be used (Abramowitz and Stegun, 1970). Thus, the non-
dimensional eigenfunctions Ek,n(y) are computed at the Gaussian
latitudes given by the zeroes of Hermite polynomials. Because of the
Gaussian quadrature points are unevenly spaced, it is convenient to

recompute the eigenfunctions (y) at equally spaced latitudes

g'k,n,r
after the expansion coefficients Cp.pn.p are determined. On the sphere,
we use the regular Gaussian quadrature with the abcissas and weights

given by Abramowitz and Stegun (1970). In this case, the Gaussian
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latitudes are almost equally spaced and therefore there is no need to
recompute the Hough functions at equally spaced latitudes for display

purposes.
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3.0 FREE YAVE SOLUTIONS OF THE SHALLOW WATER EQUATIONS

The objective of this chapter is to present the horizontal struc-
ture and dispersive characteristics for the free wave sojutions of the
shallow water equations. This is important because the method of
solution of the initial value problem is based on the method of eigen-l
function expansion, and the basis functions are the free waves of the
shallow water equations. Knowing the structure and dispersive char-
acteristics of the basis functions helps us in understanding the
behavior of the solution in space and time.

The eigenfrequencies are discussed in section 3.1 and the process
of dispersion of energy is treated in section 3.2. Section 3.3 deals
with the eigenfunctions and the energetics of the free modes. We also
compare some of the results obtained on the equatorial B-plane with
the sphere for e=10 and €=500. The €=10 case closely corresponds
to the external mode (also called the divergent barotropic mode) of
an isothermal atmosphere and the £ =500 corresponds to the equivalent
~depth of the first internal mode of the two-level baroclinic model
discussed in section 2.1.

Lindzen (1967) has discussed the validity of the equatorial 8-
plane with emphasis on planetary scale waves. For ¢ sufficiently
large and n sufficiently small the equatorial B-plane provides us with
a good approximation for the eigenfrequencies of free waves on the
sphere. This statement is based on the behavior of the governing
equation for the meridional velocity (2.32) as a function of y; if

Y < ¥+» where
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= V2n +1 , (3.1)

the coefficient of Vi in (2.32) is positive and the solution is wave-
like. If R the solution of (2.32) 1is exponentially damping in
order to satisfy the boundary condition. In dimensional form (3.1)

can be written as

1 .

= ae *V2n+1 , (3.2)

7

since the Tength scale [L] (2.21) can be written as

[L] = a e (3.3)

where a is the radius of the earth and € is Lamb's parameter defined
by (2.99).

When the turning latitude Yt is such that Y7 <Y¥p (where Yp is the
latitude of the pole) we expect (2.32) to be a reasonable approxima-
tion. Figure 3.1 shows yrasa function of ¢ and it is clear that for
£=10 (external mode) the equatorial B-plane gives valid approximations
only for n<2. For an internal mode of equivalent depth H=180 m, we
have ¢ =500 and the condition Y1<¥p is satisfied up to n=25. 1In
this chapter we shall also discuss the relative error of the R-plane

for £e=10 and €=500 in view of the condition Y1<¥p -

3.1 Eigenfrequencies - equatorial B-plane and sphere

Figure 3.2 taken from Matsuno (1966) shows the eigenfrequencies
of the free wave solutions of the shallow water equations on the
equatorial B-plane as a function of the wavenumber k. The mixed
Rossby gravity wave links the low frequency Rossby regime to the

higher fregquency westward propagating gravity waves. The difference
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between the modulus of the frequency of eastward and westward propa-
gating gravity waves is shown in Figure 3.3. The frequency of the
westward propagating wave is larger than that of the eastward wave.
The maximum difference occurs for the low order meridional modes
between the non-dimensional zonal wavenumbers 2 and 3. The maximum
difference is approximately 15% for the n=1 meridional mode and
consequently the phase speed of the westward propagating gravity
wave is about 15% faster than the companion eastward wave. The effect
of the rotation of the earth on gravity waves decreases as the wave-
length decreases and therefore the eastward and westward waves tend
to the same frequency in absolute value.

The effect of spherical geometry on the frequency of free waves
of the divergent barotropic model is shown in Figures 3.4 and 3.5 for
==10 and =500, respectively. The ordinate of Figures 3.4 and 3.5
is the percent error of the B-plane eigenfrequency relative to the
sphere eigenfrequency and the abcissa is the wavenumber s on the
sphere (s=0,1,2, ...). In order to compare the eigenfrequencies
on the sphere to those obtained on the equatorial B-plane, we have
two problems: {a) the relationship between the non-dimensional wave-
number k on which the B-plane eigenfrequencies are dependent (Figure
3.2) and the wavenumbers allowed on the sphere, and (b) the equiva-
lence between the meridional indices n (on the equatorial B-plane)
and % (on the sphere) as defined in Chapter 2.

The non-dimensional wavenumber k in the g-plane analysis is

related to the wavenumber s on the sphnere by

1
7%

k =¢ *s B @, 1y 2y sus . (3.4)
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Thus, the zonal periodicity imposed in the zonal direction of length
2ma on the equatorial R-plane implies that k takes the values shown

in Table 3.7.

k

s b

=10 e =500
0 0 0
1 0.56 0.21
2 1.12 0.42
3 1.69 0.63
4 225 0.85
5 2.81 1.06
6 337 | #27
/i 3.94 1.48
8 4.50 169

Table 3.1 The non-dimensional wavenumber
k for zonal periodicity of length
27a as a function of ¢; s is the
wavenumber on the sphere.

As for the matching of the sphere meridional index 2 and the equatoria:
8-plane meridional index n, we consider the asymptotic form of the
eigenfrequencies on the sphere for e- given by Longuet-Higgins (19863}.
The correspondence between Rossby waves (RW), mixed Rossby gravity
waves (MRGW), westward gravity waves (WGW), Kelvin waves (KW) and

eastward gravity waves (EGW) on the 8-plane (index n) and on the sphers

(index 2) is shown in Table 3.2.
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wave type n 2
KW = -1 =0
EGW n>0 2>1, 2=n+]
MRGW =0 2=0
RW n>1 2>1, &=n
WGW n>1 2>0, 2=n-1

Table 3.2. Correspondence between the B-plane index n
and the sphere index 2 for a Kelvin wave .
(KW), eastward gravity wave (EGW), mixed
Rossby gravity wave {MRGW), Rossby wave (RW)
and westward gravity wave (WGW).

Table 3.2 shows the n>1 Rossby modes on the 8-plane are identi-
fied with the rotational waves with the same meridional index on the
sphere. The Kelvin wave is identified with the lowest eastward propa-
gating mode (& =0) of the first class as defined by Longuet-Higgins
(1968); the eastward propagating gravity waves for n>0 merge into
the 2 =n+]1 eastward modes of the first class. The mixed Rossby
gravity wave (n=20) corresponds to the 2=0 rotational mode of the
second class and the westward gravity waves for n>1 are identified
with 2=n-1 westward modes of the first class.

Returning now to Figure 3.4 (for €=10) we see that the eigen-
frequencies of the n=2 rotational waves are determined by the B-plane
to within 20% only for s=1, 2. The error for larger values of s
remains approximately constant at 30% up to s=7, decreasing for s>7.
Although the turning latitude for n=2 and €=10 is less than the
latitude of the pole in the equatorial g-plane (Figure 3.1), the phase
speed of the rotational mode is overestimated by as much as 30%.

The mixed Rossby-gravity wave (n=0) is well estimated since the errors

are within 10%. The frequency of westward propagating gravity waves



58

up to n=2 is estimated to within 15% by the equatorial B-plane but
the error is positive for long waves and negative for short waves,
thus affecting the process of dispersion of energy as we shall see
later. The eastward gravity waves seem to be more sensitive to the
B-plane approximation than their westward companions. The phase
speed of Kelvin waves is underestimated by Tess than 10% for long
waves, decreasing towards higher s.

For the £ =500 case (Figure 3.5) we have extended the wavenumber
demain on the sphera up to s=24 in order to cover approximately the
same range in the non-dimensional wavenumber k domain as in the =10
case (Table 3.1). According to Figure 3.1, the turning latitude of
the n=8 mode is approximately 5600 km and therefore we expect the
n=38 frequencies to be well estimated. However, the frequency associ-
ated with rotational modes is not as well estimated as that of gravity
modes; the B-plane frequency is underestimated for s=1 (-10%) and
overestimated for large s (over 25% for s=20). At s=24 the relative
error curves are leveling off except for the n=8 Rossby mode. In
section 3.2 we discuss the effect of the larger error for the rotation-
al frequencies on the process of dispersion of energy.

The B-plane estimate for £=500 (Figure 3.5) has a tendency to
overestimate (underestimate) the magnitude of the phase speed of Tonger
(shorter) gravity waves but the magnitude of the relative error 1s
smailer than for rotational waves. Although the errors for ¢=500
are acceptable, we have to consider the dispersion of energy which is
related to the slope of the frequency curves with respect to zonal

wavenumber. This is the objective of the next section.
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3.1.1 Dispersion of energy

The key concept for understanding the process of dispersion of
energy is the group velocity. In a dispersive system the speed of
propagation of energy is different from the phase speed of waves; the
energy is propagated with the group velocity (Lamb, 1952; Rossby, 1945;
Longuet-Higgins, 1964). ‘

The east-west group velocity on the eguatorial B-plane can be

written as

E; v K (3.5)
w -
k

which, together with the dispersion relation (2.35) gives Figure 3.6

for Rossby waves, gravity waves, mixed Rossby gravity waves and non-
dispersive Kelvin wave as a function of zonal wavenumber k (abcissa)
and n as labelled.

Figure 3.6 snows that as k increases the group velocity of gravity
waves and Rossby waves tends to 1.0 and 0.0, respectively. For k<1,
the magnitude of the group velocity of Rossby and gravity waves is
comparable. Long Rossby waves disperse towards the west (cg<<0) and
short Rossby waves have a small but positive group veiocity (eastward
dispersion). The westward propagating gravity wave also shows this
peculiar behavior but the spectral region of eastward group velocity
is very small and near the origin (ultra-long waves). The qualitative
behavior of the n=0 mode is similar to the n>1 gravity waves but the
whole pattern is shifted towards positive group velocity. Thus, the
mixed Rossby gravity wave behaves like a gravity wave for small k and

as a Rossby wave for larger k from an energy dispersion point of view.
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So far we have discussed the group velocity of the free wave
soluticns of (2.4) assuming an infinite domain in the x-direction.
Let us consider now the concept of group velocity when the allowed
zonal wavenumbers are quantized by the imposed zonal periodicity,

following the work done by Hoskins et al. (1977).
i(k]x+w

t) (k2X+w2t)

; i
Let us consider two waves of the form e 1 and e

called waves I and II, respectively. If we set the phase difference
between waves I and II equal to 27j (j=0, =1, #2, ...) we can write

the following equation relating x to t:

275 - (w]-wz)t
X = —— j=0, £1, 2, ... . (3.6)
1772

The above egquation defines the solid lines in the (x,t) plane shown in
Figure 3.7. At a point (x], tl) on these lines, waves I and II have
the same phase except for a 27 factor. Without loss of generality,

we may assume that at t=0 there is a crest of wave I at x=0 so that

crests are located at - 2{?@ (m=0, *1, £2, ...) initially.
Crests of wave I move in time with the phase speed cp = - &l- defining
1
the family of straight lines
Zﬂm-tﬁt
R it m=0, *1, £2, ... ; (3.7)
1

These Tines define the position of crests in the (x,t) plane as shown
in Figure 3.7 (dashed lines). The interception between the straight
Tines defined by (3.6) and (3.7) define points in the (x,t) plane
where both waves reinforce each other i.e., the phase difference

between wave I and Il is zero (except for a factor 2mw) and both waves
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snow a crest at the interception point. If we take j=0 and m=1 we
reproduce Hoskins et al. (1977) formulas for the distances and times
between trough reinforcements. The interception points for arbitrary

J and m have coordinates

w1(j—m)-Fm W,

X],Z(j’m) =27 k]wz = k2w1 (3.8)
t o(3.m) = 2w q{md)-m (3.9)
1,247 k]wz - kzw] )
with j=0, 1, 2, ... and m=0, 1, 2, ....

We can now interpret Figure 3.7 more carefully. The phase dif-

ference Tines are labelled j=0, *2, ... according to (3.5) and the

wo-w
slope Ei:E%- is that of the 3-plane mixed Rossby gravity wave at

k1= 1 (wave 1) and k2

are defired by (3.7) and the slope ¢y is that of the mixed Rossby

=3 (wave II). The lines labelled m==#1,%3, ...

gravity wave for wavenumber k]= 1. The train of reinforcement points
aprears to move along the constant phase difference line (solid line)
with speed cg given by
Wy = @
w A 1
Cg - k] = k2 ° (3-]0)
In the Timit when k2—>k], we have the standard definition of group
veloctiy cg==%%— (3.1). However, when periodicity is implied in the
zonal direction (3.10) is the appropriate definition of the speed of

propagation of the energy associated with waves I and II (Hoskins

et al., 1977).
Figure 3.7 shows that at t=0 we have reinforcement points
situated at x = §5¥§L- (=0, £2, £4). If we follow this train in

172
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time along constant phase difference 1ines, reinforcement will occur

at the time interval At] 2 given by

k, - k

2 1
k]wz - kzm1

At =27

1,2 (3.11)

and the successive distance between the reinforcement points of the

same train will be

—
)
|
™

—

as indicated in Figure 3.7.

The direction of propagation of the reinforcement train depends
on the slope of constant phase difference lines defined by (3.10).
For the two mixed Rossby gravity waves shown in Figure 3.7 the train
of reinforcement points moves towards the east at cg= 0.16 (in dimen-
sional units cg==0.16 /gH ) since the slope is positive. A negative
cg implies westward propagation of energy.

The distance between reinforcement points (L\x],2 in degrees of
latitude), time fnterva1 in which they occur (At],2 in days) and
implied group velocity (c]’2 degrees per day), based on the Hough
function frequencies for =10, are shown in Table 3.3 for the mixed
Rossby gravity wave (2=0) and for the £=1, 2 and 8 meridional modes
of Rossby waves. The number in parentheses is the percent of the
B-plane estimate relative to the sphere.

The reinforcement train associated with lTow meridional number
Rossby waves propagates towards the west in the longwave part of the

spectrum and towards the east for shorter waves. For higher meridiona’
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sy {3 5 7 q 3 5 7 ¢ 3 5 7 9
T L0 L0 5.5 1.4 62 47 37 51 €25 i TeA
(-1) (=2} (=2) (-3} (-7) (-3) {-2) (-1} (-6) (-1} (1} (z
3 1,4 1.5 1.6 38 31 27 27 2% 17
MRGY (-9 (-9) (-9 (0) (1) (1) (loy (11} (i1}
bog 9 1,8 2.1 27 23 N
(2=0) : {(-10} {-10) (z) (3) (13} (23)
7 2.4 21 e
(-9) (3) 13
11/6.6 5.5 5.3 5.2 38 19 0 6 -13 -3 - iy
(23} (8)  (3) (1) (125) (183)-1000¥-78)  (83) {(163){:1200){-7%;
3 3.1 8.1 5.2 21 21 19 7 7 5
(-17) (-19) (-20) (-16) (-2) {2) (2} (217 {21}
5 31, B2 21 13 7 5
(-27) (-24) (6 (7) (43 (21}
71 3.4 18 5
i (-24) (9) (42)
1411.8 9.2 9.1 3.3 132 4 18 7 -1 -5 -2 -1
(433 (17) (7) (3) (194) (175)(192)(275)  (99) (135) (173} (285}
3 52 5.0 5.0 8 12 13 2 2 3
Ril N (-20) (-25) {-26) (-75)(-23) (-4) (-83) (¢} (2
(i=2) 5 | 1.6 4.6 15 15 2 3
(=321 (-33) (9) (13) {s1) {£3)
7 4.7 15 3
(-34) (15} {76
11103.1 77.7 66.3 61.0 424 226 134 10l -3 -3 B B
(37) (-3} {-25) (-33) (257} [159)(102) (77) (180) {179} {173} (83
3 34.3 29.6 27.2 60 36 23 -2 =y
RY (-40) (-43) (-52) 91) (57) (29} {223 1233} (
I =0\
ey 5, 22.6 20.3 B 15 38 -1
! (-57) (-60) (7) {40) (isn
7 18.3 2
i (-52) (36)
| Aty {days) ;’K‘.,Z (° Yatituge) 1.2 e day

Table 3.3

Distance between reinforcement points &x] 5
(degrees of latitude), time interval in '*°
which they occur Aty » (days) and implied
group velocity (degrées per day) for the
mixed Rossby-gravity wave (2£=0) and some
Rossby waves (2=1, 2 and 8) on the sphere
for ¢ =10.
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modes the spectral interval of westward energy propagation is much
broader but the group velocity is smaller. The energy associated

with the shorter waves tends to move as a whole pattern since the

frequencies 1ie on almost straight lines (Figure 3.2).

If the initial disturbance has most of the energy in the 2=1,
1<s<3 Rossby modes the reinforcement points will occur about 90°
westwards after about 6.5 days. Given an initial disturbahce with
maximum energy in the short wave part of the spectrum of the 2=1
mode, Table 3.3 shows that reinforcement occurs approximately 20°
towards the east after 3.2 days.

The time between reinforcements associated with higher order
meridional modes is generally so large for long waves (see the 2=8
mode in Table 3.3) that it is of littie or no meteoroiogical signifi-
cance. For short waves the time between reinforcements is of the
order of 20 days for the &£ =8 rotational mode and the implies group
velocity is almost zero, reflecting the stationary nature of the
disturbance.

The characteristic positions and times of reinforcements (Ax],_

and Atq 2 respectively) and the implied group velocity for energy

£

initially in long waves (1<s<3) or in shorter waves (7<s<9) for

2=0, 1, 2 and 8 and for £=500 are given in Table 3.4. The time
between reinforcements At1 5 is very large even for the low order
meridional modes except for the mixed Rossby gravity wave. The

implied group velocity is towards the west for n>1 and towards the

east for the mixed Rossby gravity wave.
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There are two basic differences between the dispersive character-
istics of internal and external rotational modes: (a) the internal
modes disperse the energy towards the west even for shorter zonal
scales (s>5); and (b) although the group velocity of internal long

zonal scales (s<3) is not much smaller than the external group veloc-
ity, the time between reinforcements is much larger thus implying that
the two waves go around the earth many times before reinforcing each
other (approximately 6 times for the s=1, 2=1 rotational mode on

the sphere).

The dispersion of energy due to gravity waves on the sphere is
summarized in Table 3.5 for initial energy in the regions 1<s<3 and
5<s<7 and for €=10 and €=500. As in Tables 3.3 and 3.4, the
parameters At],z, Ax],z and c],2 are shown in units of days, degrees,
and degrees per day, respectively. The numbers in parentheses are
the errors of the B-plane estimated relative to the sphere.

The group velocity for gravity waves (Table 3.5) is on the order

! to 220° day—] in absolute value for the £=10 modes

of 14C° day
compared to -13° day'] to 7° day'1 for the rotational modes given in
Table 3.3. The upper limit of C1.2 for gravity waves is reached for the
reinforcement between shorter waves, and mere important, At]’z R Ax]’z

and cL2 are almost independent of Sy and Sy - Therefore, the pattern
moves as a whole at about 220° day—] or 283 ms-] with very Tittle
dispersion, at approximately the phase speed of pure gravity waves
(c=290 ms™! or 226° day™') on a fluid of depth H=8400 m (=% 10).
Higher meridional modes for €=10 are almost non-dispersive including

the long waves as shown in Table 3.5 for n=8 (both eastward and
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westward modes). Reinforcement for gravity waves typically occurs in
less than a day except for the Towest meridional mode and towards the
west (east) for westward (eastward) propagating modes. If the initial
condition contains high energy in these modes the dispersion due to
rotational modes may be obscured by the fast dispersive character of
gravity waves since they go around the globe in a time-scale shorter
than the typical reinforcement time of Rossby waves.

A different picture emerges when considering the dispersion
associated with the internal modes shown in Table 3.5 (€=500). The
group velocities of the westward gravitational modes and of the in-
ternal rotational waves shown in Table 3.4 are comparable at least in
the Tong wave part of the spectrum. However, the time and distance
between reinforcements are much shorter (A’c],2 in the order of a few
days compared to 12 to 2720 days for the rotational modes in Table
3.4). Although the upper 1imit on the absolute value of the group

velocity for £=500 is 32° day_]

, Table 3.5 shows the c],2 is well
below this Timit for the spectral regions under consideration. How-
ever, |C1,2! tends toward the upper limit as S4 and Sy increase.

Another point that should be raised concerns the east-west
asymetry produced by the different dispersive characteristics of
westward and eastward gravity modes in agreement with Figure 3.3.
Except for large 2, At],2 ’ Ax]’2 ana c],2 may differ significantly,
and for initial energy in small & the asymmetry of the gravity wave
front can be quite marked as shown in Chapter 4.

The distortion of the process of energy dispersion by the equa-

torial B8-plane approximation is shown in percent error relative to the
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sphere in Tables 3.3, 3.4 and 3.5 (number in parenthesis). For the
external modes the errors are consistently small (less than 15%) only
for the mixed Rossby gravity wave. If the initial energy is in certain
zonal wavenumbers of the £=1 and 2 Rossby modes, the B-plane esti-
mates of At]’z or AXT,Z may be within 20% of the correct result on the
sphere as seen in Table 3.3. However, the error distribution as a |
function of wavenumber is such that we cannot have both At]-’2 and Ax]’2
within 20% in the same spectral region.

Errors in estimating Ax],2 for Rossby modes are 1ikely to be very
large if the zonal wavenumbers Sy and s, are on each side of the hump
of the frequency curve. The group velocity becomes negligible and
the reinforcement points remain almost stationary, occurring at the
time interval given by At],z. The spectral region for which the
group velocity changes sign is a function of % as shown in Figure 3.2.
Thus, if the initial energy is in high order meridional modes the
stationary disturbance will only appear if the maximum energy is in
higher zonal wavenumbers.

An interesting aspect of the dispersion of energy for =500 is
related to relatively large errors for A’c]’2 and Ax]’2 in view of the
small error for individual frequencies (Figure 3.5). The B-plane
frequencies are within 10% or less of the solutions on the sphere for
1<s<8 and 2<8 but At]’2 and Ax]’z can be overestimated by more than
80%. Even for the £=2 Rossby mode, the relative errors of Ax],2 and
At]’z are larger than for individual frequencies. This is a conse-
quence of the slope of the relative error curve for Rossby modes dis-

cussed in section 3.7.
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The B-plane yields better results for the dispersion by gravity
modes than by rotational modes. Figures 3.3 and 3.4 show that the
error is estimating individual frequencies of eastward gravity modes
is larger than for the westward gravity modes. As a consequence the
B-plane timing and positioning of eastward bound reinforcement points
is not as well estimated as the westward bound reinforcement points.

The non-divergent barotropic model studied by Hoskins-et al. (1977)
performs very well with respect to the energy dispersion between short

waves (s>7). However, for Tong waves and specifically for $<3 the

dispersion is drastically affected by the non-divergence assumption.
In the non-divergent model the group velocity between ultralong waves
of the 2=1 mode is positive (Table 1 of Hoskins et al., 1977) whereas
in the divergent model, the reinforcement train moves towards the east

1

=-13° day  for £=1, 1<m<3). For waves such that 3<s<7 the

(eq,2
group velocity towards the east implied by the divergent model 1is
about 30% slower than the non-divergent model prediction.

The excessive westward wave speed of rotational ultralong waves
is discussed by Phillips (1963). For ultralong waves the magnitude
of horizontal divergence is not negligible compared to the vertical
component of the vorticity (Burger, 1958) and therefore any model built

upon the assumption of small or zero divergence is not appropriate to

describe the characteristics of such ultralong waves.

3.2 Eigensolutions - equatorial B-plane and sphere
The eigensolutions of the linearized shallow water equations on
the equatorial B-plane have been previously discussed by Matsuno (1966}.

For the sake of completeness we discuss some of the characteristics
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of the eigensolutions that are relevant for the interpretation of the
results presented in Chapters 4 through 6. We shall first discuss the
normalized zonal kinetic energy Ku’ the normalized meridional kinetic
energy Kv and the normalized available potential energy P as functions
of non-dimensional wavenumber k and meridional mode n. Secondly, the
horizontal structure of the eigensolutions will be reviewed. Although
Matsuno (1966) compared the eigensolutions for different values of n
but the same zonal wavenumber k, he did not compare waves of the same
meridional number n but different zonal wavenumbers. In this section,
we shall discuss this case since it is important for the interpretation
of the results presented later. We also compare the energetics and
structure of the free wave solutions on the equatorial B-plane with

the results obtained on the sphere.

3.2.1 The energetics of the eigensolutions
The normalized zonal kinetic energy Ku’ the normalized meridional

kinetic energy KV and the normalized available potential energy P are

defined by
+ o0
2
KU = Lé:/oo uk,n (}/) dy , (3]3)
+
W e 2
= 1 . Ve (y) dy , (3.14)
+
poy | b (V) dy (3.15)

The normalization condition (2.59) implies that

KU+KV+P=1/2. (3.16)
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Substituting the definition for % n r(y) given by (2.59) into (3.15),

we obtain

Po=

P R poie 1o B gl gy oYY L2
J[ L Conor ok ) g )+ 0% W KD ) - kIl HRYH () H (] e
. no 2 B ,

2"t 7 [y, PN e i) o0 (o, 2 #K) (- Ed)]

(3.17)
for n>1. The third term in the integrand vanishes because of the
orthogonality of Hermite polynomials (A.1). The terms invé]ving the
square of Hermite polynomials are easily evaluated using (A.2). The

final result is

- 1
P = > 57 (3.18)
(wk ~ &K )
N,
2|11+ > 5
(g =K b1} 40 oy g1+ K
for n>1. A close Took at the expression for u,  (y) in (2.55)
reveals that
v SP n>1 (3.19)

because the only difference between Ku and P is the sign of the third
term in the integrand of (3.17) which vanishes as discussed above.

Using (3.16) and (3.19) we finally have

KV= L, - 2P , n>1 . (3.20)
The available potential energy of the n=0 mode can be obtained

in a similar way and the result is

P=§g = 1 , (3.21)
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The eigensolution corresponding to the Kelvin wave (n=-1) is indepen-

dent of the wavenumber k according to (2.55) and therefore
K =P=1y%, K =0 for n=-1. (3.22)

From section 2.3.3, we know that for the geostrophic modes w - 0O

as k=0, and therefore by taking the 1imit of (3.18) as k-0 we obtain
K =P =% for geostrophic modes . _ (3.23)

Figure 3.8 shows the magnitude of Ku or P (a) and KV (b) for the
eastward gravity waves (dashed 1ine) and westward gravity modes (solic
1ine) as a function of the non-dimensional wavelength k (abcissa) and
n as labelled. The magnitude of Ku (or P) increases with increasing
k and decreasing n for the gravity waves and accordingly, the magni-
tude of KV decreases as k increases and n decreases. The Kelvin wave
(dash-dotted 1ine in Figure 3.8) has no meridional kinetic energy
since v=0 on the equatorial 3-plane. Only minor differences are
found between the eastward and the westward gravity modes; Ku of the
eastward mode is larger than Ku of the westward mode, the difference
being Targer for small k and n. As k increases the kinetic energy
of the n'th ecastward mode merges into the (n+1)'th westward mode.

For k=0 both modes have exactly the same Ku (or P). As for K the

V’
same behavior is found i.e., the merging of the n'th eastward gravity
mode into the (n+1)'th westward gravity modes as k increases. At
k=0, all gravity modes share the same meridional kinetic energy
(KV=O.25). .\ ‘ |
\ \ .
Figure 3.9 is the same as Figure 3.8 but for Rossby waves. The

mixed Rossby gravity wave has been included on this diagram although

-k
it should have been displayed as a westward gravity wave for k<2



76

. "Abasus [eLjuajod S| ge|LeAR 3Y] SL J 94dYM
d=") aue|d-g |eL4a0lenbs syl u] -palaqe] mm U pue ( ©ssLOge) 3 JO UOLIJUNS B S SIARM
Kytneab 404 (q) My prats-A ayz uL pue (e) 'y platy-n ayl uL ABusUS OLIBULY PIZL | RWAON 8¢ 2unbly

(q) (e)
% !
0 8 z 9 G 17 ¢ Z | 0
| i | | | | |
0 {5210
G0'0 0GL 0
oLo GLL'O
A
M d‘"M
GL0 0occo
0Z0 [ AA)
GZ°0 0520
{ | I | I | | | | I [} | | | =T




77

(08

MY

—0¢°0

—0€°0

-0’0

— 060

"S9ABM AQSSOY 404 3NQ '€ 24nbL4{ se auweg

6°€ dunbL4

]

]

MY

—460°0
2
—0L0
n
d°M
—G10
—=0C0
ez o




78

as discussed in section 2.3.1. As a first approximation Figure 3.9
shows that Ku is larger than KV provided k<n, i.e. zonal motion
predominates over meridional motion for large n and small k. For
ultralong waves (k <1) however, most of the kinetic energy is in the
zonal direction. At k=0 (the geostrophic modes) KV vanishes since
v =0 according to (2.66). The energetics of the mixed Rossby gravity
wave tends towards the typical behavior of Rossby modes for large k
and to gravity modes as k decreases to zero.

The ratio of total kinetic energy (K = Ku4-KV) to the total energy
(E=K+P) is shown in Figure 3.10.a for the eastward gravity waves
(dashed lines)and for the westward gravity waves (solid lines) and in
Figure 3.10.b for the Rossby waves as a function of zonal wavenumber
k (abcissa) and n (as labelled). The ratio tends to 0.5 for gravity
waves and to 1 for Rossby waves as k increases. For k=0, the ratio
is 0.75 and 0.5 for gravity waves and Rossby waves respectively. The
mixed Rossby gravity wave is again seen to behave as a Rossby wave for
large k and as a gravity wave for small k.

The energy of Rossby waves is thus seen to be almost equally
partitioned between kinetic and available potential energy for ultra-
long waves while most of the energy is in kinetic form in short waves.
The partition of total energy in kinetic and available potential forms
of energy in gravity waves is not as sensitive to k as Rossby waves
are since

0.5<K / (K+P)<1 for Rossby waves
and

0.5<K / (K+P)<0.75 for gravity waves .
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Another important conclusion that can be drawn from Figure 3.10 is that
more information is contained in the wind field than in the geopoten-
tial field for short Rossby waves since the ratio K/E tends to 1 as

k increases. In gravitational modes both wind and pressure fields

are important since the ratic K/E tends to 0.5 as k increases.

The asymptotic behavior of Ku (or P), KV and K/E of the B-plane
free waves as k tends to zero (not shown) agree with the -« case on
the sphere. The results on the sphere as a function of € are shown
in Figures 14 (s=0) and 15 (s=1, 2) of Longuet-Higgins (1968).

Let us compare now the =500 equatorial B-plane estimate of partition
of energy with the sphere results discussed by Longuet-Higgins (1968).
For the zonally symmetric case, the B-plane estimate of K/E for gravity
waves differs from the sphere by less than 2% up to £=5. The geo-
strophic modes are not discussed by Longuet-Higgins. For s=1 and 2
(k=0.21 and 0.42 according to Table 3.1), the B-plane fails to re-
produce some of the features on the sphere. The difference appears

in the trend of the ratio K/E as a function of the meridional index.
The ratio decreases as a function of the meridional index on the
sphere for class two waves and on the B-plane the reverse is true
(figure 3.8.a). The magnitude of the relative error is however, less
than 3% for the modes shown in Figure 3.8.a and therefore comparable
to the g-plane errors already discussed in sections 3.1 and 3.2. For
rotational waves the ratio K/E is less than 0.5 for s=1 and 2 on the
sphere while on the B-plane it is larger than 0.5 (Figure 3.8.b), but

the relative error is less than 5% for the modes shown in Figure 3.10.
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The g-plane seems to perform slightly better for gravity waves
(e =500) as far as the ratio of kinetic energy to total energy is
concerned. The energetics of Kelvin waves and mixed Rossby gravity
waves are also well reproduced by the B-plane.

The ratio of kinetic energy to total energy K/E for the external‘
mode as a function of s (ordinate) and meridional index & (as labelled)
for gravity waves and rotational waves are shown in Figure 3.11 (taken
from Kasahara, 1976). Although the general trend as a function of s
is the same as in the equatorial B-plane case (Figure 3.10) the trend
as a function of 2 is opposite (refer to Table 3.2 for the relation-
ship between % and n). The conclusions drawn from the B8-plane case
concerning the relative importance of the geopotential and wind fields

are still valid provided that the dependence on £ (or n) is reversed.

3.2.2 The two-dimensional structure

The horizontal structure of the normal modes of the shallow water
equations on the equatorial R-plane can be conveniently displayed
independently of Lamb's parameter €. Figures 3.12-3.17 show the two
dimensional distribution of the wind and geopotential fields for k=0.5
(a) and k=6.5 (b). In all figures one wave length is shown in the
x-direction and the ordinate is the non-dimensional y . Figure 2.3
allows us to readily estimate: horizontal distance in Figures 3.12-3.18
in dimensional units provided e is given, e.g., for €=10 one non-
dimensional length unit is approximately 3600 km. The relationship
between the non-dimensional iwavenumber k and the wavenumber s on the
sphere is given by (3.4). Thus, k=0.5 corresponds to sA1 and k=6.5
to s¥12 for e=10. For e=500 the nearest integer wavenumbers on the

sphere are s=3 and s=32 for k=0.5 and k=6.5 respectively.
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EASTWARD

GRAVITY WAVES

E0 = o

I AT s TS e
ZONAL WAVENUMBER (S) ROTATIONAL WAVES

WESTWARD
GRAVITY WAVES

O

ZONAL 'WAVENUMBER {3)

Figure 3.11 Ratio of kinetic energy K ( K=Ky+K, ) to the total
energy E ( E=K+P ) for gravity waves and rotational
waves as a function of the zonal wavenumber s and
meridional index Z,as labeled on each Tine.

( after Kasahara,1976 )
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Rossby modes are shown in Figure 3.12 for n=1 and in Figure 3.13
for n=6. The balance of the pressure and wind fields is such that v
is approximately in geostrophic balance with ¢ for long waves and u
with ¢ for short waves. Consequently, %%—(-g%) is large {small) for
Tong (short) waves. The relationship between the kinetic energy and
available potential energy discussed in the previous section is
evident when comparing Figures 3.12.a and 3.12.b,namely, the small
geopotential deviations for larger k (the geopotential field is scaled
by 1000 in Figure 3.12.b) implying that most of the energy is in kinetic
form (mostly in meridional motion) as shown by Figures 3.9 and 3.10.b.
Figures 3.12 and 3.13 indicate the following about the latitudinal
distribution of P and K: for large n (Figure 3.13) pressure gradients
are small in the equatorial regions contrary to the low n case (Figure
3.12). On the other hand, the wind intensity is high in the equatorial
region in both cases. It can be argued that the tendency for geo-
strophy in equatorial areas makes u (or v) large since the Coriolis
parameter is small. The maximum amplitude of the geopotential field
shifts northwards as n increases as shown in Figures 3.12 and 3.13.
The latitudes of wind maxima are, however, related to the meridional
number n and do not have a definite latitudinal preferenca.

Figures 3.14 and 3.15 display the n=1 and n=6 westward gravity
waves respectively. The n=1 is a peculiar wave since for larger k
it looks 1ike a Kelvin wave (Figure 3.17) moviny towards the west
(notice the convergence at x =0 which tends to build the high pressure).
However, the pressure and wind fields ar«e m out of phase with respect

to the Kelvin wave. The smaliness of the meridional wind component

could have been anticipated by the spectral distribution of kinetic
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energy shown in Figure 3.8. As k increases the frequency O 11 tends
towards k (Figure 3.2) and therefore (2.59) shows that the eigenfunc-

tion e ](y) is approximately given by

2k

i ol
oY
1,1V = 0 et (3.24)
-2k Ek,],1

which only differs from the Kelvin wave eigenfuncticn Ek,-T,Z(y}
(2.55) by the k factor. Also of some interest is the behavior of the
as a function of latitude as k

number of zeros of u and &

k,n,1 k., o

increases; the term dependent on H__.(y) in (2.59) Tooses its impor-

n+l
tance since it is multiplied by (wk,],]—k)‘ This effect is clearly
shown in Figures 3.14 and 3.15.

The zonality of the wind field for short gravity waves is also
pronounced for the n=6 mode but not as much as for n=1, as predicted
by the kinetic energy partition (Figure 3.8). No tendency for geo-
strophy is observed for gravity waves; the wind blows towards high
nressure and when the air is flowing parallel to the geopotential
isolines it usually does so in the wrong direction. Thus, local
accelerations of u and v are high in order to satisfy the momentum
equations. As a result of the ageostrophy, the divergence field is
large and the direction of propagation is easily verified by inspecting
the Tocal tendency of .

The mixed Rossby gravity wave for k=0.5 and k=6.5 is shown in
Figures 3.16.a and 3.16.b respectively. Two well defined vortices are
centered at the Equator and in Figure 3.16.b we notice the predominance
of meridional motion. The magnitude of the perturbation pressure field

is also very small for the shorter wave (the geopotential field in

Figure 3.16.b is scaled by 10,000).



89

*anem A3LAeab-Aqssoy paxiw

0U0‘0Ll £q poTedS Y

S0 P 2

— —

JL AL 0 AL

39Ul 404 3ING ZL°€ 94nbi4{ Se saweg g|'¢ s4nblL4

T T ¥ T

\—/.—-..’./.

< 7

N

Y

090 2 2
4= 1L AL O AL~ AL
-\/\_ T T T
. . e e o+ ¢ s wom v om w s
¥ . aE e F° . B B w oy s
. . B R L O
. . . . L s S E - as ow N f.NI..
N » ” n\s\W\\v.u SNy
b s ) \\ B N RN
(B ' /] A Y 2 NN
) IEA \WN. ~ Ny
Vb 4 2\\..?.’/:_1
, L SRR A I I ) -
D A/MT - /\«\ !
! 7/:,mL..h. )\,\~
| 1l =~ L 3 O
[ i \.llh,\
y PO g, Ty L
/ RTINS
I \/\/.\lnm. = /\/
y ’/ ///J) v v
N e
N .
[} v ~ ~ - e -
\ AN N . &‘\\\\
PN NI
Nt e T2 2E
N
. G - -" "3y - -y .
.\/\_ 1 i 1

3dNLrLv



90

The vortex centered at the Equator for the mixed Rossby gravity
wave is a characteristic of modes of even order because v is symmetric
about the Equator and u and ¢ are artisymmetric as discussed in
section 2.3.2. Contrary to pure gravity waves, the mixed Rossby
gravity wave shows a marked tendency for geostrophy at higher lati-
tudes. For shorter waves, the v-component is very large, another
characteristic of Rossby waves.

The perturbation geopotential and zonal wind of the B-pliane
Kelvin wave are independent of the zonal wavenumber k as shown by
(2.55). The balance between the zonal velocity and the meridional
geopotential gradient is clearly observed in Figure 3.17 which shows
the B-plane Kelvin wave for an arbitrary zonal wavenumber.

Let us consider now the vorticity and divergence fields associated
with the free wave solutions of the divergent barotropic model. We
have already mentioned the effect of convergence in gravity waves in
generating a strong geopotential rise thus building a high pressure
area. This effect can perhaps be most easily identified in Figure
3.14 for the n=1 westward propagating gravity wave for k=0.5.

Figure 3.18.a and 3.18.b shows the divergence and vorticity fields
for this particular wave. The maximum convergence is centered at the
Equator where there is no vorticity. The vorticity comes primarily
from the zonal gradient cf the meridional wind component (%§~).

The divergence and vorticity fields of a Rossby wave (k=0.5 and
n=1) are shown in Figure 3.19.a and 3.19.b respectively. The cyclonic
and anticyclonic vortices centered at y=0.8 in Figure 3.12 are clearly
shown in the vorticity field (Figure 3.19.b). The regions of maximum

T

o m .
and minimum convergence are located at y=1.2 but 7 out of phase.
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Figure 3.17 Non-dimensional geopotential and wind fields of an
equatorial RB-plane Kelvin wave. The geopotential and
wind fields are normalized such that the total energy
is 0.5 ( according to (3.16) ). The abcissa is kx and
the ordinate is the non-dimensional Tatitude y.
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However, the striking difference between the Rossby wave shown in
Figure 3.19 and the gravity wave in Figure 3.18 is the ratio between
the vorticity and divergence maxima; for the Rossby wave the ratio is
approximately 12 and for the gravity wave it is approximately 0.5.
Thus, for the long Rossby wave shown in Figure 3.19 the vorticity is
about one order of magnitude larger than the divergence, and for the
r=1 westward gravity wave the vorticity and divergence are about
the same order. At k=6.5 and n=1 the ratio of vorticity to diver-
gence is approximately 300 and 0.1 for the Rossby wave and westward
gravity wave respectively. Thus, as k increases, the divergence
becomes negligible compared to vorticity in Rossby waves and diver-
gence becomes domfnant in gravity waves.

Figure 3.20 shows the ratio of the maximum vorticity to the maxi-
mum divergence (max|z|/max|¢|) as a function of the zonal wavenumber

k on the equatorial 3-plane. For Rossby waves the ratio max|z!/max|s$

is minimum at k¥ 0.85, increasing rapidly for k20.85. This same ratio

for gravity waves is fairly constant over the range of k shown in

Figure 3.20 (0.1 <k<7) being of the order of 0.5 but decreasing as

k increases. The peculiar behavior of the eastward gravity wave in

the neighborhood of k=1.5 does not seem to have a simple explanaticn.

Long Kelvin waves have more vorticity than divergence but for k> 0.6

the reverse is true. Vorticity and divergence in mixed Rossby gravity

waves are comparable only for small k; as k increases it behaves like

a Rosshy wave and the vorticity far exceeds the divergence for k> 2.
The horizontal structure of Hough functions on the sphere for

=500 are qualitatively and gquantitatively similar to the equaterial
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R-plane free waves discussed so far and need not be shown here. The
equatorial B-plane estimate of Hough functions with € =10 are qualita-
tively good in the neighborhood of the equator even for higher order
meridional modes. Figure 3.21 shows the % =6 Rossby wave (a) and the
2 =5 westward gravity wave on the sphere (e=10) for s=1. According
to Table 3.2, which gives the correspondence between the meridional
numbers on the equatorial B-plane and on the sphere, Figure 3.21.a

can be compared to Figure 3.13.a and Figure 3.21.b to Figure 3.15.a.
The qualitative agreement is fairly good with respect to latitudinal

distribution of highs and Tows and wind maxima and minima.

3.3 Discussion

When solving an initial value problem by the normal mode technique
it is extremely helpful to know the characteristics of the basis func-
tions since the initial condition and/or forcing term are projected
onto such functions. Obviously, an initial condition near the geo-
strophic balance can be mostly described by Rossby modes. On the
other hand, an initial condition in the geopotential field alone (e.g.
a geopotential bump near the Equator) cannot be accurately described
by Rossby modes since the geopotential gradients near the Equator are
required to be small by geostrophy (see Figures 3.12 and 3.13).

Thus, some characteristics of the solution can be inferred a
priori just by the knowledge of the horizontal structure of the basis
functions. On the other hand, knowledge of the frequency and disper-
sive characteristics of the free waves also help us in understanding
the time behavior of the solution. If the initial condition is pro-

jected mostly onto gravity modes we expect the initial configuration
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to be rapidly dispersed, especially if it contains more energy in the
short wave part of the spectrum as shown in Figure 3.6 and Table 3.5.
Along this same Tine, the Rossby wave contribution to the initial con-
dition can yield dispersion of energy to the east and west: the west-
ward dispersion is mainly of long waves and the eastward dispersion

is characterized by short waves (Figure 3.6 and Table 3.3). Depending
on the spectral distribution of energy in the zonal direction we may
observe different time behaviors.

The concept of wave reinforcement introduced by Hoskins et al.
(1977) and discussed in section 3.1.7,although based on a frequency
argument, also depends on the meridional structure of the wave. Sup-
pose we are considering two waves: wave I (short) and wave II (long).
Reinforcement occurs when the two ridges (or troughs) come together,
but if the two waves have maxima, minima and zeroes at different
latitudes it is not meaningful to consider reinforcements. However,
for a wide range of meridional modes we have observed that the merid-
ional structure of the free waves is not highly dependent on che
zonal wavenumber (Figures 3.12 to 3.16 are an example).

In this chapter we have also compared the equatorial R-plane
eigenfrequencies and dispersive characteristics (distance and time
between reinforcement of waves) with the results on the sphere. As
expected, for small equivalent depth (large e) the agreement is fairly
good as discussed in section 3.1. In Chapters 4, 5 and 6 we present
solutions of the initial value problem on the equatorial R-plane and
on the sphere and we observe that the B-plane estimate for £=10 is
qualitatively good provided the initial conditon and/or forcing is

located near the Equator and is of small dimension compared to the



equatorial Rossby radius of deformation. Another constraint is re-
lated to the period of time over which we observe the solution: the
characteristic time scale of wave reinforcement for Rossby modes is
of the order of a few days as shown in Table 3.3 and therefore the
evolution of the initial condition over a period of a few hours is
expected to be qualitatively similar on the sphere and on the equa-

torial B3-plane.
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4, INITIAL CONDITION IN THE GEOPOTENTIAL FIELD

The problem of adjustment of the mass and wind fields when an
initial perturbation is given solely in the geopotential field is
treated in this chapter. According to section 2.1 such an initial
condition can be interpreted as an instantaneous mass source or sink,
and the results can be interpreted as internal modes., or as wind shear
and thickness in a two level baroclinic model.

In section 4.1, we discuss the general form of the initial condition
on the equatorial g-plane. The partition of energy between Rossby
modes and gravity modes for a symmetrical ¢-perturbation as a function
of size and latitude is shown in section 4.2. In section 4.2, we also
discuss the effect of the partition of energy on the future behavior of
the solution. In section 4.4, we discuss the solution on the sphere
for the external mode (e=10). A summary of the results can be found

in section 4.5.

4.1 Initial Condition

Let us consider now the initial value problem on the equatorial

g-plane with the initial condition given'by

g(x,y,0) = lexp {--—= ek

The above expression depends on the two parameters Fa and Yo the
first is the e-folding half width of the bell shaped initial condition

and the second is the latitude of its center.
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The initial condition (4.1) can either be interpreted as a
geopotential perturbation in the homogeneous fluid due to accumulation
of mass or interpreted as a temperature perturbation in the stratified
fluid as discussed in Chapter 2. In particular, for the two-level
baroclinic model, the initial condition (4.1) corresponds to a bell-
shaped thickness perturbation with maximum unit value at x = 0 and
Y =Y, Taking Ap = 500 mb and a lapse rate of 2.2° C km-] we easily
compute ¢ tc be approximately 41 ms"] and therefore ¢ - 500. The
above Tapse rate is typical of the conditionally unstable tropical
atmosphere. Accordingly, for a unit non-dimensional thickness pertur-

bation we have

~ . 2.-2 o s
6 =1~ $.=500 = 1716°S + AT = 6°C (4.2)

where AT is the temperature difference in the 500 mb layer between
levels 1 and 3 in Figure 2.1.

The first step to solve the initial value problem governed by
Tinearized shallow water equations (2.4) with the initial condition
(4.1) is to find the Fourier components gk(y,o) of (4.1) according

to (2.69). The result is

— 0 =

' 2
L (y-y ) 3 5
: N R V7R IS B (y-y,) .22
Slys0) =1 2 % S L erf (%) exn{ - 2. g B ',
= r . (4.3)

5 e

where k is given by (2.28). The e-folding half width of the Fuurier

spectrum of (4.1) is

k= %- (4.4)



102

Thus, (4.4) shows that a narrow initial condition in ¢ is projected onto
a broad band of zonal waves and vice-versa with maximum ak(y,o) always
at k=0. The Tocaiization of maxima and shape of the Fourier spectrum
of the initial condition is of great importance for the process of
dispersion of energy as discussed in Chapter 3.

In most situations to be considered in this chapter, LX (the
zonal periodicity) and ro are such that the approximation

L

erf (r—x) 2 q (4.5)
e

can be safely applied to (4.3). The next step is to find the projection
of gk(y,o) onto the normal modes Ep.n r(y) in order to define the

expansion coefficient ¢ as in (2.83). Once the coefficients

ksnsr
Ckon.p are determined, the series expansion for the solution at any

arbitrary point (x,y) and time t can be performed (Equation 2.78), and
the solution is known within the desired truncation in the zonal wave-

number k and meridional index n.

4.2 Partition of energy
Parseval's theorem allows us to estimate the partition of energy
between Rossby and gravity modes given the initial condition (4.1).

A measure of the partition is given by the parameter R defined by

2
TE Z Ck,n,o
_ RW _ all k,n
R=reme = 5 (4.6)
c
k,n,r

all k,n,r

R is the ratio of the total energy in Rossby waves (TERW) to the total
energy in the initial condition (TE). The value of R is important in

understanding the dynamical characteristics of the motion evolving
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from the initial condition (4.1). Most of the initial energy goes into
Rossby modes if R is near unity and the time behavior of the solution
is slow (i.e., in approximate geostrophic balance). If R is small,
most of the initial energy is in gravity modes which have a fast time
character and tend to rapidly propagate outward with Tittle dispersion
in the short wave part of the zonal spectrum (Figure 3.6).

Figure 4.1 shows the ratio of total energy in Rossby waves to the
total initial energy as defined by (4.6) as a function of the e-folding
half-width Py at yo=0 and yo=1.2 as labeled. The scale at the top of
Figure 4.1 is in dimensional units for e=500; in this case the distur-
bance at y0=1.2 is centered at approximately 14°N. The ratio increases
as ry increases and it is larger for y0=1.2 implying that more energy
goes into Rossby waves for large disturbances and those centered at
higher latitudes. The two curves tend to merge for very large dis-
turbances simply reflecting the fact that the initial condition at
y0=0 and yo=1.2 are not clearly distinguishable if P>

The smallness of R and its larger value for large-scale
geopotential disturbances away from the Equator can be easily explained
by the structure and energetics of Rossby waves as discussed in
Chapter 3. Most of the total energy in Rossby waves is in kinetic
energy form (Figure 3.10) and the geopotential gradients are small
near the Equator as required by geostrophy (Figure 3.12-3.13). A
small perturbation at the Equator requires a broad spectrum in the zonal
wavenumber k according to (4.4) and as k increases the total energy
in Rossby waves is almost all in kinetic form (Figure 3.10), i.e. there
is more information in the wind field for large k (small zonal wave-

length). This explains why less energy goes into rotational modes
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Ratio R of the total energy in Rossby modes to
the total initial energy as a function of the
haif width ro for the initial condition given

by (4.1) centered at the Equator ( y,=0 ) and

at ¥,=1.2 ( 140N for =500 ). The scale at the
top 1s dimensional based on £=500.
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for small-scale geopotential disturbances. Shifting the geopotential
perturbation away from the Equator makes it possible for higher order
meridiona]lmodes to contribute to the representation of the initial
condition since large n Rossby modes have maximum geopotential
perturbation away from the Equator (Figure 3.13). Figure 3.10 shows
that for a fixed zonal wavenumber, the ratio K/E decreases for higher:
meridional index n Rossby modes and therefore we would expect a larger
fraction of the disturbance centered at y0=1.2 to be represented by
Rossby waves.

For a geopotential perturbation with the parameter By larger than

the equatorial Rossby radius of deformation a more significant percentage

of the initial energy goes into Rossby waves. In particular, if the
non-dimensional half-width is twice the equatorial Rossby radius
(re=2) we have an equal partition of energy between Rossby waves and
gravity waves.

Knowing the ratio R of the initial condition and the energetics
of Rossby waves we can anticipate gross features of the time evolution
of the initial value problem. Let us consider for example the
development of the broad initial geopotential perturbation re=2. In
this case the Fourier components (4.4) show that the energy is concen-
trated near k=0 with a sharp cut-off rear the origin. In other words,
most of the energy is concentrated in the long wave part of the
spectrum. Figure 4.1 shows that 50% of the energy is in Rossby modes
and Figure 3.9 shows that in long Rossby waves P=Ku is nearly zero.
The initial geopotential perturbation tends to remain at the initial
position being slowly dispersed westward (Figure 3.6). Thus, we can
say that if the disturbance is large compared to the equatorial Rossby

radius of deformation the wind field tends to adjust to the mass field.



On the other hand, a small initial geopotential perturbation has a
broad spectrum in the zonal direction according to (4.4) and little
energy goes into the slow dispersive Rossby modes according to
Figure 4.1. Moreover, Rossby modes of shorter wavelength have more
energy in the wind field (Figure 3.10) and therefore the initial
geopotential perturbation is drastically reduced. The small energy
and slow dispersive motion Teft after the gravity waves disperse most
of the initial energy is primarily in the wind field. Thus, we can
say that the mass field has adjusted to the wind field since there was
no motion initially.

On the f-plane, the classical geostrophic adjustment problem also
predicts a wind adjustment for large disturbances and mass adjustment
for small disturbances. However, in this case the comparison is made
with the Tocal Ressby deformation radius %3 which tends to infinity
as the Equator is approached. Vhen the g-effect is included the
relevant parameter is the equatorial Rossby radius of deformation
defined by (2.22). We should also bear in mind that the adjusted
state is not the same on the f-plane and on the equatorial g-plane

as discussed in section 1.3.

4.3 Equatorial g-plane example

In Figures 4.2 to 4.6, we show the evolution in time of the
initial condition in the geopotential field given by (4.1) for
re=0.35 (re * 480 km for ¢=500) and Fg=1+2 (yo > 14° N for ¢=500).
Figure 4.1 shows that for such an initial condition about 20% of the
initial energy is described by Rossby modes. The results of such an

experiment are therefore representative of relatively small perturba-

tions. If we interpret the results as being produced by the 2-level



107

baroclinic model with £=500 we are describing a perturbation of a scale
slightly larger than a tropical cloud cluster (Williams and Gray, 1973).
Truly localized disturbances require a prohibitive number of eigen-
functions to be accurately reproduced by the series representation
given by (2.79) but Figure 4.1 shows that, from an energy partition
point of view, the results would not be qualitatively different had

we chosen O.2<re<0.5.

In most of the experiments performed on the equatoria} g-plane,
we have looked at the solution up to t=8 (tz3 days for e=500). MWe
have chosen the period in the zonal direction LX and a displaying
area such that the influence of the periodicity is not felt within the
time frame of the experiment. This can be easily computed remembering
that the maximum group velocity allowed in the governing equations is
the phase speed of pure gravity waves c or, in non-dimensional units,
one unit of length per unit time. Thus, if we 1imit the horizontal
area to 3 units in the zonal and meridional direction we can use
LX=12 non-dimensional length units. The value of k is dependent on
LX as shown by (2.28) and the dispersive characteristics of the system
are affected by the choice of LX. However, within the time frame of
the experiments this effect is negligible.

Figure 4.2 is an x-t cross section at y=1.2 of the geopotential
field for the geopotential disturbance centered at y0=1.2 with
e-folding half-width re=0.35. Figure 4.2.a is the complete solution
and Figure 4.2.b (scaled by 1000) is the quasi-geostrophic solution,
i.e., the gravity modes were eliminated from the series solution (2.78).
Figure 4.2.a shows that at t=0 the geopotential perturbation is con-

centrated around the origin x=0 and that it is rapidly dispersed by
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the gravity modes in the form of fast moving gravity fronts, one
propagating towards the west and the other towards the east. The
gravity front travels at almost the maximum group velocity allowed in
the system (cg = 1 non-dimensional unit), in agreement with the results
on dispersion of gravity waves discussed in Chapter 3.

The amplitude of the ¢-perturbation is reduced to less than 15% °
of the initial value after t = 2 in agreement with the expected behavior
based on energy partition (Figure 4.1). Comparing Figures 4.2.a with
4.2.b we clearly see that the geopotential field after t=1 is primarily
due to the Rossby mode contribution. The region of positive geopoten-
tial perturbation drifts towards the west and at the same time it is
spread over a larger area showing the slow dispersive character of
Rossby waves. A small negative geopotential perturbation appears to
the east of the initial perturbation in Figure 4.2.a and we can trace
it to the Rossby mode contribution in Figure 4.2.b. This negative
geopotential area is a reflection of the eastward dispersicn of shorter
Rossby waves (Figure 3.6).

Figure 4.3 and 4.4 show the x-t cross section of the vorticity
and divergence fields respectively, at y=1.2. As in Figure 4.2, the
complete solution is shown in Figures 4.3.a and 4.4.a while the Rossby
mode contribution to the totai solution is shown in Figures 4.3.b and
4.4.b. The divergence field in Figure 4.4.b is scaled by 10,000.
Figures 4.3 and 4.4 clearly show that the motion left after the passage
of the gravity front is primarily due to Rossby waves, with divergence
at least one order of magnitude smaller than the vorticity. This result
could have been anticipated based on Figure 3.20 which shows that the

ratio of vorticity to divergence in Rossby waves is very large. The
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vorticity associated with the slow dispersive gravity waves is a small
perturbation on the vorticity field of the quasi-geostrophic part of
the solution as inferred from Figure 4.3.a and 4.3.b.

The divergence field in Figure 4.4.a progressively becomes more
zonal as time increases. This is due to the slow dispersion of long
gravity waves as shown in Figure 3.6. Positive and negative zonal
bands of divergence aiternate in time with a period of approximately
2.5 non-dimensional time units implying a frequency typical of long
gravity waves as shown in Figure 3.2. The divergence associated with
Rossby modes (Figure 4.4.b) has a negligible contribution to the total
divergence field (Figure 4.4.a).

Although the geopotential and vorticity (Figure 4.2.b and 4.3.b
respectively) of the Rossby mode contribution to the initial condition
at t=0 is symmetrical about the origin x=0, the divergence field
(Figure 4.4.b) is antisymmetrical. As a result, the initial develop-
ment is such that the whole geopotential configuration drifts toward
the west; the positive divergence lowers the geopotential perturbation
to the east of the initial geopotential maxima, eventually to negative
values. Towards the west a slow increase in the geopotential values
is observed reflecting the initiail convergence shown in Figure 4.4.b.

The non-dimensional divergence field in Figure 4.4 can be made

dimensional by the factor (T)_1. Fram (2.21) with =500, we have

5

(117 00 = 3.1 x 107°57! (4.7)

The vertical motion at the middle Tlevel of the 2-level barocliinic model
can be obtained from the divergence field through the continuity

equation as in (2.5.e). In dimensional units (mb day"]) and for
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e = 500 we have

6y = 1.3 x 103 (7 ) mb day”!

Figure 4.4.a shows that the vertical motion oscillates between

+ 16 mb day_] (using (4.2) and (4.8)) for an initial positive tempera-'
ture deviation of 1° C in the 500 mb layer between levels 1 and 3 of
the 2-level baroclinic model (Figure 2.1). The maximum vertical motion
associated with the Rossby modes in the x-t cross section shown in

1 at t=3. However, the initial

Figure 4.4.b is approximately 4 mb day
imbalance generates a violent response in the divergence field in a
very short time as shown in Figure 4.4.a. The associated maximum
upward vertical motion for the 1° C instantaneous heating at the
500 mb level is approximately 750 mb day” .
From Figure 4.2, 4.3, and 4.4 we conclude that the Tow frequency
Rossby type of motion is dominant in the neighborhood of the initial
¢-perturbation after approximately one non-dimensional time unit.
Figure 2.2 allows us to convert this adjustment time to dimensional
units; for ¢ > 5 ms_] we see that one non-dimensional unit is less
than one day. In particular, for =500 (c=41 ms']) the quasi-geostrophic
motion is dominant after less than half a day (scale on left of
Figures 4.2, 4.3 and 4.4). 1In section 4.5 we further discuss. the
adjustment time which in our case has to do with the time reguired for
the Rossby mode solution to become dominant. In the classical geo-
strophic adjustment problem the adjustment time is defined as the time

required for the geostrophic solution to become dominant (Cahn, 1945;

Obukhov, 1949).
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In view of the character of the sclution after the fast moving
gravity waves leave the area of the initial disturbance, let us consider
the two dimensional wind and geopotantial fields at particular times.

3 A 5 5
Figure 4.5.a, b, c, an

[ 65 2

{ d shows the two-dimensional wind and geopoten-
tial fields at t=0, t=2.7, t=5.3 and t=8 for ths same experiment
discussed so far. In Figure 4.5 the lower and left scales are in dimen-

1

sicnal units for =500 and the upper and rig

FIE SR . ) 5 -
nt scales are non-

dimensional. As for dimensional time we have: =0, 1, 2, and 3 davs
tor Figures 4.5.a, b, ¢, and d respectively. The geopotential field
in Fiqure 4.5 is scaled by 10,000 and the arrows are proportiosnal fo
the wind speed. At t=2.7 (Figure 4.5.b) we can still see the gravity
wave front at the corners of the figure with its characteristic
ageostrophic motion. Comparing Figures 4.5.a, b, ¢, and d, we see
that the initial ¢-perturbation has dropped to less than 107 of the

nitial value and has mcved westward and slightly northward 0.7
non-dimensional length units (900 km for £=500).

Another interesting detail in the development of the initial

cendition (4.1) is the appearance of the low ¢ cell to the east of
the initial perturbation. This can also be seen in Figure 4.2 and it
1s basically a Rossby wotion feature since it is also shown in
Figure 4.2.b. Associated with this low pressure center we observe
cyclonic vorticity as shown in the x-t vorticity cross section

(Figure 4.3). The intensity of this low pressure center becomes
comparable to the remnant of the initial ¢-perturbation after 3 days
(e=500) at about 5% of the initial value. The vortex generated in
nic response to the initial s-perturbaticn is highly asymetrical

geostrop

and the central pattern is stretched in the zonal direction reflectin

L[',}
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a westward dispersion of the energy in long Rossby waves. The wind
maximum in the neighborhood of the initial ¢-perturbation Ties to the
SE of the high ¢ center at t=2.7 and 5.3 (Figure 4.5.b and 4.5.c
respectively). At t=8.0 the maximum wind is still located to the SE
but the whole pattern is not so well characterized by the Rossby wave
‘type motion because, as the energy in Rossby waves gets dispersed, thé
local effect of slow dispersive gravity waves becomes comparable as
shown in Figure 4.5.b.

The two-dimensional vorticity field associated with the wind field
of Figures 4.5.b and 4.5.d is shown in Figures 4.6.a (t=2.7) and
Figure 4.6.b (t=8.0). The label of the contour lines in Figure 4.6
are non-dimensional; they can be made dimensional by the factor [T]']
which for ¢=500 takes the value given in (4.7). At t=2.7 (t=1 day
for ¢=500) the vorticity field (Figure 4.6.a) is dominated by a fairly
symmetrical area of cyclonic relative vorticity and a region of
anticyclonic relative vorticity. The anticyclonic region develops to
the east of the cyclonic region with maximm intensity towards the
southeast. At t=8.0 (t=3 days for €=500) the intensity of the anti-
cyclonic region has decreased while the cyclonic one has increased.

At this same time the development of another cyclonic center can be
observed near the Equator stretching northward suggesting a cross
equatorial transfer of energy in Rossby modes. This new anticyclonic
center is not a gravity wave feature since i. also appears in the
Rossby mode solution (not shown).

In Figure 4.5.d we can identify the anticyclonic vorticity field
near the equator as a vortex with little geopotential perturbation.

This is because the short Rossby waves, which have positive group
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velocity, have small geopotential amplitude near the Equator. The bulk
of the geopotential field near the Equator is a manifestation of the
long gravity waves which have small group velocity.

The tendency for a SW-NE tilt in the relative vorticity field
produced by an initial vorticity source has been noted by Hoskins
(1977). Although an asymmetry of the same sort is obtained on the
sphere with variable g-parameter, our solution shows that.this can
also be produced on a 2-plane provided the initial disturbance is put
away from the reference latitude (the Equator in our case).

The wind and geopotential fields at t=0, 2.7, 5.3, and 8.0 for the
bell shaped initial condition discussed so far but centered at the
Equator (yo=0) is shown in Figure 4.7. As in Figure 4.5, the arrows
are proportional to the wind speed and the geopotential field is
scaled by 10,000.

As predicted in section 4.2, based on the partition of energy
(Figure 4.1), the solution now shows much more variation in time.

At t=2.7 (Figure 4.7.b) the geopotential field has split into two
cells symmetric about the Equator and the maximum perturbation is less
than 4% of the initial value. At t=5.3 (Figure 4.7c) and t=3.0
(Figure 4.7.d) the long wave character of the slow dispersive gravity
wave is dominant in the geopotential field. However, there are some
common features among Figures 4.7a, b, ¢, and d such as the strong
zonal curvent at the Equator which is characteristic of symmetric
Rossby waves (odd meridional number) as shown in Figure 3.12.

Figure 4.8 shows the vorticity field associated with the wind
field at t=2.7 (Figure 4.8.a) and t=8.0 (Figure 4.8.b). The vorticity
field is antisymmetric with respect to the Equator, implying anti-

cyclonic relative vorticity in both hemispheres, and changes little
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between t=2.7 (t=1 day for =500) and t=8.0 (t=3 days for =500).
The vorticity field in Figure 4.8 is a Rossby mode feature a?though
only 4% of the initial energy goes into Rossby modes. For a 1° C
initial perturbation, in the middle level of the 2-level baroclinic
model, the maximum absolute relative vorticity is about 1.2 x 10701

at t=1 day compared to 5.1 x 10'6 for the Y = 1.2 case at the same

time (Figure 4.6.a).

The example shown in Figures 4.7 and 4.8 representing the initial
evolution of a small beil shaped geopotential perturbation at the
Equator shows that the initial condition leaves an impression in the
wind field as vorticity. Although the initial geopotential perturbation
is quickly wiped away, the wind field remains with a strong eastward
zonal current in the neighborhood of the initial perturbation.

Although the initial condition centered at Yo = 1.2 (Figure 4.5)
and ¥y = 0 (Figure 4.7) differ only by the latitude where they are
located, the time behavior of the solution is quite different as
predicted in section 4.2 from an energy partition point of view.

Besides the fact that only a small part of the initial energy goes
into Rossby modes, the peculiar behavior of planetary waves near the
Equator, where f is zero, contributes to the distinctive behavior of

the ¢-percurbation centered at the Equator.

4.4 Sphere (£=10) example

In view of the results obtained in Chapter 3, we solve the
problem cf adjustment of the mass and wind field on the sphere for the
external mode (€=10). The technique is the same as on the equatorial
g-plane except that the basis functions are Hough functions as discussed

in section 2.5. It should be remembered that the initial condition
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(4.1) has to be corrected for the convergence of meridians in order to
be reproduced on the sphere. This effect is small in equatorial
regions since it depends on the cosine of latitude but becomes large
at higher latitudes.

Figure 4.9 shows the ratio between the energy in Rossby modes and
the total initial energy (potential energy in this case) for the
external mode on the sphere as a function of the dimensional half width
P (top scale) for various latitudes as labeled. The lower scale in
Figure 4.9 is the half width of the initial geopotential perturbation
in non-dimensional units to facilitate comparison with the equatorial
B-plane results shown in Figure 4.1.

The partition of energy on the equatorial g-plane for the
bell shaped geopotential initial perturbation (Figure 4.1) can be
extrapolated to the external mode (e=10). The equatorial g-plane case
centered at ¥g© 1.2 closely corresponds to the ¢-perturbation on the
sphere at 40° N (Figure 4.9). Comparing Figures 4.1 and 4.9 we see
that for small perturbations, say r 0.5 (or ras 1800 km for £=10),
the equatorial g8-plane and the sphere agree fairly well, mainly for the
disturbance centered at the Equator.

In general, more energy goes into Rossby modes on the sphere than
on the equatorial g-plane as the size of the initial ¢~-perturbation
increases. The results shown in Figure 4.9 are however, qualitatively
in agreement with Figure 4.1 and the discussion in section 4.2 on the
partition of energy and the behavior of solution in time are still valid.

Figure 4.10.a, b, ¢, and d show the wind and geopotential fields
at t=0, 6, 12, and 24 hour respectively for the initial condition in

the geopotential field centered at A=-90° and f =25°. The half width



125

e (*(nj)

1000 2000 5000 7000
038 1 1 I T I I i

0.7

0 1= ””’:;?,ﬁﬁf
0.5 |- /

R 04l 40°
03 0°
0.2 -
ol r
| 1 1 |
0 05 1.O 1.5 20

re (non-dimensional)

Figure 4.9 Ratio R between the energy in Rossby modes to the
total initial energy for a bell shaped initial

condition in the ¢-field given by (4.1) on the
sphere ( €=10 ), centered at different latitudes

as labeled.



126

is approximately 1300 km. At t=0 (Figure 4.10.a) we have a negative
geopotential perturbation, i.e. low pressure, and at t=6 hours
(Figure 4.70.b) the pressure has increased at the center of the initial
perturbation and moved north-northeast. The quasi-geostrophic nature
of the flow at the center of the perturbation is already clearly seen
as well as the gravity wave front. The initial bell shaped Tow
pressure propagates outwards drawing fluid from the undisturbed region.
As the fluid converges towards the ring of low pressure, the pressure
builds up behind. However, this is not a symmetrical effect as can
clearly be seen after 6 hours (Figure 4.10.b). The high pressure is
more intense on the western side of the disturbance and this is due to
the different dispersive characteristics of westward and eastward
moving gravity waves. The westward moving waves are less dispersive
than the eastward waves as shown in Table 3.5 and therefore the
western part of the gravity front is sharper.

At t = 12 hours (Figure 4.10.c). a high pressure region to the
east of the remnant of the initial low pressure is developing; at
t = 24 hours (Figure 4.10.d) it is well defined and the wind fieid is
strongest between the high and the low in geostrophic response to the
strong pressure gradient. In Figure 4.10.c the gravity wave front
has not yet reached the antipodean point and the bulk of the energy
in gravity modes is concentrated in the neighborhood of the gravity
front. At t = 24 hours the dispersion of gravity waves can be
noticed since the gravity wave type of motion is spread over a much
larger area. This is a consequence of the small difference in group
velocity of gravity waves as a function of zonal wavenumber and

meridional number. Thus, the gravity wave front breaks up and Tooses
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(b) t=6 hcurs

Initial value problem on the sphere for the external mode
(¢ =10 ). The initial condition, given by (4.1) and shown
in (a), is a ¢-perturbation centered at¥,=25° 2=-90°. The
solution at t=6 hours, t=12 hours and t=24 hours is
displayed in (b),(c) and (d), respectively.
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its identity after a certain time and eventually there is ageostrophic
motion spread over the whole globe with no clear organization since the
narrow initial condition contains energy over a wide spectrum.

Most of the characteristics of the Rossby mode contribution to
the solution on the sphere are present on the equatorial g-plane
solution. As suggested by Figure 4.9, the equatorial g-plane partitidn
of energy assuming =10 closely approximates the result on the sphere
provided the disturbance is small and located near the Equator. On
the other hand, Table 3.3 shows that the equatorial g-plane prediction
of group velocity as defined by (3.7) can be large, on the order of
100% for long Rossby waves. However, the time between reinforcement
for long waves and low order meridional modes is on the order of 10
days and the group velocity is on the order of 10°-15° day']. If we
look at the solution up to t = 1 day we clearly see that the z-plane
solution for ¢=10 can reproduce, at least qualitatively, the exact

solution on the sphere.

4.5 Summary and Discussion

In this chapter we have presented the solution of the initial
value problem governed by the linearized shallow water equations about
a basic state at rest subjected to an initial condition in the geo-
potential field. The analytical expression for the initial ¢-
perturbation is given by (4.1), which is a bell shaped bump centered
at latitude ¥ with half width Fa- The Fourier components of the
initial condition are given by (4.3); the spectrum in the zonal
direction is such that a wide initial condition is projected onto a
narréw spectral band according to (4.4), which gives the e-folding

half width of the Fourier spectrum.
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A certain fraction of the ¢-perturbation initial condition coes
into Rossby modes as shown in section 4.1; for such an initial condition
most of the energy goes into gravity modes unless the initial disturbance
is large compared to the equatorial Rossby radius of deformation
(Figure 4.1). For small scale disturbances we conclude in section 4.1
that the mass field adjusts to the wind since very little energy goes
into Rossby modes and therefore there is practically no quasi-geostrophic
motion left after the gravity waves disperse the bulk of the initial
energy.

An example is shown on the equatorial 8-plane in section 4.2 for
a ¢-disturbance centered at ¥ = 1.2 and ra = 0.35. For such initial
condition, approximately 20% of the initial energy goes into Rossby
modes; this experiment is shown in Figures 4.2 through 4.6. In the
two-level baroclinic model discussed in section 2.7 with Lamb's
parameter €=500, the experiment can be interpreted as a sudden heating
with maximum heating at 500 mb. Thus, at t=0 we perturb the thickness
field without any effect on the wind field. During the time interval
between t=0 to t=3 days we notice the fast dispersion of the heating
by gravity waves and the development of a cold area to the east of
the initial disturbance. At t=3 days the cold and warm areas have
comparable intensity and the wind is close to thermal balance since
the solution at this time is mostly made up of siow dispersive Rossby
modes. Approximately 10% of the input heating is not dispersed by

gravity modes. As for possible consequences of these results to the

real atmosphere we postpone the discussion to Chapter 7.
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In the experiment shown in Figures 4.2 to 4.5 we have noted the
fast adjustment time i.e., the time required to observe the Rosshy
modes contribution to the solution. The time for adjustment Ta can

be defined as

jo3]
o 3
Te) ‘m

(4.9)

where cg is the characteristic group velocity of gravity waves. Thus,
if the initial condition is projected onto the short wave part of the
zonal spectrum, the adjustment is fast since in this situation cg in
(4.9) is close to the maximum value allowed in the system (cg=1), as
shown in Figure 3.6. For the bell shaped initial condition considered
here, the energy is concentrated near the origin with e-folding half
width of the spectrum given by (4.4). Figure 3.6 shows that the group
velocity of Tong gravity waves can be small and therefore the adjust-
ment time is slow; the wider the initial bell shaped ¢-perturbation, the
slower is the dispersion of the gravity modes although more energy
goes into Rossby modes in this case. Figure 4.11 is an example of
such behavior. It shows an x-t cross section of the divergence field
at y = 1.2 for an initial ¢-perturbation defined by (4.1) centered at
Yo © 1.2 and of half width B 2. As in Figure 4.2-4.4, the lower
and left scales are in dimensional units assuming €=500 and the top
and right scales are non-dimensional. The non-dimensional contour
Tines in Figure 4.11 can be made dimensional by (4.7) assuming £=500.

The divergence field is representative of gravity modes according
to Figure 3.20 since Rossby waves are primarily rotational. Figure

4.17 shows that the divergence field is indeed being slowly dispersed
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since the maximum absolute value decreases with time but not nearly
as fast as in Figure 4.3, where the small scale geopotential initial
condition is treated.

In section 4.4 we have discussed the barotropic case on the sphere
with Lamb's parameter e=10. From the energy partition point of view,‘
the results are qualitatively similar to the equatorial g-plane if
the initial condition is small and near the Equator. Figure 4.10 shows
the initial condition and the wind and geopotential fields at t=6 hour,
12 hour and 24 hour for a disturbance centered at 25° of latitude north
with e-folding half width of 1300 km. This is a global experiment and
therefore it shows unique features of the process of adjustment in a
bounded domain. Unless there is selective damping for the gravity
wave type of motion, the Rossby wave solution soon becomes overshadowed

by the gravity wave activity.
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5. INITIAL CONDITION IN THE WIND FIELD

The problem of adjustment of the mass and wind fields for an
initial condition in the rotational part of the wind field is discussed
in this chapter. It can be interpreted as an instantaneous addition
of momentum with no counterpart in the pressure field. As in Chapter
4, the results can either be interpreted as internal modes or as wind
shear and thickness of the two-level baroclinic model discussed in
section 2.1.

The functional form of a vortex like initial condition is shown
in section 5.1 and the partition of energy between Rossby modes and
gravity modes is discussed in section 5.2. Examples of the solution
of the initial value problem are shown in sections 5.3 and 5.4
(equatorial g-plane and sphere respectively). The results are

summarized in secticn 5.5.

5.1 Vortex initial condition
The initial condition to be considered now has the following

functional form on the equatorial g-plane

[+ (y-y,)°]
(y-y,) expi- 5
Y‘e
2 2
[x* + (y-y,)"]
£(x,y,0) = -x exp{ - 5 . (2e)1/2 (5.1
Y‘e re
0
- o

The radius of maximum wind speed of the initial anticyclonic vortex

(5.1) 1is
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r
r - (5.2)
max

Z

where r = Vx% + (y-yo)2 . The anticyclonic vortex defined by (5.1)

depends on the two parameters r_ and Yoi T is the e-folding width of

e e

the exponential factor in (5.1) and therefore a measure in the size of

the vortex and Yy is the latitude of the center of the vortex. The

initial condition (5.1) is normalized by the factor (2e)]/2 re'] such

that the maximum wind is one non-dimensional unit for any o

The relative vorticity associated with the initial vortex (5.1)
is
(2e)]/2

It
e

[+ (y-y,)°]
2

r
e

[+ (y-y,)°]
r =2 5 - 11 exp

r
e

(5.3)
and the divergence is zero. Thus, there is anticyclonic vorticity
inwards from the radius Fieoiss and cyclonic vorticity outwards.

The Fourier coefficients of (5.1) are

| are S V2 L (y-y,)% 25T
(Y'YO)LX i (?‘) erf (—;') expy- . ) + il
. o
re-3 192 Ly (y—y0)2 re2k2- (2e)1/2
T LX erf (F—)k exp { - 3= .+ 3 Pe
£ (y,0) = e ry j
0
. _i(5.4)

Thus, the Fourier spectrum of the zonal component of the wind is of the

form exp (-0.25 re°2 k2) and the meridional component is proportional

2 2).

to k exp (-0.25 re' k The Fourier coefficient of the meridional

wind of (5.1) is such that the energy peak is located at



k = — (5.5)

Thus, a wide vortex (re large) is projected onto a narrow spectral band
and vice-versa. Changing the width of the initial vortex we are able
to shift the region of maximum energy in the spectral domain. In the
next section we study the partition of energy between Rossby modes and
gravity modes as well as the distribution of energy as a function of

zonal wavenumber k and meridional index n.

5.2 Partition of energy

We now proceed to discuss the partition of energy in Rossby waves
and gravity waves as was done with the initial condition in the 3-field
in Chapter 4. The initial condition has a flat gecpotential field
and therefore it has no potential energy; all the initial energy is in
kinetic form, and the initial wind field is non-divergent. Rossbhy waves
are primarily rational (Fig 3.20) and short Rossby waves have much more
information in the wind field than in the geopotential field since tne
ratio K/E is large (Figure 3.10). Thus, a small vortex like initial
condition of the form (5.1) is expected to be projected mostly onto
shorter Rossby waves. In particular, the vortex centered at the
Equator has a structure similar to mixed Rossby gravity waves
(Figure 3.16), i.e. the equatorial vortex is projected mostly onto the
n=0 meridional mode.

As in Chapter 4, Parseval's theorem is applied and the results are
summarized in Figure 5.1 where the ratio R (4.6) of total energy in
Rossby modes to total energy in the initial condition is shown as a

function of F for disturbances centered at Yy = 0 and AL 1.2. The
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Figure 5.1 Ratio R of the total energy in Rossby modes to
the total initial energy as a function of the
half-width ro for the vortex initial condition
given by (5.T) centered at the Equator ( y,=0 )
and at y,=1.2. The scale at the top is
dimensional for £=500.



scale on top of Figure 5.1 gives e in dimensional units assuming

=500, 1in which case the disturbances are centered at the Equator and

m

at approximately 14° N.

Figure 5.1 shows that a small vortex of the form (5.1) is projected
mostly onto Rosshy modes (R>0.95 for a disturbance centered at ¥y = 0
and re<0.5). As the vortex gets bigger and is displaced away from the
Equator less energy goes into rotational modes but up to By = 1.5 the
ratio R is larger than 0.5. Thus, contrary to the examples shown in
Chapter 4, where the initial condition in the geopotential field was
treated, the initial vortex experiment is expected to show small
dispersion and to maintain its identity and strength for a longer time.

The partition of energy in the {(k,n) space can be studied, through

the parametar

":e . + . . £ \ + P-\ n \ Ode,. & /./\I.
where ¢ . 1s the projection of ?k(j,o) onto the normal modes Sk, 1, )

The square of € 1. is the energy of the initial condition that is

projected onto the mode & . n r(y). Thus, Cy g is a measure of energy

<
i

contained at wavenumber k and meridional mode n including all types ¢

waves.

Figure 5.2 shows the isolines of ck2n

S

(arbitrary units) for the
initial condition (5.1) with ¥y = 0.35 and ¥q = 0 i.e., a vortex centerad
at the Equator. As expected, most of the kinetic energy of the initial
vortex is associated with the mixed Rossby gravity wave (n=0) with mo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>