Report No. CDOT-DTD-91-8

TRA 2.10/91-8 C.2

USE OF FLY ASH IN STRUCTURAL CONCRETE

Dave Woodham Colorado Department of Transportation 4201 East Arkansas Avenue Denver, Colorado 80222

Final Report July, 1991

Prepared in cooperation with the U.S. Department of Transportation Federal Highway Administration

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Highways or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Technical Report Documentation Page

1. Report No. CDOT-DTD-R-91-8	2. Government Accession No.			Catalog No.	
4. Title and Subtitle Use of Fly Ash in Structural Concrete			5. Report Date July, 1991		
		6. Performing Organization Code			
7. Author(s) Dave Woodham			8.Performing Org CDOT-DTD	ganization Rpt.No. -R-91-8	
9.Performing Organization Name and Address Colorado Department of Highways			10. Work Unit H	No.(TRAIS)	
4201 E. Arkansas Avenue Denver, Colorado 80222		11. Contract of DTFH71-8	r Grant No. 5-59-CO-13		
12. Sponsoring Agency Name and Address Colorado Department of I		13.Type of Rpt. Final Re	and Period Covered port		
4201 E. Arkansas Avenue Denver, Colorado 80222			14. Sponsoring Agency Code		
15. Supplementary Notes Prepared in Cooperation Federal Highway Adminis 16. Abstract	with the U.S. tration	Department	of Transporta	tion,	
Federal Highway Adminis	athered on the ash concrete. n the mix. The stent setting, measurements,	performance Fly ash was use of fly a rough and and shrinkag creased know	of two bridg used as a re ash caused se open surface e cracking. M ledge of how	ge structure eplacement everal prob- e texture, fost of thes fly ash	
Federal Highway Adminis 16. Abstract Limited data has been g built in 1986 using fly for 15% of the cement i lems including: inconsi variable air and slump	athered on the ash concrete. n the mix. The stent setting, measurements, lved due to in and addtional	performance Fly ash was use of fly a rough and and shrinkag creased know experience fications, wh weight), are 18. Distribution S No Restrict is availabl the Nationa	of two bridg used as a re ash caused se open surface e cracking. M ledge of how with the prod	ye structure eplacement everal prob- e texture, Most of thes fly ash duct. ontractors the result report is lic through n Service,	

Table of Contents

Introduction 1	L
Background	L
Monitoring	3
Conclusions	1
Implementation	5

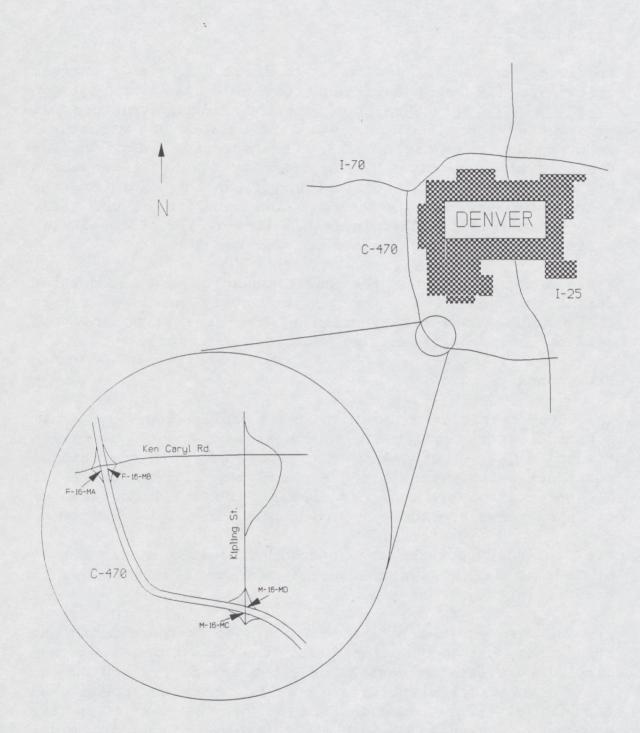
Appendices

Appendix	Α.	Photograp	ohs o	of	the	Bridges.
Appendix	в.	Concrete	Mix	De	sigr	ns.

Introduction

In 1986, three bridges were constructed using concrete containing fly ash under Demonstration Project 59, <u>The Use</u> <u>of Fly Ash in Structural Concrete</u>. A fourth structure was constructed using CDOT's standard class of structural concrete as a control. This Demonstration Project was designed to give states the opportunity to use fly ash on a highway project with technical and financial help from the Federal Highway Administration. The benefits of using fly ash in concrete include: increased strength, reduced alkalisilica reactions, and reduced cost of the mix.

This report discusses the performance of the structures during the past five years. A previously published report [1] describes the construction of the four structures and comments on the problems and anomalies observed.


Background

The four structures covered under this study were all constructed on route C-470 southwest of Denver (please see Figure 1). There were two sets of twin structures constructed-two over Kipling St. and two over Ken Caryl Rd. All structures were built in 1985 and 1986. Photographs of the structures are shown in Appendix A.

The Kipling structures were opened to traffic in the summer of 1986 while the two bridges at Ken Caryl were opened to traffic in October of 1990.

Fly ash was required in all concrete used at the Kipling St. structures and was optional for the two bridges at Ken Caryl. However, the contractor chose to use fly ash on one of the Ken Caryl structures as well. The contractor used fly ash as a replacement for 15% of the cement in the concretes. Colorado Class D mix is typically used in bridge decks with Class B mix being used in piers and abutments. The girders used for the bridges were of precast, prestressed concrete. Complete mix designs are shown in Appendix B.

1

FIGURE 1. LOCATION OF STRUCTURES

The structures and mix designs are given below for clarification:

Structure	Feature Intersected	Type of concrete
F-16-MA	Ken Caryl Rd. (EB)	Class D & B w/ Fly Ash
F-16-MB	Ken Caryl Rd. (WB)	Class D & B no Fly Ash
F-16-MC	Kipling St. (EB)	Class D & B w/ Fly Ash
F-16-MD	Kipling St. (WB)	Class D & B w/ Fly Ash

A total of 54.2 tons of fly ash were used in place of cement on the Kipling St. structures. Given the cost difference between cement and fly ash (\$78.00 vs. \$30.90 per ton) in 1986, the use of fly ash saved some \$2,550 [1] in material costs on this project.

Energy savings of 394 million BTU [1] were also realized due to the use of fly ash on the two Kipling St. bridges. In other terms, this amount of energy is roughly equivalent to that contained in 3,200 gallons of gasoline.

Monitoring

Problems during placement of the fly ash mixture included: inconsistent setting, a rough and open surface texture, variable air and slump measurements, as well as shrinkage cracking.

Since the two structures at Kipling St. were covered with a membrane and asphalt overlay shortly after construction, monitoring of the structures consisted of looking for signs of cracking and efflorescence from the bottom side of the structure.

The parallel structures at Ken Caryl were finished in the spring of 1986 but were not opened to traffic until fall of 1990. The Ken Caryl bridges were located at the end of the Phase II construction and were not connected to the roadway until the final phase of C-470 was completed. Since these structures did not carry traffic until over four years later than the Kipling structures, comparisons between the two sets of structures are not meaningful at this time. Visual observations of the Kipling St. structures have not shown signs of deterioration.

Conclusions

The use of fly ash has the potential for cost savings in highway construction. Given the cost difference between cement and fly ash of approximately \$47 per ton in 1986, the savings amounts to \$2.35 per cubic yard for class D or \$2.00 per cubic yard for class B concretes. Both these figures are on the order of 1% of the in-place costs for these concretes [2].

Current prices in the metropolitan-Denver area are approximately \$63 per ton for cement and \$36.90 for fly ash. Given this cost difference of \$26.10 and a maximum replacement of 20% of the cement, the cost savings (per ton) are potentially \$1.70 for class D or \$1.50 for class B concretes.

The net savings in energy use as a result of using fly ash is dependent on the location of the fly ash source in relation to the project. If haul distances are too great both the energy and cost advantages of fly ash will be reduced.

One additional benefit of using fly ash (in any manner) is the reduction in volumes of ash that must be disposed of. This recycling aspect will most likely become more important as many landfills are reaching capacity and new landfills face public opposition and increased costs.

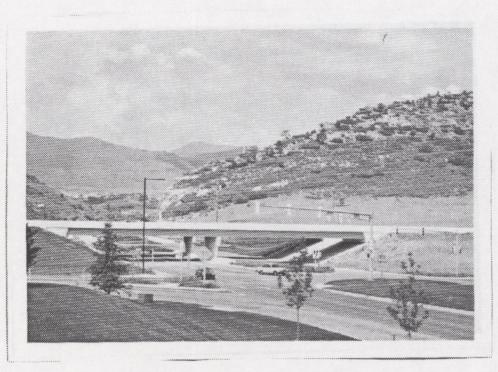
The use of fly ash created problems with workability and a quality finish on this project. However, many of the problems experienced during the construction of these bridges in 1986 have been resolved due to an increased knowledge of how fly ash works in concrete mixes and additional experience with the product.

Implementation

The use of fly ash up to 20% by weight of cement is currently at the contractor's option in CDOT work. Those contractors confident in their ability to produce a consistent fly ash concrete mix routinely use it as a replacement for up to 20% of the cement specified in the mix design. On the other hand, some contractors have decided that the cost savings as a result of using fly ash are not worth the possibility of rejected truckloads.

No changes to the current specifications are proposed as a result of this study.

References:

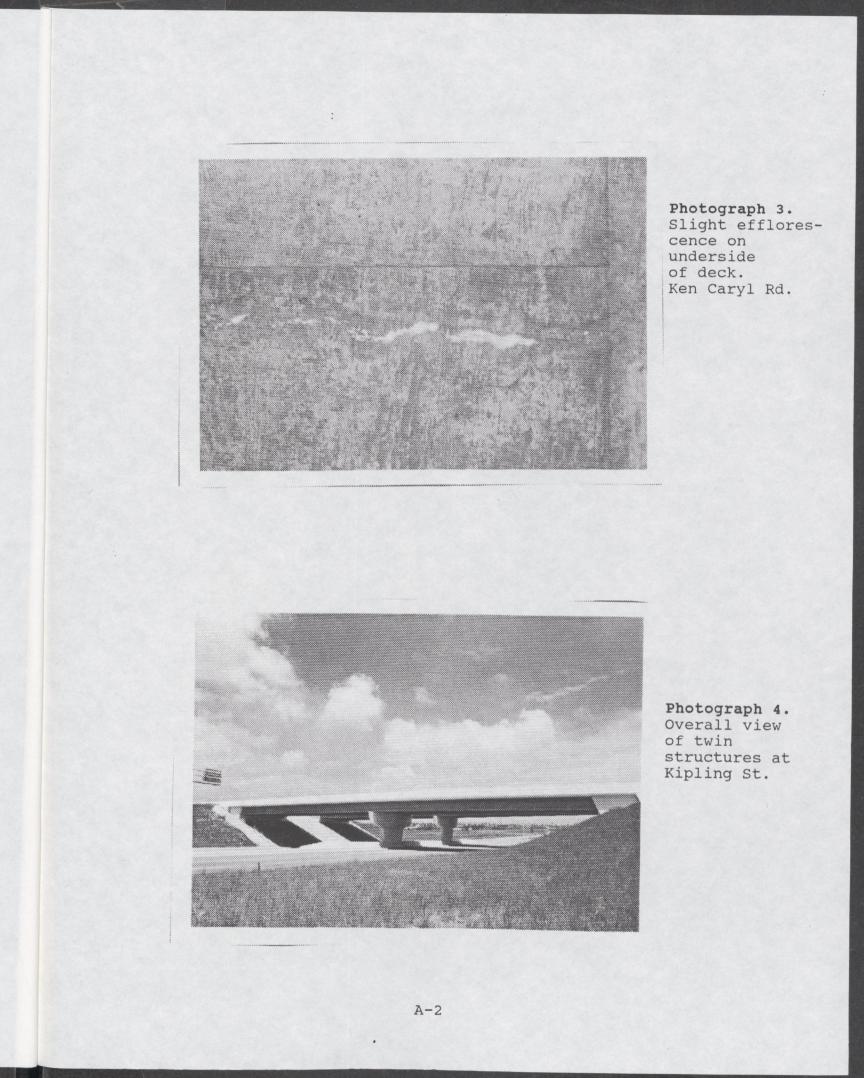

- Swanson, Herbert, The Use of Fly Ash in Structural Concrete, Demonstration Project No. 59, Design and Construction Report, Colorado Report No. CDOH-DTP-R-86-12, July, 1986
- [2] 1985 Cost Data, Compiled by the Cost Estimates Squad of the Staff Design Branch, Colorado Department of Highways

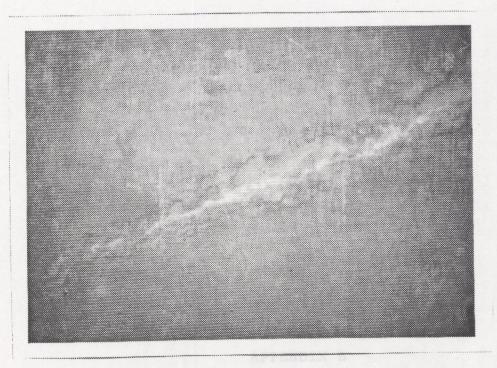
Photograph 1. Overall view of twin structures at Ken Caryl Rd

APPENDIX A

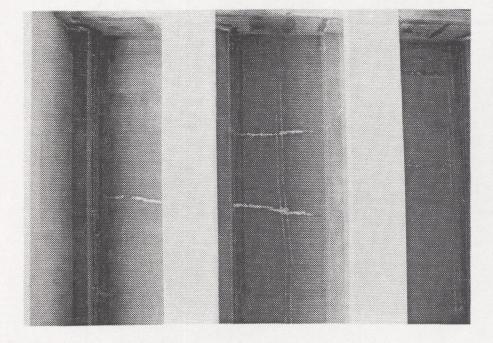
PHOTOGRAPHS OF THE BRIDGES

Photograph 2. View of underside of deck. Ken Carvl Rd.




:

Photograph 1. Overall view of twin structures at Ken Caryl Rd.


Photograph 2. View of underside of deck. Ken Caryl Rd.

•

Photograph 5. Mild efflorescence on underside of deck. Kipling St.

Photograph 6. Small cracks are visible in deck. Kipling St

			3				
	CON		IX B X DE	IS			

•.

-2-

CONCRETE SPECIF					CIFICATIONS	FICATIONS			
CONCRETE CLA with Field Compressive and Brief Description		Cement (Lbs./cu. yd.)	Maximum Water/Cement Ratio (Ibs. H ² O/Ib of Cement)	Air Content % Range (Total)	Maximum Slump (inches)	Coarse Aggregate Section 703, Table 703- (Size No.)	Fine Aggregate (Maximum % of Total Aggregate)		
A 1½" Aggregate	3000 Psi	565	0.50	4-8	4	467	45%		
AX Local Aggregate	4000 Psi	610	0.45	5-8	3	See Gra in subsect			
AZ 11/2" Aggregate	4000 Psi	610	0.45	5-8	4	467	45%		
B ¾" Aggregate	3000 Psi	565	0.53	5-8	4	67	50%		
BZ ¾" Aggregate	4000 Psi	610	0.48	5-8	4	67	50%		
D Deck	4500 Psi	660	0.44	5-8	2.5 (Design) 3.25 (Field)	67	50%		
DT Deck Topping	4500 Psi	700	0.44	5-9	2.5	7	50%		
DX Local Aggregate Deck	4500 Psi	660	0.44	5-8	2.5 (Design) 3.25 (Field)		adation ion 601.03		
EA Exposed Aggregate	3000 Psi	565	0.53	5-8	4	6 or 67	40%		
P Pavement	3000 Psi	565	0.50	4-8	3	467 or 357	45%		
S Prestressed	specified on plans	660	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	specified on plans		1 Lun			

TABLE 601-1

1

i

)

STATE OF COLORADO DEPARTMENT OF HIGHWAYS DIVISION OF HIGHWAYS DOH Form No. 330 Revised: August, 1982

Project	IXFU 470-1	(36)	
Lucation	Kipling at	C-470	
Sand Field	Sheet No.	25294	
Gravel Fie	ld Sheet No.	Same	

PAGE 2

Class of Concrete	BFA	DFA
% Fine Agg. by Absolute Vol.	_41	
Air Entraining Agent	Protex A.E.	S Same
Quantity of Air Entraining Agent (ozs)		4.5
Admixture	Prokrete-N	
Quantity of Admixture (ozs)		20.0
Cement: Source So. Dakota Type I		
Cement South Dakota Lbs.	480	
Fly Ash Wheatland Lbs.Cl. 'C'	85	100
Fine Aggregate Lbs.	1250	1285
Intermediate Aggregate Lbs.	1800	1625
Coarse Aggregate Lbs.	0	0
Miscellaneous Aggregate Lbs.	0	0
Water Lbs.	260	270
Water Gals.	31.2	32.6
Slump Inches	1.75	
Water Cement Ratio (% by Weight)	. 460	.411
	(1) 5.7	6.6
Gals/CWT	4.7	4.9
WEIGHT PER CU. FT. OF CONCRETE:		
T. Theoretical (calculated-air free)		150.0
C. Theoretical (calculated NS % air)	(2)	142.5
W. Determined (actual Wt./cu.ft.)	144.0	142.1
W. Determined (actual wt./cu.it.)		
Air Content Air Meter (Total Air)	5.5	5.4
Air Content -		
Gravimetric Method % A = $\frac{T - W}{T}$ X 100	,	
· · · · · · · · · · · · · · · · · · ·	,	5.3
NS=Not Shown		
(1) Cementitious		7 days
(2) 5% Air Design		
	4460	4580
Compressive Strength (P.S.I.)	4260	4540
Compression of the second s		
Average :	4360	4560
		28 days
	5810	5830
Compressive Strength (P.S.I.)	5730	5750
Average	5770	5790

NOTE: Quantities shown for admixtures are for information only.

REMARKS: Trial mixes run under project I 76-1(90)(100); the class SFA mix is proportioned identical to the required class DFA this project and meets CDOH design criteria. District 6 Materials has concurred on these changes. 3.25" maximum slump to be used on the class DFA cc: District 6

Stallar Materials Engineer

Brasher-Motchan Ihlanfeldt R.E. (2)

jc: 10/18/85

PUBLICATION Department of Highways-State of Colorado Division of Transportation Planning

*Dynamic Measurements on Penetrometers for Determination of

Foundation Design Parameters

*Industrial Snow Fence vs. Wooden Fences

*Geotextiles in Bridge Abutments

91-4 *Rut Resistant Composite Pavement Design (Interim Report) 91-5 *Reflective Sheeting (Final) 91-6 Review of Field Tests and Development of Dynamic Analysis Program for CDOH Flexpost Fence 91-7 *Geotextile Walls For Rockfall Control 91-8 Fly Ash in Structural Concrete 91-9 *Polyethylene Pipes for Use as Highway Culverts

*Reports soon to be published

91-1

91-2

91-3

ed lct DFA

PUBLICATION Department of Highways-State of Colorado Division of Transportation Planning

89-1	Truck Tire Pressures in Colorado
89-2	Rockfall Modeling and Attenuator Testing
89-3	Frost Heave Control With Buried Insulation
89-4	Verglimit Evaluation (Boulder)
89-5	Use of Road Oils by Maintenance
89-6	Accelerated Rigid Paving Techniques
89-7	IBC Median Barrier Demonstration
89-8	Monitoring of Nondurable Shale Fill in Semi-Arid Climate
89-9	Resilient Properties of Colorado Soils
89-10	Consolidation Testing Using Triaxial Apparatus
89-11	Reactive Aggregate in Structures
89-12	Five Inch Asphalt Overlay
89-13	Avalanche - Interim Report
89-14	Sawed Joints in AC Pavements
89-15	Mirimat Erosion Control Fabric
89-16	Use of Spirolite Plastic Pipe

- 90-1 Pretreatment of Aggregates
- 90-2 Experimental Gravel Shoulders
- Cold Recycling of Asphalt Pavement, US 24, Proj. CX-04-0024-25 90-3
- 90-4 Pavement Marking Materials
- 90-5 Geotextiles in Landfills
- 90-6 Criblock Retaining Wall
- 90-7 Project Level Pavement Management 90-8 A Peak Runoff Prediction Method Fo 90-9 Research Status Report A Peak Runoff Prediction Method For Small Watersheds in Colorado
- 90-10 Public Perception of Pavement Rideability
- 90-11 Bridge Deck Repair Demonstration
- 90-12 Highway Rockfall Research Project
- 90-13 In-Service Evaluation of Highway Safety Devices, Exp. Proj. No. 7
- 90-14 Study of Urban Interchange Performance

PUBLICATION Department of Highways-State of Colorado Division of Transportation Planning

87-01 Finite Element Analysis of Twin-T Test Walls in Glenwood Canyon, CO 87-02 Flow Conflict Study 87-03 Epoxy Thermoplastic Pavement Marking Demonstration Project 60 87-04 Elastometric Concrete End Dams Used in Conjunction With Bridge Deck Expansion Devices 87-05 Colorado Reactive Aggregate 87-06 Bridge Approach Settlement 87-07 87-08 Third Party Construction Engineering 87-09 Preloading of Sanitary Landfills 87-10 Frost Heave Control With Buried Insulation (Interim) 87-11 AC Gauge "Between Operator" Precision Experiment 87-12 Long-Term Creep of Geotextile in the Confinement of Soils Under Sustained Loading - Phase I 87-13 Dynaflect Benkelman Beam Correlation 87-14 Cathodic Protection 87-15 Rubber Modified Asphalt Concrete 87-16 Concrete Pavement Repair Bennett to Strasburg 88-1 Pavement Profile Measurement Seminar Proceedings, Vol. I, Seminar Overview 88-2 Pavement Profile Measurement Seminar Proceedings, Vol. II, Data Collection Equipment Pavement Profile Measurement Seminar Proceedings, Vol. III, Workshop 88-3 Summaries 88-4 Micro Computers in Project Field Offices 88-5 Development of a Risk Cost Methodology for Detour Culvert Design 88-6 Concrete Pavement Restoration Demonstration 88-7 Inservice Evaluation of Highway Safety Appurtenances, FHWA Experimental Project No. 7 88-8 Embankment Settlement in Glenwood Canyon 88-8 Rehabilitation of Concrete Pavements Follow-Up Study 88-10 Effectiveness of Geogrids and Geotextiles in Embankment Reinforcement 88-11 Spring Breakup Study 88-12 Plastic Pipe Use Under Highways 88-13 Geothermal Space Heating 88-14 88-15 Tapered Asphalt Shoulders 88-16 Development of a Retrievable Test Rig for Drilled Pier Bridge Foundations 88-17 Flexible Roadside Delineator Post Evaluation 88-18 Long Term Pavement Monitoring 88-19 Expandable Membrane Ground Anchors in Talus 88-20 Research Status Report

RECEIVED

MAR 25 1992

COLORADO STATE LIBRARY State Publications Library