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ABSTRACT

The design of waste treatment facilities and the establishment of environmentally-acceptable effluent
standards for rivers require that the dilution attributable to natural turbulence be estimated for particular
rivers and particular disposal sites. Dilution of neutrally-buoyant liquid wastes is achieved by an interaction
between turbulent diffusion and differential convection; the overall process is referred to as dispersion. The
primary objective of this research is to develop an efficient computational model for the prediction of time-
dependent mass dispersion in natural streams; a secondary objective is experimentally to investigate the varia-
tion of transverse diffusivity in a triangular laboratory channel.

The basis of the computational model is a partial differential equation expressing conservation of
pollutant mass in a control volume. Analytical solutions to this so-called dispersion equation are limited to
idealized river geometries and simplified pollutant source configurations. The computational model developed in
this study is based on a finite-difference solution to the depth-averaged dispersion equation; the model may be
used to predict depth-averaged concentrations resulting from a pollutant source of arbitrary time and space con-
figuration in a stream of arbitrary geometry and nonuniform but steady flow. Problems of numerical instability
and damping in the convective stage of the computation are avoided through the use of a half-implicit and half-
explicit second order differencing scheme for the space derivative; numerical dispersion cannot be eliminated,
but may be minimized by judicious choice of time and distance steps. Transverse and longitudinal turbulent dif-
fusion are computed by a second order space-centered implicit scheme. The overall result is a computational
model which is unconditionally stable and whose accuracy is not critically dependent on the magnitudes of time
and distance steps.

The computational model requires a priori knowledge of the river geometry, velocity distributions, and
turbulent diffusivities. The river geometry is generally known, and velocities are either known or can be esti-
mated. But at the present time there is little theoretical or experimental basis for the estimation of the mag-
nitude and distribution of diffusivities in natural channels; yet knowledge of the transverse diffusivity in an
essential requirement in predicting dispersion. The triangular-channel tests performed in this study indicate
that the transverse diffusivity is constant within a cross section; this suggests an interaction between bed
shear and transverse shear, the relative contributions of which cannot yet be determined.

The applicability of the computational model is demonstrated through simulation of dispersion experiments

reported for the Missouri River and Clinch River. Model predictions are in good agreement with observed concen-
trations resulting from continuous point source and instantaneous plane source injections.

viii



INTRODUCTION

Recent awareness of the environmental fragility
of river systems has brought out the need to make de-
tailed estimates of a river's waste assimilation ca-
pacity. Wildlife ecologists, utilizing specialized
input from the fields of biology, botany, zoology,
etc., can specify the maximum pollutant concentration
levels and durations to which various aquatic organ-
isms may be exposed. The engineer must then design
waste treatment facilities, submerged outfalls, or
other water purification systems which will achieve
sufficient reduction of pollutant levels to meet the
downstream water quality standards. Alternatively,
the engineer may be required to show that, in the
event of accidental spillage of toxic material into a
river, sufficient dilution will occur to minimize dam-
age to the aquatic environment, and pose no threat to
downstream municipal users. These problems require an
understanding of three general processes: initial
dilution of an outfall jet, chemical and biological
decay of nonconservative pollutants, and turbulent
mixing. This work is concerned only with the third
process, i.e., the turbulent mixing of a conservative
pollutant in natural river flow. Furthermore, the
study is limited to neutrally-buoyant pollutants,
although the methods described could be extended to
predict the mixing of sediments with finite fall
velocity.

Mixing in rivers is described by the terms
diffusion and dispersion, which are often used inter-
changeably although they connote distinctly different
processes. In this study the two terms are used as
suggested by Holley (1969); diffusion is the trans-
port of mass by either molecular diffusion or by
deviations of instantaneous turbulent velocity fluc-
tuations from the local time average velocity. Dis-
persion, on the other hand, is the spreading out of a
mass of pollutant caused by deviations of local time-
averaged velocities from the depth-averaged or cross-
sectional averaged velocity, i.e., due to differential
convection. Dispersion is the more general of the two
terms, as it is understood to include the effects of
diffusion, which transfers mass between zones of vary-
ing velocity, and thus reduces differential
convection.

Predictions of mixing in turbulent flow fields
are based to a large extent on.solutions to a partial
differential equation which states mathematically that
mass of pollutant, or tracer, must be preserved.
Analytical solutions to the equation have been ob-
tained for various injection configurations, but are
generally limited to cases of pure diffusion, i.e., to
flows having no gradients of longitudinal velocity.
The few solutions for true dispersion are limited to
special velocity gradients, unbounded fluids, and/or
longitudinally uniform conditions. Predictions of
mixing in streams of arbitrary geometry can be ob-
tained only through numerical solutions of the mass
conservation equation, Such solutions have been
developed for time-dependent mixing in well-mixed
estuaries, and for steady-state mixing in rivers. The
primary purpose of this study is to develop a finite
difference model of both time-dependent and steady-
state mixing in rtivers of arbitrary geometry.

Both numerical and analytical models of
dispersion which are based on the mass conservation
equation require prior knowledge of the turbulent dif-
fusivities; yet the diffusivities have little basis in
theory, and their spatial variation in natural
channels is generally not known. Numerical models do
not require that diffusivities be constant, thus open-
ing up a need for improved information on not only the
magnitude, but also the variation of diffusivity from
point to point in a stream. A secondary purpose of
this investigation is experimentally to determine the
transverse variation of transverse diffusivity in a
nonrectangular channel.

This paper consists of three major elements.
Part I outlines some of the available methods for
prediction of dispersion in streams and describes the
development of the numerical model. Part II describes
the theoretical basis of the transverse diffusivity,
and presents the results and analysis of limited
experiments conducted in a triangular laboratory chan-
nel. Part III consists of the application of the
numerical model and experimental results to reproduce
the data from field experiments in two rivers.
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Part |
TWO DIMENSIONAL FINITE DIFFERENCE MODEL OF UNSTEADY,
NEUTRALLY-BUOYANT MASS DISPERSION IN NONUNIFORM CHANNEL FLOW

Chapter |
PREDICTION OF MASS DISPERSION IN OPEN CHANNEL FLOW

1.1 Mass Conservation Equation

The prediction of mass dispersion in fluids is
based on solutions to an equation which states mathe-
matically that any imbalance between the transport of
tracer mass into and out of a control volume of
solute must result in an accumulation of tracer mass
within that control volume. The tracer mass transport
across the boundaries of the control volume can be
either convective (related to the gross movement of
the fluid, including turbulence), or diffusive (re-
lated to the exchange of tracer particles between ad-
jacent layers of fluid at a molecular scale). Sayre
(1968) has expressed the mass balance in a control
volume in steady flow as

aw
at

< |-

= - { CundS + [ &€ VCen dS (1.1)
urn e
S

S

where

weight of solute per unit volume,

weight of tracer mass in the control volume,

instantaneous concentration by weight of the

tracer,

instantaneous velocity vector,

unit vector normal to the surface of the con-
trol volume,

molecular diffusivity,

Oo=<
oouow

1=i=

™
n

= gradient vector operator,
= surface of the control volume, and
= time.
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Expressing g— as [ Cdv, where V is the control
\J
volume, and using the divergence theorem to express
the surface integrals as volume integrals, Eq. 1.1 be-
comes
ac

[3av=- [ ve(cw) av e | emVZC & (1.2)
v v v

Now this expression must hold for any control volume,
including one so small that the integrands may be
considered to be constant; therefore the integrals may

be dropped. Furthermore, from incompressible continu-
ity, Vru = 0. Thus Eq. 1.2 may be written
%% + u-ve = €n ?ZC (1.3)
or, in tensor notation,
%‘%‘“i g%“%'é‘;z{a:_x (1.4)
i - S |

Equation 1.4 is quite general. In laminar flow,
where the instantaneous velocities u, v, and w might
be known for all times and at all positions in the
flow field, Eq. 1.4 could be solved analytically or
numerically to yield a complete concentration distri-
hution in space and time, given the appropriate ini-
tial and boundary conditions. But most flows are

turbulent, and the variation of local velocities with
space and time is exceedingly difficult to predict,
even in simplified geometries., Thus Eq. 1.4 must be
further modified for application to turbulent mixing
problems.

As in the study of the dynamics of turbulent flow,
the application of Reynolds' rules of averaging to the
kinematic mixing process is useful. Considering the
concentration and velocities to be composed of time-
averaged and fluctuating components, u, = u o+ ui,

etc., substituting these into Eq. 1.4, and averaging
it over a time period which is long with respect to

_ the_turbulent fluctuations but short with respect to

the gross phenomenon being studied, Eq. 1.4 becomes

T
5 - ultn

CIE I [ P
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where the overbars denote time averages.

At this stage of the development two critical
assumptions are made:

" th
(a) The time-averaged mass transport in the i
direction due to turbulent convection, uiCi, can be

represented as the product of a turbulent diffusivity,
and the concentration gradient in the ith direction.
This is tantamount to assuming a direct analogy be-
tween molecular and turbulent diffusion.

(b) The mass transport due to molecular
diffusion is much less than that due to turbulent
fluctuations, and can be absorbed in the turbulent
diffusivity.

Employing these assumptions, Eq. 1.5 may be written

ac 3C 3 aC
Sy, —= — (B, =) (1.6)
at iax, ox; i axi

where the overbars have been dropped and £. is the

turbulent diffusivity in the ith direction.®

Equation 1.6 is referred to as the turbulent
conservation of mass, or dispersion, equation. It
describes turbulent dispersion, i.e., the process by
which a tracer mass is dispersed within a flow field
by the interaction between turbulent diffusion, which
tends to mix adjacent layers, and differential convec-
tion, which tends to move the layers one with respect
to another. Solutions to Eq. 1.6, based on a known or
assumed steady velocity field and known diffusivities
Ei' yield estimates of the complete concentration dis-

tribution at all times for specified initial and
boundary conditions. It must be recognized, however,
that concentration distributions predicted from
solutions to Eq. 1.6 are valid only to the extent that
the diffusivities are known and that assumptions (a)
and (b) above are justified.



1.2 Solutions for Instantaneous Point Sources

The instantaneous point source is of only
theoretical interest in a practical sense, as actual
pollutant spills are never instantaneous, but are
spread over some finite time ihterval. Nonetheless,
analytical solutions to Eq. 1.6 for instantaneous
sources can be superposed in space and/or time to
model noninstantaneous sources of finite extent.

Csanady (1973) considered the turbulent diffusion
of an instantaneous source of tracer solution of con-
centration Co and volume VD in an unbounded fluid

having a constant velocity U in the x-direction,
with v = w = 0. Through analogy with molecular dif-
fusion, and assuming mutually independent diffusion in
the x, y, and z-directions, he presented the following
concentration distribution:

covo
C(I,Y,Z,t) W T ——
(2“)3/26 g a
Xy z
2 2 2
. (x-Ut) z
exp{- w2 27" 2525} a.7)

2 2 2 X
Here LA oy, and g, are the variances of the con-

centration distribution in the x, y, and z-directions.
The critical link between Eq. 1.7, which is a state-
ment of analogy with molecular diffusion, and Eq, 1.6,
which is a statement of conservation of mass of trac-
er, is developed by Csanady (1973) from the more gene-
ral analysis by Batchelor (1949). By assuming the
diffusivities to be constant in space (homogeneous
turbulence), then taking the appropriate derivatives
of Eq. 1.7 for substitution into Eq. 1.6, it may be
shown that

2

cx = Zéxt (1.8a)
o =28t (1.8b)
y Y ’
220t (1.8¢)
Uz - z .

Taylor (1921) formulated a rigorous theory relating
the variances of a diffusing cloud to the Lagrangian
statistical properties of the turbulence. These prop-
erties are generally unknown and difficult to measure;
but for diffusion times which are large compared to
the time scale of the turbulent eddies, Taylor's re-
sults also reduce to Eq. 1.8, where the diffusivities
are the product of the Lagrangian mean square velocity
fluctuation and the Lagrangian integral time scale.
Using these results, Eq. 1.7 becomes

CV
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The concentration distribution is now expressed in
terms of the turbulent diffusivities which appear in
Eq. 1.6. In fact, Eq. 1.6 may be written for constant
diffusivities and v =w =0 as
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Sayre (1973) has shown that Eq. 1.9 is also a solution
to Eq. 1.10 for an instantaneous point source in an
unbounded fluid.

For computational purposes, it is not necessary
to relate the concentration distribution variances to
the turbulent diffusivities; once the assumption of
gradient-type turbulent mixing is made, Eq. 1.9 can
be adopted as a satisfactory solution to Eq. 1.10 for
the instantaneous point source. But the gradient-
type turbulent mixing assumption is given a more for-
mal basis by the analogy with molecular gradient
diffusion, and by Taylor's fundamental relationship
between the Lagrangian properties of the turbulence,
the variances, and the turbulent diffusivities.

Equation 1.9 is applicable only to mixing in an
unbounded fluid. This condition may be approximated
by injection from an elevated point source in the
atposphere, (such as a smokestack), but is clearly in-

' appropriate when applied to mixing in rivers. Most

rivers are much wider than they are deep, and the
proximity of the bed and/or water surface to a sub-
merged source invalidates the unbounded fluid assump-
tion, Cleary and Adrian (1973) have obtained a solu-
tion to Eq. 1.10 for boundary conditions of no tracer
transport across the bed, banks, or water surface.

The series solution is obtained by an integral trans-
form method, and assumes uniform, unidirectional flow
in a rectangular cross section with known and constant
diffusivities. The resulting expression for
C(x,y,z,t), applicable to any point source location
and given in terms of a convergent infinite series,

is not presented here due to its complexity. The
authors claim that their solution yields results
identical to those obtained by Holley (1972) for a
particular source location, but using virtual image
sources to satisfy the zero-transport boundary condi-
tions. Cleary and Adrian have also obtained a simpler
two-dimensional solution, applicable to mixing from an
instantaneous vertical line source in a rectangular,
uniform channel.

The solutions just described require a constant
downstream velocity U in the entire flow field.
Carter and Okubo (1965) obtained a solution to Eq. 1.6
which allows the velocity u to vary within the cross
section, although in a special way. In their so-
called uniform shear flow, Eq. 1.6 is written

aC aC
5"{‘" (U+Tyy+1‘zz)ﬁ

2 2 2
3°C a°C 3°C
g gt ke (1.11)
%X ax y Byz = az2

where as before v = w = 0, the diffusivities are
assumed not to vary within the cross section, and ry

and Fz are the vertical and transverse gradients of

longitudinal velocity, respectively. For an instan-
taneous release of a tracer volume Vo and concentra-

tion C0 at the coordinate origin of an unbounded

fluid, Carter and Okubo obtained the following solu-
tion to Eq. 1.11:
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Note that when u = U, i.e., ry = Pz =0, Eq. 1.12
reduces to Eq. 1.9, as expected.

1.3 The Superposition Principle

The three-dimensional, instantaneous point source
solutions are limited to idealized stream geometries,
unidirectional flow, and constant diffusivities.
Nonetheless, predictions can be brought one step
closer to reality by use of the superposition princi-
ple, by which sources of arbitrary time and space ex-
tent can be modeled using the three-dimensional,
instantaneous point source solution as a building
block. The mathematical basis of superposition is the
convolution integral, which expresses the desired
concentration distribution as the sum of the distribu-
tions resulting from an infinite superposition of
instantaneous point sources. For the most general
case, Sayre (1973) has expressed the convolution as

h
g E(x-xo, Y=Yy z-zo, t-to)

(=t

t =

CI(X,Y,Z,T.] - I I
0
. C

{xo.yo,zo.to) dyodzodxodto (1.13)

where

C. = convoluted concentration distribution,

normalized instantaneous point source
concentration distribution,

the source concentration distribution,
channel width, and

local channel depth.

=m0 Hh o=
]

The distribution £ 1is normalized by COVO- The

closed-form integration of Eq. 1.13 is generally not
possible, but numerical integration may be used to
predict Cl(x,y,:.t). The most serious deficiency of

Eq. 1.13 as a predictive tool is its limitation to the
idealized conditions demanded by the function f,
usually an unbounded fluid, unidirectional velocity,
and constant diffusivities.

Csanady (1973) describes the application of the
superposition principle to model a continuous point
source in an unbounded, three-dimensional flow field
with constant unidirectional velocity U. Considering
Eq. 1.13, £ is given by

where C(x,y,z,t) is given by Eq. 1.7. For constant
injection of a tracer solution of concentration Co

w

at a volumetric flow rate q  at x =y =2z =0,
Eq. 1.13 becomes o o
[} C q
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0 (27)"" "o 0 a
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where the spatial integrations are not needed for a
point source, the superposition being in time only.
Frenkiel (1953) integrated Eq. 1.14 and obtained,
after assuming that the longitudinal diffusion is much
less important than the vertical or transverse dif-
fusion,

Cq 2 2
e T2 - o R [
C(x,y,2) 2nuyczU exp { 25y2 20z2} (1.15)

Using the asymptotic results of Eq. 1.8, and instead
of diffusion time using x/U,

C(x,y,2) “o% { Yu_ 2,
XiYs2) ® ===y * OXP 1" E X~ Ex
4wx(§y§x] ] y z
(1.16)

Recapitulating, Eq. 1.16 is the concentration distri-
bution resulting from continuous injection of tracer
at the origin of coordinates in an unbounded fluid
having constant unidirectional velocity U and
negligible longitudinal diffusivity.

1.4 The Two-Dimensional, Depth-Averaged Mass
Conservation Equation

For many problems of mixing in natural rivers the
concentration field is adequately described by the
depth-averaged values of concentration, rather than
point values. In terms of analysis, this removes the
vertical coordinate and the vertical diffusivity from
the problem, consequently simplifying the governing
equations. The two-dimensional mass conservation
equation may be obtained by integrating the three-
dimensional version, Eq. 1.6, over the depth of flow.
It is convenient first to rewrite Eq. 1.6 without the
simplifying application of incompressible continuity;
since

aui
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it may be added to the left side of Eq. 1.6. Then,
combining the space derivatives on the left side and
writing the expression in Cartesian notation,

3 . 2 3 3

i (uC) + b (vC) + X (wC)
3 3C, . 3 ac, 3C ‘
wER e aE A1

Referring to the definition sketch, Fig. 1.1,
integrate Eq. 1.17 with respect to y from a to b:
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(1.18)

Apply Leibniz's Theorem for differentiation of an
integral:

b b
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b —
Recognizing that, for any integrand ¢, f ¢ dy = he,
a

where the overbar now denotes a depth average,
Eq. 1.19 becomes after some rearrangement
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The bracketed terms on the right side of Eq. 1.20 may
be eliminated as follows: at any boundary, i.e.,
either the channel bed or the water surface, the water
velocity and the diffusive tracer transport can only
be parallel to the boundary. This implies that the
component of either quantity projected normal to the
surface must vanish. In vector terms,

Usen=T n=20 (1.21)
where
n = the normal vector to the bed or water
surface, and
T = the diffusive tracer transport vector.

Noting that the normal vector to the water surface is
n=23b/dx i-j+ 3b/az k, (and similarly for the

bed), recalling that

. . aC ac
Il ma gl v B oek

and U = ui + vj + wk, the bracketed terms of Eq. 1.20
are recognized as, respectively, [g:gjb, - (Q;”)a,
(IfEJb’ and (I:E)a, each of which must vanish accord-
ing to Eq. 1,21,

Equation 1,20 is still phrased in terms of the
depth-average of products, such as uC, wC, etc; these
must be simplified before solutions can be considered.
First, express each quantity as the sum of a depth-
averaged value and local deviation from it, such as

where the superscript y denotes the local deviation.
(It is important to note that these quantities are
already time averages; depth-averaging alone is being
performed here.) Then a quantity such as uC be-
comes, by Reynolds' Rules of Averaging,

L J— — i =, -
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Applying similar reductions to the remaining terms,
Eq. 1.20 may be written

X4 muc == (- e+ ne
hosp * 5 (hul) + (th) = (-hu’C” + hE =)
? y p1f
v 2= (- W 4 me, 2. (1.22)

The final task is to express the transport terms on
the right side of Eq. 1.22 as simple products of
diffusivities and concentration gradients. The justi-
fication for so doing is discussed in detail by Holley
(1971). The arguments are that (a) the convective
transport due to the velocity-concentration differ-
ences over the depth can successfully be approximated
as a gradient diffusion process (see, for example,
Fischer, 1967), and (b) in natural channels mixing
generally is complete over the depth, so that the

cf quantities are relatively small. Then the effects

of W¢ and wcr may be considered to be absorbed
in gradient transport terms. Equation 1.22 finally
becomes

aC 3 ] 3 - ac
h 3t * 3% (e) + 57 (wC) = 5= (he, 3+ 57 e, 5
(1.23)

where the depth-average overbars have been deleted,

and €y and Ey include transport due to both turbu-

lent fluctuations and vertical variations of longitu-
dinal and transverse velocity. The depth-averaged,
two-dimensional mass conservation equation, Eq. 1.23,
serves as the basis of a variety of analytical and
numerical models of mixing in natural streams.
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1.5 Two-Dimensional Mixing from an Instantaneous
Vertical Line Source

For a fluid of constant unidirectional velocity
U, constant diffusivities, and a constant depth H,
Eq. 1.23 becomes 3

2 2 s

ac C 3°C 3°C

at + U —= Ex——f"' Sz —}- [1.24)
ax a9z

For instantaneous vertical line source injection of
tracer,; Sayre and Chang (1968) present the following
solution to Eq. 1.24:

cVv 2 2
CCott) + D8 g (o )2
4!Ht[€x£z} X z

(1.25)

where, as before, Vo is the total volume of solution

of concentration Co injected at the origin of coor-

dinates, and the solution is applicable only to an
unbounded fluid.

Monin and Yaglom (1971) obtained a similar
solution, but in an unbounded so-called uniform shear
flow, where the velocity u varies linearly with z.
For this case Eq. 1.24 becomes

2 2
aC aC _ 3’ C 3 C
3t + {UO + I‘zz) ax Ex ;—x'{ * !:z azz (1.26)

where the uniform shear Pz is defined as before,

and Uo is the velocity at z = 0. The solution is
c V
C fX.Z,tJ -
4nHt (1+¢ t2)1/2 (e 52}1/2
(x-Uo-Fzzt)z .2
» exp {- X SR T ! (1.27)
4axt(1+¢ t°) z
where ¢2 = (Fz/12}(cx/sz).

1.6 Two-Dimensional Mixing from a Continuous Line
Source

As in the case of three-dimensional mixing, the
superposition principle may be used to model continu-
ous injection for two-dimensional line sources. Sayre
and Chang (1968) integrated Eq. 1.25 over time to
obtain

456 Ux U ,.25% 2.1/2
c(x,z)s———ﬂ5-°° . exp (52} K [=—(x"+= 29)'/4)
ZwH(exsz] sz 0"2¢ .

(1.28)

where the fluid is again assumed to be laterally
unbounded, and Ko[ ] is a modified Bessel function

When €
X

tively unimportant, as in the case in most natural
rivers, Eq. 1.28 converges to

at the second kind, order zero. is rela-

.%o

yz3
C(x,z) = - exp {- —}
ZHU(wtszjl:z 4‘ i

(1.29)

A similar application of superposition can be
used to model a continuous line source in a uniform
shear velocity field, i.e., using an expression such
as Eq. 1.27. But the resulting expression generally
cannot be integrated in closed form, requiring the
use of numerical integration techniques (Okubo and
Karweit, 1969).

1.7 The Method of Images

With the exception of the recent solution
published by Cleary and Adrian (1973), all of the mass
conservation equation solutions discussed up to this
point have assumed an unbounded fluid. Thus the solu-
tions presented are valid only in the region down-
stream from the injection point before any tracer con-
tacts the bed or banks (or simply the banks in the
depth-averaged, two-dimensional cases). This restric-
tion is overcome by use of the method of images,
through which artificial, or mirror image, sources
ire used to satisfy the required boundary conditions.
For example, the boundary condition of no tracer
transport through the bank can be constructed by
adding a source of equal strength equidistant from
the bank, but on the opposite, or dry side. Thus
the concentrations immediately on either side of the
bank are the same, and consequently there can be no
diffusive tracer transport across the bank. This
procedure can also be thought of as a reflection,
whereby that portion of the computed tracer distribu-
tion which would fall outside the channel is assumed
to be reflected back into the channel, and is added
to the nonreflected concentration. Of course each
such mirror image source requires another source
reflected across the opposite bank so that in princi-
ple an infinite number of image sources are required.
Sayre and Chang (1968) have generalized this require-
ment as follows: let the actual continuous source be
located a distance z = ¢ from the coordinate origin
at the centerline of the channel. Then denoting the
desired concentration distribution by Cl.

I [C(x,nB-g+(-1)"2)
n=1

+ C(x,nB+g-(-1)"2)]

lex.zl = C(x,2-g) +

(1.30)
where

B = channel width,

n = the number of the reflection cycle, and

) = the appropriate solution for uniform
conditions in an unbounded fluid,
Eq. 1.29).

C(x,z
(e.g.,

Sayre (1973) has indicated that the summation need
only be carried out to n=4 or n =5,

An analytic solution to Eq. 1.23 which allows for
the nonrectangular geometry of a natural channel has
been developed by Yotsukura and Cobb (1972) using the
method of images. For the case of continuous injec-
tion of tracer from a vertical line source into a
stream where the depth, velocity, and diffusivities
are allowed to vary with transverse position but not
with longitudinal distance, Eq. 1.23 becomes



3C 3
hu — = 5;—(h:

aC
3x 3

Z 3z .31)
where the longitudinal diffusivity has been assumed to
be relatively unimportant, and deleted accordingly.

As it stands, Eq. 1.31 is not in.a form for which
analytical solutions exist. Yotsukura and Cobb define
a new independent variable q to replace z,

Z
q = [ hu dz; (1.32)
0

q represents the cumulative partial discharge
measured from the left bank. Introducing q in place
of z in Eq. 1.31, they obtain

aC _ 3 2 aC
Er Ty (ezh u sai (1.33)

which still cannot be solved analytically due to the
q-dependence of the so-called diffusion factor,

szhzu. Therefore Yotsukura and Cobb hypothesize that

a solution to Eq. 1.33 can be approximated by a solu-
tion to

€ _ 23 3
- (r aqj (1.34)

where A is the cross-sectional average value of the
diffusion factor. They show empirically that for
tracer injection near the centerline of the channel,
the use of a constant diffusion factor should be
acceptable.

A solution to Eq. 1.34 is

qoco +D 2
C(x,q) = ;E;;;;I?f + exp - {iﬂz;i_l_) (1.35)

where D is a constant of integration. Yotsukura and
Cobb use the method of images to satisfy the boundary
condition of no tracer transport across the banks;

superposition in space is then used to model a contin-
uous vertical line source of finite width., The final

general solution is

- a(ql,+2n-q')

C'(a,q') = e S (] (erf s v
2aly ) 0 a
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(1.36)

where

uz = Q2}2xl,
Q = the total discharge,
q' = q/Q
Gt - CQ/Coqo
qél.qéz = the left and right hand limits of the
distributed line source, and

the error function as tabulated in
mathematical handbooks.

erf

Recapitulating, Eq. 1.36 predicts the concentration
distribution resulting from continuous injection of
tracer as a distributed vertical line source into a
longitudinally-uniform stream in which the velocity,
depth, and diffusivity may vary transversely, although

2 L . = .
the product ezh u is constant, This solution is

more applicable to the computation of concentrations
in natural rivers than any other two-dimensional
analytic solution obtained to date (1975), though it
is still limited to longitudinally-uniform conditions
and continuous injection.

. L]

1.8 One-Dimensional Mixing from an Instantaneous
Plane Source

Fundamental to the mathematical description of
dispersion in channels is the assumption that tracer
transport due not only to temporal, but also to
spatial variations of velocity and concentration can
be modeled as a gradient mixing process. This con-
cept is employed in the derivation of Eq. 1.6, where

the time-averaged turbulent transport uiC' is

replaced by éi ac;axi, and again in the derivation of
Eq. 1.23, where the depth-averaged transport u{Cy

and the turbulent diffusion Ei aclaxi are replaced

by €&
employed in connection with the modeling of instan-
taneous plane source injection. Taylor (1954) hypoth-
esized that, in turbulent flow through a pipe, the
mixing of a tracer which has spread over the entire
cross section can be described by a one-dimensional
equivalent of Eq. 1.6,

ac/axi. The general approach was first

ac, ac, 32ca
“a e 1.57
at * Ua ax Kx axf 1.37)

where Ua and Ca are the cross-sectional average

values of velocity and concentration, respectively,
and K is the overall longitudinal dispersion coef-

ficient, not to be confused with the turbulent diffu-
sivity. A solution to Eq. 1.37 for the case of con-
stant Ua is the normal or Gaussian distribution,

cv, (x-Uat)Z}
c,(x,t) = + exp {- (1.38)
. ZA{ﬂxxt]I; 2 e

where Vo is the total volume of dispersant of con-
centration C0 distributed over the cross section of
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area A. An important property of the one-dimensional,
or Fickian, diffusion process is that the longitudinal
variance of the cross-sectional average concentration,

2 2 : . .
O, must increase linearly at a rate of twice the dis-

persion coefficient, or <
1 202
KX= T (1.39)

It is this property which makes it possible to evalu-
ate Kx on the basis of plane-source injection exper-

iments in natural streams.

Attempts have been made,
however, to evaluate Kx

analytically. For turbulent
flow in a pipe, Taylor (1954) obtained

K, = 10.1 a0y, (1.40)

where

a, = the radius of the pipe, and
U, = the shear velocity.

Elder (1959) considered one-dimensional mixing in an
infinitely-wide open channel, and obtained

XK =59HU, (1.41)

Elder's result considered only vertical variations in
longitudinal velocity; Fischer (1966), recognizing
that it is transverse variations in longitudinal ve-
locity which contribute most significantly to longitu-
dinal dispersion, obtained

1B w z  , zh(z ,
X =-% g u(z)h(z) g @ g g u(z) dy dz dz dz

(1.42)
where

"
u(z) = the local deviation of longitudinal velocity
from the cross-sectional average, and
h(z) = local depth.

Equation 1.38, along with Eq. 1.42, provides a useful
method of computing concentration distributions re-
sulting from an instantaneous plane source when the
flow is longitudinally uniform and the transverse dif-
fusivity is known. Fischer has also shown that

Eq. 1.38 is applicable to the mixing resulting from an
instantaneous source of any spatial configuration, but
only downstream of the point where the tracer has
spread over the entire cross section. In this case,
the superposition principle may be used to route the
observed distribution to successive downstream loca-
tions if Kx is known or computed.

A more rigorous treatment of the instantaneous
plane source injection problem was introduced by Aris
(1956) and further developed by Sayre (1968). The so-
called moment technique involves the transformation of
Eq. 1.6 into partial differential equations for the
various longitudinal moments of the concentration dis-
tribution. Assuming that longitudinal diffusion is
inconsequential, Sayre obtained numerical solutions
for the first three moments, and by fitting statisti-
cal distributions to them was able to reconstruct the
concentration distributions. Sayre's work was unique

in its applicability to the dispersion of sediment
particles of specified fall velocity.

A recent thorough analysis of plane source
injection data from natural streams performed by
Nordin and Sabolt (1973) has shown that an assumption
of one-dimensional mixing with a constant diffusivity
is usually not justified. The general approach was
originally suggested for use in natural rivers more
on the basis of the convenience of a Gaussian solution
than on the basis of any mixing theory. The present
and future development of more rigorous numerical
techniques for predicting dispersion with few restric-
tive assumptions precludes the need for much further
use of the one-dimensional mixing concept.

1.9 Numerical Model of Two-Dimensional Mixing from a
Continuous Line Source in a Natural Channel

All of the analytical solutions discussed thus
far have been limited in their generality due to math-
ematical restrictions necessary for a solution. All
require longitudinally uniform flow, and all but
Eq. 1.36 require a uniform, unbounded fluid, a rectan-
gular cross section, or plane source injection.
Therefore a numerical solution, allowing for trans-
verse and longitudinal variations of velocity, depth,
and diffusivity, is worthy of consideration.

Yotsukura et al. (1970) developed a numerical model
for two-dimensional mixing, with specific application
to the Missouri River between Sioux City, Iowa and
plattsmouth, Nebraska. Equation 1.23 was written for
a continuous vertical line source injection as

z 3z (b45)
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where the transverse velocity, w, and the longitudinal
diffusivity, Epr have been assumed to be zero. The

stream is divided into stream tubes, each of which has
variable width so as to maintain constant discharge in
each, while reproducing the known depths and veloci-
ties at each cross section. Equation 1.43 is then
written in discrete form; denoting longitudinal compu-
tational points by the subscript I, and stream tubes
(i.e., transverse computational points) by J,

Eq. 1.43 is written

[(hC) g,y J-(huC}I,J] CI'J+1_CI,J
Br.J TR = (e )iy 501G -
’ el TN i 1,J#17°1,J
Gy o il
I,J " VL,J-1
- (he ). [t ——l o) (1.44)
2°1;J,J-1 zI,J zI.J-l
where

= the longitudinal coordinate of stream
tube J at point I,

z = the transverse coordinate of the cen-
ter of stream tube J at point I,

= the depth-diffusivity product at the
interface between tubes J and J+l,

etc., and
Bi 5 the width of stream tube J at point
* I.

The solution to Eq. 1.44 proceeds as follows: at the’
upstream boundary the input concentration is known in
each stream tube, C1 7 The values of C, , are then

computed directly from Eq. 1.44, one tube at a time,
with special consideration given to the tubes at



either bank, where there can be no mass transfer. The
solution is direct, requiring only a single computa-
tion for each grid point, and allows the depth, veloc-
ity, and diffusivity to vary with transverse position.
In their successful application of the model to the
Missouri River, Yotsukura et al.-assumed that the dif-
fusivity €, was a constant within each cross
section.

1.10 The Use of Physical Models for the Prediction of
Dispersion in Natural Streams

Physical models of natural waterways are
especially useful for the study of hydraulic phenomena
when the irregular natural geometry precludes mathe-
matical analysis. As shown in preceding sections,
most closed-form mathematical analysis of dispersion
is applicable only to uniform stream geometries and
artificial velocity fields. Consequently it is tempt-
ing to consider the use of physical models for study-
ing dispersion in natural stredms, especially when
neither the tracer injection nor the water flow can be
considered steady state. But physical models usually
are incapable of reproducing the prototype dispersion
process faithfully.

There are two features of physical models which
can effectively destroy their value in predicting dis-
persion. First, the use of artificial roughness ele-
ments (strips or cleats) to compensate for the rela-
tively steep model slopes induces excessive turbulence
within the flow. On the other hand, boundary-generat-
ed turbulence is primarily responsible for the diffu-
sion in streams; the additional turbulence induced in

a physical model accelerates the turbulent diffusion
relative to the prototype. Second, restrictions of
space and funds require that most physical models be
distorted relative to the prototype; an exaggerated
vertical dimension allows sufficient depth to repro-
duce the phenomenon being studied without requiring
excessive stream widths and lengths. This distortion
can be suitably accounted for in the study of flood
stages, velocity fields, or other gross hydraulic
features. But Fischer and Holley (1971) have shown
that, considering one-dimensional, plane source dis-
persion in steady flow, a distorted model will produce
longitudinal dispersion which is excessively dominated
by vertical velocity gradients, and insufficiently
responsive to transverse velocity gradients. Fischer
(1966) has shown just the opposite tendencies to be
characteristic of natural streams, where transverse
velocity gradients dominate the mixing process.
Holley and Karelse (1973) have presented a similar
analysis for two-dimensional mixing from a continuous
vertical line source, and concluded that, in a dis-
torted model, the transverse diffusion is too great
relative to the prototype. The analytical conclusion
was further supported by direct comparisons of model
and prototype mixing data.

S L]

The exact relationship between the concentration
distributions resulting from mixing in model and pro-
totype can be developed analytically only for ideal-
ized cases, This fact, added to the complexity of
mixing within natural geometries, precludes the use of
distorted physical models for studying dispersion phe-
nomena in natural streams.




Chapter I
A FINITE DIFFERENCE SOLUTION TO THE COMPLETE
DEPTH-AVERAGED, TWO-DIMENSIONAL MASS CONSERVATION EQUATION

2.1 The Need for a Numerical Approach

The objective of this chapter is to develop a
computational method for the prediction of depth-aver-
aged concentration distributions resulting from the
injection of a neutrally-buoyant, conservative tracer
into steady river flow of arbitrary geometry. The
method must allow for steady or unsteady tracer injec-
tion, and take into account the appropriate physical
restrictions to mixing in a natural stream. The vari-
ous analytical and numerical techniques discussed in
Chapter 1 do not fulfill the above requirements for
one reason or another. It is possible to model
sources of arbitrary location in time and space by
applying the superposition principle to the appropri-
ate analytical solution; and the condition of zero
tracer transport across the boundaries can be satis-
fied by using the method of images. But to do so in
streams of nonrectangular cross section becomes ex-
ceedingly complex, if not impossible, and requires the
assumptions of longitudinally uniform flow and con-
stant, unidirectional velocity (or at best a uniform
shear flow). The analytical solution of Yotsukura and
Cobb (1972) requires longitudinally uniform flow, an

assumption of a constant diffusion factor zzhzu, and

is applicable only to continuous, steady-state injec-
tion. The moment method of Sayre (1968) also requires
uniform flow, and is applicable only to one-dimension-
al mixing from an instantaneous plane source, yielding
no information on the spread of a point or line
source.

The numerical method of Yotsukura et al. (1970)
does allow for an arbitrary stream geometry and veloc-
ity distribution, but is limited to continuous injec-
tion of tracer; therefore the task at hand is the
modification of a method such as this to allow for
unsteady injection of tracer. But to do so is much
more difficult than might be expected, because it
involves a fundamental change in the nature of the
equation to be solved. Equation 1.43, describing
steady-state mixing from a continuous vertical line
source, is classified as an elliptic partial differ-
ential equation (Carnahan, et al., 1969); the steady-
state concentration distribution is dependent only on
x and z, the longitudinal and transverse position,
respectively. Once the transverse concentration dis-
tribution at the upstream boundary of the solution re-
gion is specified, and the boundary condition of no
tracer transport across the banks is invoked, then in
principle the complete concentration distribution can
be obtained. 1In other words, at steady state, a
single distribution C(x,z) wuniquely satisfies
Fq. 1.43 at all points in the solution region. No
iterative computation is required, and the accuracy of
a numerical solution is governed primarily by the size
of the computational grid.

The modification of Eq. 1.43 to allow for
unsteady tracer injection is tantamount to reconsid-
eration of the complete two-dimensional depth average
dispersion equation, Eq. 1.23. Now there are three
independent variables; the time t 1is added to the
space coordinates x and z, and the equation is
classified as a parabolic partial differential equa-
tion. In addition to the boundary conditions of no
transport across the banks, the concentration distri-
bution at the upstream boundary must be specified at
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all points in time and some constraint on mixing at
the downstream boundary must be applied. Moreover,
the convective portion of Eq. 1.23 can introduce an
artificial or numerical diffusion which easily can
dominate the physical diffusion and thus invalidate
computational predictions. Thus the seemingly simple
addition of the time-varying term to Eq. 1.43 not only
requires that a concentration distribution be computed
at cach time increment, but also requires an addition-
al boundary condition and, most importantly, intro-
duces the possibility that the numerical solution may
not even approximate the true solution. Section 2.2
demonstrates how this may occur, and Sect. 2.3 ex-
plores the numerical characteristics of a finite dif-
ference method for use in a two-dimensional mathemati-
cal model of dispersion.

2.2 The Occurrence of Artificial (Numerical)
Diffusion

The purpose of this section is to demonstrate
how the finite differencing of a linear convection
equation can introduce artificial diffusion which has
no physical basis, but is purely a consequence of the
computation method. It is reasonable to ask why such
behavior should be of concern, since real-life prob-
lems do involve physical diffusion. Consider depth-
averaged diffusion in a rectangular chamnel having a
transverse velocity distribution wu(z). Further
assuming that the diffusivities are constant and the
transverse velocities are negligible, Eq. 1.23 can be
written

2
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ax ez
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aC
T (2.1)
One solution technique might be first to solve the
convective portion of Eq. 2.1,

aC aC
TE ¥ Does K 0 (2.2)

for each stream tube into which the channel is divid-
ed, convecting the tracer mass a certain distance
downstream in each time step, depending on the local
velocity assigned to that stream tube. Then the "new"
convected concentrations could be diffused transverse-
ly and longitudinally by solving

: 2 2
T.oe 22-c 2%e0 (2.3)
X ax o

at each longitudinal computation point, and the en-
tire process repeated for successive time increments.
Since the solution would compute convection and dif-
fusion separately, it would be desirable that the con-
vection solution, Eq. 2.2, introduce no artificial
diffusion; otherwise the total solution to Eq. 2.1
might appear physically reasonable, but in fact be
dominated by artificial, as opposed to physical, dif-
fusion. Therefore the convection solution must be
analyzed in some detail.

Equation 2.2 represents a situation whereby, in
a stream tube of longitudinal velocity u, any



either bank, where there can be no mass transfer. The
solution is direct, requiring only a single computa-
tion for each grid point, and allows the depth, veloc-
ity, and diffusivity to vary with transverse position.
In their successful application of the model to the
Missouri River, Yotsukura et -al. assumed that the dif-
fusivity €, Was a constant within each cross
section.

1.10 The Use of Physical Models for the Prediction of
Dispersion in Natural Streams

Physical models of natural waterways are
especially useful for the study of hydraulic phenomena
when the irregular natural geometry precludes mathe-
matical analysis. As shown in preceding sections,
most closed-form mathematical analysis of dispersion
is applicable only to uniform stream geometries and
artificial velocity fields. Consequently it is tempt-
ing to consider the use of physical models for study-
ing dispersion in natural streams, especially when
neither the tracer injection nor the water flow can be
considered steady state. But physical models usually
are incapable of reproducing the prototype dispersion
process faithfully,

There are two features of physical models which
can effectively destroy their value in predicting dis-
persion., First, the use of artificial roughness ele-
ments (strips or cleats) to compensate for the rela-
tively steep model slopes induces excessive turbulence
within the flow. On the other hand, boundary-generat-
ed turbulence is primarily responsible for the diffu-
sion in streams; the additional turbulence induced in

a physical model accelerates the turbulent diffusion
relative to the prototype. Second, restrictions of
space and funds require that most physical models be
distorted relative to the prototype; an exaggerated
vertical dimension allows sufficient depth to repro-
duce the phenomenon being studied without requiring
excessive stream widths and lengths. This distortion
can be suitably accounted for in the study of flood
stages, velocity fields, or other gross hydraulic
features. But Fischer and Holley (1971) have shown
that, considering one-dimensional, plane source dis-
persion in steady flow, a distorted model will produce
longitudinal dispersion which is excessively dominated
by vertical velocity gradients, and insufficiently
responsive to transverse velocity gradients. Fischer
(1966) has shown just the opposite tendencies to be
characteristic of natural streams, where transverse
velocity gradients dominate the mixing process.
Holley and Karelse (1973) have presented a similar
analysis for two-dimensional mixing from a continuous
vertical line source, and concluded that, in a dis-
torted model, the transverse diffusion is too great
relative to the prototype. The analytical conclusion
was further supported by direct comparisons of model
and prototype mixing data.

The exact relationship between the concentration
distributions resulting from mixing in model and pro-
totype can be developed analytically only for ideal-
ized cases. This fact, added to the complexity of
mixing within natural geometries, precludes the use of
distorted physical models for studying dispersion phe-
nomena in natural streams.



Chapter Il
A FINITE DIFFERENCE SOLUTION TO THE COMPLETE
DEPTH-AVERAGED, TWO-DIMENSIONAL MASS CONSERVATION EQUATION

2.1 The Need for a Numerical Approach

The objective of this chapter is to develop a
computational method for the prediction of depth-aver-
aged concentration distributions resulting from the
injection of a neutrally-buoyant, conservative tracer
into steady river flow of arbitrary geometry. The
method must allow for steady or unsteady tracer injec-
tion, and take into account the appropriate physical
restrictions to mixing in a natural stream. The vari-
ous analytical and numerical techniques discussed in
Chapter 1 do not fulfill the above requirements for
one reason or another. It is possible to model
sources of arbitrary location in time and space by
applying the superposition principle to the appropri-
ate analytical solution; and the condition of zero
tracer transport across the boundaries can be satis-
fied by using the method of images. But to do so in
streams of nonrectangular cross section becomes ex-
ceedingly complex, if not impossible, and requires the
assumptions of longitudinally uniform flow and con-
stant, unidirectional velocity (or at best a uniform
shear flow). The analytical solution of Yotsukura and
Cobb (1972) requires longitudinally uniform flow, an

assumption of a constant diffusion factor szhzu, and

is applicable only to continuous, steady-state injec-
tion. The moment method of Sayre (1968) also requires
uniform flow, and is applicable only to one-dimension-
al mixing from an instantaneous plane source, yielding
no information on the spread of a point or line
source.

The numerical method of Yotsukura et al. (1970)
does allow for an arbitrary stream geometry and veloc-
ity distribution, but is limited to continuous injec-
tion of tracer; therefore the task at hand is the
modification of a method such as this to allow for
unsteady injection of tracer. But to do so is much
more difficult than might be expected, because it
involves a fundamental change in the nature of the
equation to be solved. Equation 1.43, describing
steady-state mixing from a continuous vertical line
source, is classified as an elliptic partial differ-
ential equation (Carnahan, et al., 1969); the steady-
state concentration distribution is dependent only on
x and z, the longitudinal and transverse position,
respectively. Once the transverse concentration dis-
tribution at the upstream boundary of the solution re-
gion is specified, and the boundary condition of no
tracer transport across the banks is invoked, then in
principle the complete concentration distribution can
be obtained. In other words, at steady state, a
single distribution C(x,z) uniquely satisfies
Eq. 1.43 at all points in the solution region. No
iterative computation is required, and the accuracy of
a numerical solution is governed primarily by the size
of the computational grid.

The modification of Eq. 1.43 to allow for
unsteady tracer injection is tantamount to reconsid-
eration of the complete two-dimensional depth average
dispersion equation, Eq. 1.23. Now there are three
independent variables; the time t is added to the
space coordinates x and z, and the equation is
classified as a parabolic partial differential equa-
tion. In addition to the beundary conditions of no
transport across the banks, the concentration distri-
bution at the upstream boundary must be specified at
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all points in time and some constraint on mixing at
the downstream boundary must be applied. Moreover,
the convective portion of Eq. 1.23 can introduce an
artificial or numerical diffusion which easily can
dominate the physical diffusion and thus invalidate
computational predictions. Thus the seemingly simple
addition of the time-varying term to Eq. 1.43 not only
requires that a concentration distribution be computed
at each time increment, but also requires an addition-
al boundary condition and, most importantly, intro-
duces the possibility that the numerical solution may
not even approximate the true solution. Section 2.2
demonstrates how this may occur, and Sect. 2.3 ex-
plores the numerical characteristics of a finite dif-
ference method for use in a two-dimensional mathemati-
cal model of dispersion.

-
2.2 The Occurrence of Artificial (Numerical)
Diffusion

The purpose of this section is to demonstrate
how the finite differencing of a linear convection
equation can introduce artificial diffusion which has
no physical basis, but is purely a consequence of the
computation method. It is reasonable to ask why such
behavior should be of concern, since real-life prob-
lems do involve physical diffusion. Consider depth-
averaged diffusion in a rectangular channel having a
transverse velocity distribution u(z). Further
assuming that the diffusivities are constant and the
transverse velocities are negligible, Eq. 1.23 can be
written

2 2

aC 3C 3°C 3 C
E*uﬂ'cx;‘?*‘cl;{ {2-1)

One solution technique might be first to solve the
convective portion of Eq. 2.1,

3C 3C
et W 0 (2.2)

for each stream tube into which the channel is divid-
ed, convecting the tracer mass a certain distance
downstream in each time step, depending on the local
velocity assigned to that stream tube. Then the ''new"
convected concentrations could be diffused transverse-
ly and longitudinally by solving

2 2

aC 2°c a%c

ol -—-z-a - Ry, g 0 (2.3)
x 3z

at each longitudinal computation point, and the en-
tire process repeated for successive time increments.
Since the solution would compute convection and dif-
fusion separately, it would be desirable that the con-
vection solution, Eq. 2.2, introduce no artificial
diffusion; otherwise the total solution to Eq. 2.1
might appear physically reasonable, but in fact be
dominated by artificial, as opposed to physical, dif-
fusion. Therefore the convection solution must be
analyzed in some detail.

Equation 2.2 represents a situation whereby, in
a stream tube of longitudinal velocity wu, any



specified concentration distribution at time t,
C(x,t), is moved a distance wuAt without any change
in shape during the time increment At, so that

C(5,t+at) = C(x,t) (2.4)

where

£ = X + ubt.

This is the exact solution to Eq. 2.2, obtained only
if no artificial diffusion is present. But now con-
sider a finite difference solution to Eq. 2.2; one
simple scheme might be a one-sided explicit method,
whereby Eq. 2.2 would be written

n+l n
s 25 g 25| ;.

At Ax

n n

(CI+1 h CI)

(2.5)

where I and n are the longitudinal space and time
subscripts and superscripts, respectively, and Ax

and At are the space and time increments. Note that
for wudt/Ax = 1, Eq. 2.5 gives C?:i = C?, which is
the exact solution corresponding to Eq. 2.4. For
uAt/ax > 1, the solution Eq. 2.5 is unstable, and will
not converge to the real solution (Roache, 1972); and
for wuAt/Ax < 1, artificial diffusion is introduced.
To show this, expand Eq. 2.5 in a Taylor Series about
the point 1I+l,n:

n aC atz azc

3 n o _
C1+l * At a4 = o(at™) - CI+1 =
at
udt ,.n n «. aC axz EZC 3
“x Cra m Gt & v Ofaxd
or
3C _ At 9°C . udx 3%C _ 3C 8.4
*é-;ﬂ--*z—-?-i"z—?-u-a—{'io(ﬁt B 1 (2.6)

the symbol O denoting the order of approximation.
Now Eq. 2.2 may be differentiated to yield

2
2°c _ 3 5C, _ LI TR P
e Al L R 4 A L
or
2 2
B, Eie @.7)
at ax
Substituting Eq. 2.7 into Eq. 2.6 and simplifying,
L. a—2£+0{at2a2) (2.8)
3t T Max N .2 0% '
X
where
g udx uzat
N 2 g

Now Eq. 2.8 is not the pure convection equation 2.2
at all, but a diffusion equation with a numerical dif-
fusivity N which vanishes only if uat/ix = 1.

Figure 2.1 demonstrates the effect of the numerical
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diffusivity, which has no physical basis, but is a
direct consequence of the discretization. In a flow
situation for which the velocity is a constant U in
each stream tube, the time and distance steps could

be chosen so as to set UAt/Ax = 1, and the numerical
solution would be nondiffusive. But in a natural
stream, where the velocity wu changes from one stream
tube to another, the condition uAt/4x = 1 could be
maintained only for one stream tube; all others would
exhibit artificial diffusion. Therefore Eq. 2.5 is

an example of a finite-difference discretization which
is unacceptable for the prediction of dispersion in
streams.

Another difficulty in the numerical solution of
Eq. 2.2 is the existence of artificial dispersion, or
the spreading out of a convected distribution due to
the variation in the celerity of the different Fourier
components of which it is composed. Section 2.3 in-
cludes the analysis of both numerical diffusion and
dispersion as applied to the choice of an acceptable
finite difference scheme for solution of the convec-
tive portion of the depth-averaged mass conservation
equation.

&

2.3 General Method of Analysis of Finite Difference
Schemes for Convective Transport

It is, in general, not possible to analyze the
numerical characteristics of finite-difference solu-
tions to an equation such as Eq. 1.23. Nonetheless,
useful comparisons may be made if the expression is
simplified to some extent. With the goal in mind of
analyzing a finite difference scheme for the convec-
tive portion of Eq. 1.23, the simplified form,

Eq. 2.2, is used for analysis.

A general method for determining the stability
and convergence characteristics of finite-difference
schemes is the consideration of the Fourier components
comprising the solution. Writing the solution to
Eq. 2.2 as an infinite Fourier Series,

m=+o
C(x,t) = _I_m A, expli(o x - 8 t)} (2.9
where
A = the constant coefficient for the m*"
component of the series,
i=v-1 £
B = frequency of the m™" component, 2#/Tm,
0, = wave number of the mth component, ZnILm,
T, = the period of the nth component, and
L= the wavelength of the nth component.
Since Eq. 2.2 is linear, any component of Eq. 2.9

should be a solution and thus may be substituted into
it; the objective here is to find the relationship
between B and 0y such that Eq. 2.9 is indeed a

solution to Eq. 2.2. Performing the substitution,
-A, (18 ) exp{l(omx-smtj}

+u Am(icm) exp{i(cmx-ﬂmt]} =0

or -Bm g = 0. (2.10)



Therefore when B8 = ug for all components, Eq. 2.9

is the true solution to Eq. 2.2, The celerity of each

series component is given by

L

4' i
=

(2.11)

i
(=1 wm
=%|s
1]
&

The constant celerity requires that all series compo-
nents move downstream at the same rate, allowing no
relative dispersion, or spreading, of the solution in
space,

Now Bm may be complex, so that Eq. 2.9 may be
written
m=#w
C(x,t) = m};“ Ay exp{ImBmt} exp{l(-ReBmt+cmx)}
where

Bm = ReBm + i ImBm.

Thus exp{ImBmt} may be recognized as a time-depen-

dent function which can amplify or damp the solution
component m in time. But Eq. 2.10 requires that,
since the wave number 9 must be real, the frequency

“m must also be real. Consequently

Imﬂm =0,

and

exp{ImSmt} - 1 (2.12)

so that the solution is neither damped nor amplified
in time. Equations 2.11 and 2.12 simply formalize the
expected behavior of the-solution to Eq. 2.2: any
concentration distribution is displaced in a down-
stream direction with no change of shape due either to
numerical diffusion (damping) or numerical dispersion
(spreading out).

The above analysis describes the behavior of the
components of the Fourier Series solution to the par-
tial differential equation 2.2. The approach can also
be applied to the components of solutions to finite
difference approximations of Eq. 2.2, and the results
compared to the desired behavior. Specifically, de-

fine a.convergence coefficient R1 as the ratio of

the finite difference solution damping factor
exp{Imfatl to the actual solution damping factor
exp{Img8t} = 1.0, so

Ry = exp{Im8at}. (2.13)
Define Rz as
“m
R2 i (2.14)

or the ratio of the finite difference solution compo-
nent celerity ¢, to the actual solution celerity u.

In Sect. 2.3.1 the coefficients R1

developed ip detail for the double-step implicit-ex-
plicit scheme which is applied to the depth-averaged
mass conservation equation in Sect. 2.3. In

and R2 are
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Appendix C seven other schemes which were also
considered are described, and the R1 and Rz

ficients are presented and discussed, but without de-
tailed derivation.

coef-

2.4 Double-Step Implicit-Explicit Scheme, Second
Order

A finite difference method for convection,
originally described by Peaceman and Rachford (1955),
was applied to flow in estuaries by Leendertse (1970).
The method can also be adapted to the present problem
of convection in rivers. Each time increment A&t is
broken into two halves of equal length; convection is
computed implicitly over the first half step, and ex-
plicitly over the second. The discretization is shown
schematically on Fig. 2.2, where the dashed lines
indicate the finite difference approximations to the
space and time derivatives. The first half step is
called "implicit" because the space derivative at
point I, n+% must be written in terms of the unknown
concentrations at I+1, n+s and 1-1, n+}, requiring
an indirect solution. The second half step is called
"explicit" because the corresponding space derivative
is written in terms of known concentrations at [+1,
n+¥s and I-1, n+k, allowing a direct computation of

n+1
CI .
results finally combined.

Each step can be treated independently, and the

2.4.1 Implicit half step. The time derivative in the
first half step is written as
n+ls n
oG S
it &t?Z

and the space derivative as

n+ls n+is
T < N
ax 248x

Equation 2.2 is then written

Cn*k o (Cn+% " Cn+k)
1 1 1 I+1 -1 w (2.185)
at/2 24x E

As before, consider the solution to be decomposed into
a Fourier Series, but with time and distance written
in discrete form:

m=+w
L A, expli(o, Iax-B nt)}

m=-=

C(IAx,nit) = (2.16)

Substituting the mth component of Eq. 2.16 into
Eq. 2.15 and dropping the subscript m yields, after
some simplification,

expl-i sin oAx) = 1

At ir

where

_ ust
ax

In order to obtain R1 and R2' it is necessary ul-

timately to find the damping factor exp{ImBAt} and
the celerity ReB/c. This can be done by first

writing Eq. 2.17



t
exp{-i B %-} = -
1 + — sin o&x

or

sin oAx
exp{-i B %E-} =

(2.18)
sinzoﬁx

-hl"‘N NI:‘

In general, a complex exponential may be written
exp{if} = exp{iRe8 - Imé8}

= exp{-Im8} expl{iRe8}

and by Euler's formula,

exp{i6} = exp{-Im8}(cos Re¢' + i sin Re8). (2.19)

Taking the modulus of Eq. 2.19,
lexp{ig}]| = exp{-[mﬂ}(cosz Ret + sin® Res}”z

= exp{-Imo}, (2.20)

Hence from Eq. 2.18,

2

(e« sin® gaxyt

2

1+ rT sin2 oAX

/2

exp{ Imp ézlt-} = |expl-iB az—t}| =
r2 2 1/2
= (1 + T sin” oAx) ; (2.21)

To find ReB, first equate the real and imaginary
parts on either side of Eq. 2.18:

exp(Ing 5} cos (-Res 5 = 1 (2.22)
2
1+ I‘T sinz ghx
and
A
- = sin 0Ax
exp{Img &) sin (-reg &Yy - 2 . 2.23)
P 2 2 2
1+ rT si.n2 ahx
Taking the ratio of Eq. 2.23 and Eq. 2.22,
tan (Red “Z—t) = 7 sin otx
or
2 i %
Ref = 3 arctan {f sin oix). (2.24)

2.4.2 Explicit half step. The time derivative in the
second half step is written as

n+l n+ly
ac , by~ =
at at/2

and the space derivative as
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n+dy  n+ls
C _ i M X1
ax 24x

Equation 2.2 is written as

e Cn+’5 u (Cn-*!s } cn+55)
1 1, 185 Wil & LA (2.25)
at/2 246x : ’

The Fourier Series solution to Eq. 2.25 is

m=+m

C(Iax,nst) = A, expli(o Iox - B nat)).

(2.26)

Substituting the mth component of Eq. 2.26 into
Eq. 2.25, dropping the subscripts, and simplifying
yields

expl-iB %E} + EZE sin(oax) = 1

or
. At T
exp{-iB -5-} =1-1 5 sin (oAx). (2.27)

Applying Eq. 2.20

2
exp{ Imp :32_1:} = |exp{-iB ‘Qz—t}| = [1 + %—- sin’ (anx)]uz.

(2.28)

To find Red, equate the real and imaginary parts on
either side of Eq. 2.27:

expl ImB %?'—} cos (-Rep ﬁz—t) =1 (2.29)
At y At R
exp{Im8 -5-} sin (-Reg 2—] = 5 sin (94x) (2.30)
Taking the ratio of Eq. 2.30 and Eq. 2.29,
tan (Re8 49 =  sin (onx)
or
Re8 = = arctan (% sin oAx) (2.31)
it 2 ) :

2.4.3 Full time step. The overall damping factor,

exp{ImgAt], is the product of the damping factors in

each half step. Multiplying Eq. 2.21 by Eq, 2.28,
exp{Imfat} = 1

and consequently

R1=1.

(2.32)
The component celerities over each half step must be
averaged to obtain a representative value. Therefore
adding Eq. 2.24 and Eq. 2.31, which are identical, and
dividing by 20, the average celerity becomes

2 :
a5t arctan (f sin oAx)

il e e G s i

P s

e A



and division by u gives

T s
Rz —oit arctan (5 sin oax).

(2.33)

The result expressed in £q. 2.32 is highly
significant. It indicates that the double-step im-
plicit-explicit finite difference scheme is not only
stable for all values of uAt/Ax, but also that it
introduces no numerical damping. This feature is most
attractive in view of the discussion in Sect. 2.2, as
it eliminates the possibility of artificial diffusion
in the purely convective stage. However Eq. 2.33 in-
dicates that Rz is always less than unity, and

therefore all Fourier components will travel more
slowly than the true solution, the numerical solution
becoming spread out as it is transported downstream;
this process may again look like physical diffusion.
The key here is to keep L/Ax as large as possible,
as shown on Fig. 2.3, which is a plot of Eq. 2.33.
upt/Ax is kept reasonably small, say 2.0 or less,
then for L/Ax greater than 10 the component celeri-
ties will be within 15 percent of the desired value.
Physically, the most significant wavelength in the
Fourier Series of an actual distribution is approxi-
mately the "wavelength" of the distribution itself.
Therefore it is important that any input concentration
distribution be spread over at least 10 computational
points; this requirement is physically reasonable, as
one would not expect two or three discrete values to
describe adequately a concentration distribution.

1f

A demonstration of the sensitivity of the
double-step implicit-explicit scheme to values of
ubt/bx can be developed by applying Eq. 2.15 and
Eq. 2.25 to a simple rectangular channel of width 30,
length 10,000, depth 1.96, velocity 0.467, and dis-
tance step Ax = 200, all in arbitrary units.

The initial concentration distribution is a
half-sine wave of amplitude 10 units centered at the
cighth computational point, i.e.,

C(1x,0)

10 sin[n(I-3)] for 3 < I < 13,
= 0 otherwise.

The distribution was routed downstream for 10,800 time
units of At = 98.5, 398.3, and 1713.1 units, or
uAt/Ax = 0.23, 0.93, and 4.0. Figure 2.4 shows the
results of the computation, demonstrating that al-
though for udt/Ax = 0.23 and uAt/Ax = 0.93 some
numerical dispersion is present, the primary distribu-
tion gives a satisfactory reproduction of the ideal
solution. But for uAt/Ax = 4.0, the computed distri-
bution gives a poor estimate of the desired curve.
Oscillations behind the primary distribution are
caused by low-amplitude Fourier solution components
moving much more slowly. Concentrations from the
leading edge of the distribution to its peak, where
most practical interest is generally focused, are
relatively unaffected by the oscillations.

The double-step implicit-explicit scheme is of
wecond order accuracy. That is, a Taylor Series ex-
pansion of the finite difference solution is identical

2
to the exact solution if terms the order of Ax", ntz
are dropped. 1In Appendix C seven additional schemes
uf first, second, and fourth order are discussed. The

derivations of Rl and R2 are not shown, but follow

the general pattern used in this section.
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2.5 Comparison of Finite Difference Schemes for
Convective Transport

In general it is not possible to choose one of
the schemes analyzed in Sect. 2.4 and Appendix C as
superior to the others. Each scheme has its own set
of advantages and disadvantages over some range of
conditions, and any one of them might be the best
choice for the computation of pure convection in a
specified flow situation. But an important considera-
tion in selecting a scheme for general use is its
flexibility in demonstrating favorable characteristics
over a broad range of flow conditions. Therefore it
is instructive to compare some general characteristics
of the eight schemes.

Fully explicit methods, such as schemes A, D, and
E, are generally easy to program for the computer and
use relatively little computer time. But they are un-
stable, i.e., yield no solution, when the Courant num-
ber, uit/4x, exceeds unity. Moreover, scheme A intro-
duces numerical damping whenever uAt/Ax is less than
unity.

The fully implicit methods, on the other hand,
are unconditionally stable for all values of the
Courant number. But schemes B and C do introduce nu-
merical damping for all values of the Courant number,
and moreover require significantly greater programming
complexity and computer time.

There are two fundamental questions to be
considered in choosing between fully explicit and ful-
ly implicit schemes:

a) Is natural damping, or diffusion a
significant factor in the physical phenomenon being
modeled?

b) Does the longitudinal velocity vary
significantly from one point in the stream to another?

For dispersion in streams the answer to a) is obvious-
ly "yes"; and the chosen scheme must minimize numeri-
cal diffusion. For the prediction of dispersion in
man-made channels such as canals or floodways, the
answer to b) may be 'mo", and a simple explicit method
may be used with Ax and At chosen so as to keep
uAt/ax as close to unity as possible throughout.

Then the solution will be stable and artificial damp-
ing will be at a minimum. But in a natural stream,
where the transverse gradient of longitudinal velocity
can be significant, it is_impossible to have

udt/ax = 1 everywhere, and an implicit method might
be more useful. Then the time and distance steps can
be chosen so that the average value of uAt/ox is
near unity; the solution will always be stable, but
artificial damping will be introduced over most of

the cross section. In order to minimize the damping
over the entire section, and at the same time allow
some flexibility in time and distance steps so that
the solution may be obtained with the desired detail,
it is necessary to adopt a composite scheme such as

F, G, or the implicit-explicit scheme described in
Sect. 2.4,

Among the composite methods, the second order
implicit-explicit scheme is clearly the most attrac-
tive, as it is unconditionally stable and nondamping.
The fourth-order version offers little improvement for
the increased programming complexity, and the predic-
tor-corrector method, (scheme G), while unconditional-
ly stable, still introduces numerical damping always.



The second order double-step implicit-explicit scheme,
described in Sect. 2.4, offers the best convergence
characteristics among the. eight methods studied inso-
far as solutions to Eq. 2.2 are concerned. For the
more general convection equation, i.e., the left-hand
side of Eq. 1.23, convergence coefficients simply can-
not be derived, and thus there is no basis for the di-
rect choice of an optimum scheme. Therefore it is
simply assumed that the relative desirability of the
scheme in Sect. 2.4, as shown for the solution of

Eq. 2.2, extends also to the solution of Eq. 1.23.

2.6 Application of the Second Order Double-Step
Implicit-Explicit Scheme to Solution of the
Depth-Averaged Dispersion Equation

The depth-averaged mass conservation equation,
Eq. 1.23, describes the mixing process within an
infinitesimally narrow control volume, i.e., at a
point, It is important to ensure that, in solving
Eq. 1.23 numerically on a discrete grid of computa-
tional points, the principle of conservation of mass
is not violated. For this reason the river is concep-
tualized as a group of stream tubes each of which ex-
tends from the bed to the water surface, and is
bounded laterally by streamlines, as shown in Fig. 2.5,
Thus the tube widths, depths, and longitudinal veloc-
ities vary longitudinally so as to keep the discharge
constant in each, and the tube centerlines may shift
back and forth in the channel as the transverse dis-
tribution of discharge changes. The centerline of
each stream tube is a computational point J, located
at longitudinal computational points I.

Equation 1.23, written in terms of depth-averaged®
variables, must be rewritten in terms of stream-tube
averages. This may be done by integrating over the
width of a stream tube whose left and right hand

transverse coordinates are z = a' and z = b',
respectively:
b' b' b'
3C 3 3
£‘ h 53 dz + i 35 (huC) dz + { = (hwC) dz
b' b!
2 3C 3 oC
= L 3z (he, 52 dz + a{' 57 (he, =) dz.  (2.34)

Applying Leibniz's theorem for differentiation of an
integral, and noting that, by definition, the depth-
averaged transverse velocity w must vanish at the
stream tube boundaries, Eq. 2.34 may be written as

3 b 3 ?. a3 b aC
St—i. hC dz + -a;;' (huC) dz = 5-1-3‘ (he, 33) dz
bt aC ab! 3u’
* Az £r {hEZ EE* dz + (huC)|h, ax LhuL)la. ax
ac ab! 3C 3a’
~(he, 30 lpr T * ey 3@l (2.35)

Denoting the stream tube width by B', lumping the last
four terms into a single term R, and using an overbar
to denote a stream tube average, Eq. 2.34 may be
written
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3 — 3 = B .o, 8C
5t (B'RC) + — (B'huC) = 5= (B'he, =)

3C, | 3C "
+ (he, 2 |, - (he, 33 la, + R. (2.36)

In a prismatic channel, the stream tube boundaries are
parallel to the x-axis, and R = 0. In a nonprismatic
channel, the boundaries are parallel neither to the
x-axis nor to each other; therefore the longitudinal
convection and diffusion, assumed to be parallel to
the x-axis in Eq. 2.36, are actually not parallel to
the stream tube boundaries. The terms in R account
for the mass transport across nonparallel tube bound-
aries due to longitudinal diffusion and convection.

As long as enough stream tubes are used to keep
da'/ax, 9b'/3x, and the variation of hu across the
tube relatively small, the effect of neglecting R
will be negligible. Finally, noting that the product
B'h 1is the cross-sectional area of the stream tube,
A, and dropping the overbars, Eq. 2.36 may be written

aC 3 _ 9 aC
A 3t + X (AuC) = X (.‘\Ex s-i"]

+ the, 3|y, - (he, 5 1y (2.37)
It is important to recognize that Eq. 2.37, which
is the basis of the numerical model, does not require
that secondary transverse velocities be zero. The
longitudinal variation of stream tube widths, required
to satisfy continuity, results in a longitudinal
variation of the transverse coordinates of stream tube
centroids. An observer moving with the flow in a par-
ticular stream tube would see this as a gradual move-
ment across the channel, i.e., as the effect of depth-
averaged transverse velocity. The stream tube
averaging process has removed the depth-averaged
transverse velocity w as an explicit parameter, but
w implicitly governs the dimensioning of stream tubes
to satisfy continuity. Moreover, additional trans-
verse mixing caused by secondary velocities, i.e.,
the mixing associated with deviations of concentration
and transverse velocity from their respective depth
averages, has been absorbed in the transverse diffu-
sivity, €, Therefore Eq. 2.37 is, of itself, appli-

cable to flow around alternate bars and in bends; any
limitation is in the degree to which the secondary
mixing contribution to e, can be quantified.

Fischer (1969) and Chang (1971) have attempted theo-
retical and experimental quantifications of the
secondary mixing in bends, based on the secondary
flow theories of Rozovskii (1957). Neither inves-
tigator was able to obtain definitive results, due
primarily to the weakness of existing secondary flow
theory, and due to the difficulty of obtaining sec-
ondary velocity measurements.

The general strategy for the numerical solution
of Eq. 2.37 is as follows: in each time step, first
route the concentration distribution in each stream
tube downstream by solving for pure convection using
the second order double-step implicit-explicit scheme.
Second, solve for transverse diffusion by applying a
fully implicit scheme to the convected concentrations.
Finally, diffuse the concentration distributions lon-
gitudinally with another fully implicit scheme. The
details of the computation are outlined in the follow-
ing three subsections.
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2.6.1 Longitudinal convection. The finite difference
method of Sect. 2.4 is used to solve the convective
portion of Eq. 2.37,

ac 3

A ST+ o (AuC) =0, (2.38)

separately in each stream tube J. Assume that the
entire concentration field is known at time n.
Equation 2.38 is written for the implicit half step as

N+ n
& (CI,J “ CI,J)
1,3 it/2
n+ks n+ks
s Pohysay St " W Bl e
5 7% (s %
which may be rewritten
n#s _ n n+ks n+is
Cry=Yg*RaCuyy = Spg Sy 1239
where
At (Au)
- ) I
oo : (2.40a)
Lad 2Ap (g = X5 4)
and
At (Au)
5, ;= Irl,J (2.40b)

281,341 = *11)

Note that the coefficients R and S are known at
all times, but Eq. 2.39 contains three unknown concen-
trations. The writing of Eq. 2.39 for each of N-2
computational points will generate a system of N-2
linear equations in N unknowns, where N is the
total number of computational points. Therefore two
boundary conditions must be supplied before a solution
is possible.

The appearance of only three adjacent unknowns in
each of the N equations makes the linear system di-
agonally dominant, or banded (Carnahan et al., 1969).
This is noteworthy as it obviates the need for a time
consuming, complex matrix inversion. Instead, a tri-
diagonal matrix method, also known as the double-sweep
method, may be used to solve the linear system. First,
express the concentration at I-1 as a linear func-
tion of the concentration at 1:

n+ls

Crat o™

E

oy (2.41)

where E and F are constants yet to be determined.
Substituting Eq. 2.41 into Eq. 2.39,

n+s _ n n+ls

Or 3 =S T BB 0%y g

+R, _F 5. . s

A R O e T U

or

-8 ¢® +R, . F
M 1,J N+l Ld 1J 1-LJ (5 49

L3 TR ;B 5 1] T S

Comparing Eqs. 2.41 and 2.42, it may be seen that
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8
1,
B, g e S (2.43a)
%S & gy gy
and
n
B e Beos Pagoy
Fpoy = =t . (2.43b)
’ 0 e R

The significance of Eqs. 2.41 and 2.43 is that after
appropriate application of the upstream boundary con-

dition, E and F are known, and by recurrence
1,J 1,3

all the remaining E and F values may be computed
from Eq. 2.43. Then the downstream boundary condition
P
N,J?
C may be computed from Eq. 2.41. By this means the
double-sweep technique allows a complete solution in
each time step through a direct computation.

fixes and by recurrence the remaining values of

The boundary conditions are applied as follows:
at the upstream boundary of each stream tube, the
concentration input is known at all times. Denoting

this value at time n+s as C?+§, Eq. 2.41 may be
written

n+ls n+ly

Sp =R g% s * 8

which will satisfy the boundary condition if

_ Ntk
0 and Fl,J = CI,J'

El,J

Then the remaining values of E and F
puted and stored for each stream tube.

may be com-

At the downstream boundary there is no specified
condition. Thus it is necessary to create one by as-
suming the existence of a fictitious point whose x-
coordinate differs from one tube to another and is
computed as

X = X, + Q.E
Nel,J - %N " ¥N,0 7

Now assume that between these last two points there is
no change in shape of the concentration distribution
in the half step, so that

n+s  _ n

o, 5™ S5
Then

n+s n+ks

I e % e I
or

n+ds n

O, = Ba St Bya

and by recurrence using Eq. 2.41 the remaining con-
centrations may be computed using the previously-
stored E and F wvalues. This procedure is carried
out for each tube J, completing the implicit half
step of the convective stage.

The explicit half step computes the convected
concentrations at time n+l given the values at time
n+s as computed in the implicit half step.



Equation 2.38 is written explicitly as

n+l n+¥
g (Cr.g
1,9 "ii?i“““
n+s n+3§
W 13 0 ) % Ml 5 s 25 10 O
141 T Y121
which may be rewritten
n+l _ onlg n+ls n+lg
C1,3 CI 3R Ca %0 Gas Q)

where R and S are as defined previously in

Eq. 2.40. Equation 2.44 contains only one unknown
concentration. The upstream boundary condition is
sufficient to start the calculation; C?‘} is known,
and the remaining concentrations may be computed di-
rectly in each stream tube using Eq. 2.44.

At this stage in the computation, the known
concentration distribution in each stream tube has
been routed downstream for one time step without any
numerical diffusion, but possibly with some numerical
dispersion. The routed distributions are now to be
diffused transversely and longitudinally.

2.6.2 Transverse diffusion. To this point nothing
has been said regarding the finite difference scheme
to be used for transverse and longitudinal diffusion.
Consider a fully implicit scheme applied to a simpli-
fied one-dimensional diffusion equation,

(2.45)

where n represents either the x or =z direction
and ¢, is a constant. Applying a symmetrical impli-

cit scheme to Eq. 2.45,

n+l - Cn {cn+l n+1 cn+1
- L. (2.46)
At n ﬁn

c

where the J index refers to the n-direction compu-
tational point. A Taylor Series expansion of Eq. 2.46
about the point (n,J) yields, after some simplifica-
tion,

2 2

aC _ ali At 2 C 2 2
E'- En ;2- - 2—5';'2— 0(5t ,4n ] [2'47)

Thus the finite difference approximation (Eq. 2.46)
converges to the partial differential equation

(Eq. 2.45) as the time step At and distance step An
approach zero. Moreover, Eq. 2.46 is unconditionally
stable; the method is used herein for both transverse
and longitudinal diffusion.

The transverse diffusion portion of Eq. 2.37,

acC 3C ac
Aze = (he, == ]b' = (he, 33 |a' (2.48)

is written in implicit form as
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+1 n n+l n+l
I,J At 1;J,J+1 ZI,J+1 - zI,J
n+l n+1
h [CI,J I o= 1]|
- (he )I e -—-—-—-—z (2.48a)
I,d 1,J-1

where the concentrations have already been convected
for the time step, zI J denotes the centroid of the
»

Jth stream tube at the I computational point, and

(he )I 23,341 is the product of the average diffusiv-

ity in tubes J and J+1, and the smaller of the two
tube depths. Noting that

L) L)
; AL o (Br,ge * Br 5
I,J+1 I,J Fl
Equation 2.48a may be rewritten

n*l n+l n

+1
Dl c?’ «02 ¢y + D3 Cp, =0 g (2.49)
LY
where
(he,)
R (2.50a)
o I s B e A
i 20t (he,) . 2, J+1 24t (he )I J »
St T y ' A (B )
1,38 201 * B0 A s(Bi s Y B ga
(2.50b)
(he,)
D3 = RZQt y L g*l (2.50¢)
o e % % il G |

Once again the system of M-2 linear equations in M
unknowns (where M is the number of stream tubes)
must be solved simultaneously with the addition of
boundary conditions at both banks. To develop the
double-sweep method, first express the concentration
in the tube J-1 as a linear function of the concen-
tration in tube J:

+ F . (2.51)

Substituting Eq. 2.51 into Eq. 2.49,

n+1 n+l n+l o
DU(Ey 5 Cp g* Fygg) #02C 5+ D3C 5, CI J
or
n
g T S N T Relinies %
na = OrE e J+1 By * D2

(2.52)
Comparing Eqs. 2.51 and 2.52, it may be seen that

-D3

=
LJTDTE ) + 02

E (2.53a)

and



n
PO ik (2.53b)
10" e 707 .

Equations 2.51 and 2.53 represent concentration and
sweep coefficient recurrence relations, which may be
used when the boundary conditions are employed.

At the left boundary there can be no transverse
diffusion. Thus D1 = 0, and D2 is written for this
special case as

x P W
D2 =1+ ¢ @ gt )
o Wt G Pl s
and Eq. 2.49 is written
* n+l n+l n
D2 CI,I + D3 CI,Z = CI.l'
By comparison with Eq. 2.51,
Epa ™ - s
4 D2
and
n
CI 1
FI j - sk,
® D2

Thus the remaining values of E and F may be com-
puted through tube M-1 and stored for each computa-
tional point I.

At the right boundary, the same condition of no
transverse diffusion applies, so that D3 = 0 and
D2 is written for this second special case as

28t (he ). .
e 2 1;M-1,M

Ap oy * B wd)
and Eq. 2.49 is written

Rt T R T

1,M=1 I,.M I,M
Using Eq. 2.72, this may be rewritten

Alar

i n+l _ .n
I,M 1,M-

C

D1(E M- CIu

I,M-1 i > 0% C

or

n
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LM me
¥

o
+ D2

(2.54)
M-1

Note that the coefficients E and F are not needed

for tube M, and once C?+;
3
the remaining concentrations in each tube are computed
using the stored E and F values, and the recur-
rence relation Eq. 2.51. The entire process is re-
peated at each computational point, the end result
being a concentration field which has been convected
and diffused transversely in the time step. All that
remains is the computation of longitudinal diffusion.

is found from Eq. 2.54,

2.6.3 Longitudinal diffusion. The implicit
longitudinal diffusion computation is nearly identical
to the transverse diffusion, but uses the same bound-
ary conditions as the longitudinal convection routine.
The longitudinal diffusion portion of Eq. 2.37,

3C 3C

]
A T E;~(ﬁ5x x- (2.55)
is written in implicit form as
n+l n
& pg CIJJ) - 1
Lyl no o T SN
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where the concentrations have already been convected
and diffused transversely, Xreyg = (x101 + XI)/2,

and {A:x)l I-1:J is the product of the average
i »
cross-sectional areas and diffusivities in tube J at
adjacent computational points,
Equation 2.55a may be rewritten
ac sac™ligc™ " (2.56)
1-1,J 2 il I+1,J 3 B |
where
o - 28t (Aedyon,159 (2.57a)
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To solve the system of N-2 equations in N unknowns
again apply the two boundary conditions and use the
double-sweep method., First, write

n+1 n+1l

G0 * Bra My g * 0 (#:58)

1-1,J°

Substitute Eq. 2.58 into Eq. 2.56:

n+l n+l n+l
GY(Ey ;.50 3 * By q g} 02 Gs 5 % B Ggpy 5 ™ g
or
¢ .=G1F
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Comparing Eqs. 2.58 and 2.59,

E = (2.60a)
I,J Gl EI-l,J + G
and N
n
Fr g = Céi-’ﬁ- - Ff”éiJ (2.60b)
i 1-1,J
At the upstream boundary the concentration C?*}
i . o = (]
s known, so by setting EI,J 0 and Fl,J 1,

the boundary condition is satisfied and the remaining
E and F values may be computed. At the downstream
boundary assume that there is no longitudinal diffu-
sion, so that

n+tl _.n
S.a =Sk

Then by Eq. 2.58 the remaining values of concentration

are computed, and the process repeated for each stream

tube.

This completes the numerical solution of Eq. 2.37
in one time step. The total solution may proceed for
as long a time as desired, and the time step At may
be changed whenever necessary. The input concentra-
tion at the upstream boundary of each stream tube must
be specified, and any initial concentration field may
also be established on the computational grid before
the computation begins. Appendix D contains a listing
of the complete computer program. Appendix E des-
cribes the recommended procedure for establishing
stream tube dimensions.

2.7 Practical Considerations in the Selection of a
Computational Grid

The selection of computational grid dimensions is
governed by the convergence requirements of the numer-
ical method, and by the computer time and storage
available. While it is always true that the smaller
the time and distance steps, the more reliable the
solution, it is seldom feasible to obtain the time and
space resolution which is desired. It is the purpose
of this section to outline the minimum requirements of
the numerical method.

2.7.1 Transverse computational points. At the
furthest upstream reference section, the stream tube
centerline locations (i.e., the transverse computa-
tional points) are fixed arbitrarily by the user's
specification of tube widths and/or discharges. But
at downstream sections the tube centerlines must shift
back and forth across the stream as the bulk of the
river flow shifts; thus the user has little control
over the location of the transverse computational
points over most of the river reach. Nonetheless, the
expected pattern of mixing can be taken into account
in assigning stream tube dimensions at the upstream
reference section; the tubes should be narrowest (the
computational points closest together) in the region
where most of the tracer is expected to be located.
For injection at the right bank, for example, it is
desirable to have most of the computational points
near the bank throughout the reach. Equation 2.47
shows that, in a rectangular channel, the numerical
solution becomes more convergent as the spacing of
transverse computational points decreases; moreover,
the assumption that the ‘terms labeled R in Eq. 2.36
approach zero improves as the number of stream tubes
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increases. Therefore it is always desirable to use as
many stream tubes as possible.

The recent use of remote sensing techniques in
river mechanics has brought about an increased aware-
ness of weak secondary cells in straight reaches of
large rivers. These cells, as indicated by the col-
lection of drift and foam along well-defined lines at
the surface, appear to be quite stable, effectively
partitioning the reach into parallel longitudinal
elements. Although little is known about the detailed
structure of these weak cells, it is evident that they
could serve as barriers to the gradient-type mixing
assumed in Eq. 2.37. Whenever possible, evidence of
these cells should be used to position stream tubes
so as to enclose the drift lines, and thus minimize
the potential disruption of gradient mixing at the
boundaries between stream tubes.

2.7.2 Longitudinal computational points. The spacing
of longitudinal computational points is governed by
the convective, rather than diffusive, portion of the
solution to the mass conservation equation, and de-
pends to some extent on whether a steady-state or
unsteady mixing process is being simulated. The
steady-state concentration distribution resulting from
continuous injection of tracer is independent of nu-
merical dispersion considerations, as long as the
simulation is run long enough for a true steady state
to be obtained. Therefore the longitudinal computa-
tional points must simply be spaced closely enough to
reproduce the stream geometry in adequate detail, and
positioned so as to provide transverse concentration
distributions at points of significant interest.

Simulations of unsteady dispersion require that
more consideration be given to the spacing of longi-
tudinal computational points. It is pointed out in
Sect. 2.4 that, for a fixed value of uAt/Ax, the con-
vergence coefficient R, approaches unity as L/Ax

increases, where L is the wavelength of one compo-
nent of the Fourier Series solution to a simplified
form of the convection equation. As a general guide-
line the longitudinal concentration distribution in
any stream tube should be described by at least 10
computational points; this demands that the longitu-
dinal computational points be spaced more closely
together near the source than further downstream.
Furthermore, rapidly varying sources require a much
closer spacing than unsteady but slowly varying
sources.

2.7.3 Time increments. The type of tracer injection
also influences the choice of the time step 4t. For
continuous injection, anomalous concentrations due to
numerical dispersion are dissipated as the solution
approaches a steady state, yet the time step must be
small to obtain good convergence as demonstrated by
Eq. 2.47. For unsteady injection, it is desirable to
keep the parameter wuAt/Ax less than about 2,0. The
distance step Ax, although not necessarily constant,
is fixed by the considerations of Sect. 2.7.2, and the
velocity u is known at all locations. A satisfac-
tory choice of At 1is made by considering the largest
value of 4x/u to be encountered in the zone where
significant mixing is expected to occur; At should be
smaller than twice Ax/u. The time step need not be
constant, and may be increased as the tracer moves
downstream into regions of larger Ax.

It is often advisable to check the choice of time
and distance steps by first running the simulation for
reasonable choices of At, Ax, and stream tube widths,
then rerunning the simulation after decreasing each
parameter individually. A satisfactory computational



model has been specified when the predicted
concentration distribution is relatively insensitive
to a further refinement of the grid and/or time step.

2.8 Comparison of Numerical Predictions and Two
Analytical Solutions

The numerical dispersion model described in
Sect., 2.6 is capable of producing approximate solu-
tions to Eq. 1.23 in situations where no analytical
solution is available. But quantitative tests of the
model's efficacy must necessarily be made in relative-
ly simple flow fields, where idealized stream geometry
allows analytical solutions to be obtained. Compari-
sons are made for the cases of (a) continuous injec-
tion in a rectangular channel, and (b) instantaneous
injection in a uniform shear flow. These comparisons
should not be viewed as a verificaticn of the model;
it is known from the outset that the finite difference
solution to a partial differential equation may repre-
sent a solution to an entirely different equation, as
shown in Sect. 2.2 and Sect. 2.6.2. The comparisons
are made so that the degree of approximation of the
correct concentration distributions can be viewed for
the entire solution, and so that the sensitivity of
the approximations to the computational grid dimen-
sions can be tested.

2.8.1 Continuous injection in a rectangular channel.
One of the simplest dispersion situations is continu-
ous vertical line source injection at the centerline
of a rectangular channel with constant longitudinal
velocity U at all transverse and longitudinal loca-
tions. Equation 1.29 is a solution to Eq. 1.23 for
these conditions, provided that the method of images
described in Sect. 1.7 is used to reproduce the proper
boundary conditions, and longitudinal diffusion is
neglected. Using five reflection cycles as suggested
by Sayre (1973), Eq. 1.29 may be written for this
problem as

-k
qCu =U.2
Clkn) (expl—=}
zn(n;zx]k $x X
5 Wond
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The channel geometry and hydraulic parameters were
taken from Test 2 reported by Miller (1971);

2.0 fr,
0.415 ft,
1.75 ft/sec,

0.01039 £t2/sec.

B
h
U

£
z

A 50-foot length of channel was divided into computa-
tional points one foot apart; a tracer flowrate of
0.145 ppb-cfs (parts per billion-cubic feet per sec-
ond) was introduced at the upstream boundary. For the
first simulation 11 stream tubes were used, and for
the second, 21 tubes; the two computational grids are
sketched in Fig. 2.6, and the stream tube dimensions
are presented in Table 2.1. Steady state concentra-
tion distributions were obtained by allowing the up-
stream concentration in the centerline tube to rise
from zero to its steady state value in three time
steps; approximately 50 more time steps, representing
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about ten times the time required for the tracer to
be convected through the channel, were run, until the
concentrations at the downstream boundary were no
longer changing from one time step to the next.

The analytical solution (Eq. 2.61) and the
numerical simulation results are compared on Fig. 2.7.
Both the longitudinal centerline distribution and the
transverse distribution at x = 25 feet indicate two
significant things: first, the number of stream tubes
did not significantly affect the simulation predic-
tions, nor did the relatively wider stream tubes near
the banks weaken the predictions there. Second, the
predicted concentrations at the centerline are con-
sistently too high by about 12 percent, as if the
simulation used a diffusivity which was too low and/or
had an injection concentration which was too high.

The error can be explained only by recalling that, as
discussed in Sect. 2.6.2, the transverse diffusion
discretization introduces an error which is the order

of At and azz, and is a consequence of the numeri-
cal differencing technique. The error should be put
into proper perspective by noting that the model pre-
dicts the concentration distributions within roughly
10 percent as the peak concentration decays from as
high as 40 ppb down to 0.1 ppb, or two orders of
magnitude.

2.8.2 Instantaneous injection in uniform shear flow.
The analytic solution most nearly approximating a
field situation for unsteady injection is the jointly
Gaussian distribution presented by Monin and Yaglom
(1971) for instantaneous vertical line source injec-
tion in an unbounded fluid of constant depth and
having a constant transverse gradient of longitudinal
velocity, Eq. 1.27. The situation is difficult to
model numerically, for two reasons; first, the simu-
lation can model only a finite, bounded fluid; second
it can only accept injections of finite amplitude and
duration. The first difficulty may partially be over-
come by restricting comparisons to short dispersion
times, before significant amounts of tracer reach the
model limits, and by using extremely broad stream
tubes adjacent to the banks. The second difficulty
can be minimized by using a source of high concentra-
tion at one computational point for one time step.

The hydraulic conditions for the comparison were
as follows:

H= 1.0 ft,
U=1.0 ft/sec,

r_ = 2.857/sec,

» 2

€, = 0.038 ft"/sec,

0.13051 ftzsec.

]
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The computational grid is sketched on Fig. 2.8, and
the stream tube dimensions and velocities are summa-
rized in Table 2.2. The centerline tube is made nar-
row to allow for an approximate ''point' source, and
the bank tubes are of exaggerated width to approximate
an unbounded fluid. The injection consisted of

1000 ppb concentration at x = ,05 feet, tube 6, during
the first time step, for an injection strength of

0.10 ppb—ft3. Figure 2.19 compares the numerical pre-
dictions 0.07 seconds after the injection with the
jointly Gaussian solution, Eq. 1.27. The three time
steps used represent centerline Courant numbers
ust/sx of 0.5, 1.0, and 1.75; over this range the
numerical solution is relatively insensitive to the
time step. The numerical solution is in excellent
agreement with the jointly Gaussian distribution at



x = ,08 feet from the injection, though the model
consistently underestimates the centerline concentra-
tions plotted longitudinally. The underestimation is
due in large part to the noninfinite instantaneous
point source concentration used in the model; second-
ary sources of error are the limit to upstream
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diffusion at x = -.05 feet, and the second order
approximation of the finite-difference solution. But
again, the predictions should be viewed in perspec-
tive; the model predicts peak concentrations within

20 percent over three orders of magnitude reduction in
concentration. .



Part 11
EXPERIMENTAL INVESTIGATION OF THE VARIATION
OF TRANSVERSE DIFFUSIVITY IN A NONRECTANGULAR CHANNEL

Chapter IlI
THEORETICAL AND EXPERIMENTAL BASIS FOR EVALUATION OF
THE TRANSVERSE DIFFUSIVITY

The analytical and numerical techniques for
solution of the dispersion equation, described in
Chapters 1 and 2, all are based on an assumption that
turbulent mixing can be described as a gradient pro-
cess through direct analogy with molecular diffusion.
Moreover, the turbulent diffusion coefficients must be
known before any of the solutions may be applied to a
laboratory or field mixing situation. While there is
a theoretical basis for estimation of the vertical
turbulent diffusivity éy‘ estimation of the compara-

ble transverse and longitudinal diffusivities, and
especially the depth-averaged diffusivities A and

€, must be based primarily on experimental studies,

It is the purpose of this chapter to review the
theoretical and experimental basis of the transverse
diffusivity. Specific attention is devoted to the
possibility that the diffusivity may not be constant
within a cross section; Chapter 4 describes some lim-
ited experimental results which bear on this question.

The longitudinal diffusivity is largely ignored
in this and following discussions, as it has been
shown to have little effect on steady-state mixing
from a continuous source, though it may be important
in unsteady mixing (Holley, 1971). Transverse dif-
fusion, rather than longitudinal, is the critical
process influencing dispersion in rivers.

3.1 Theoretical Basis of Turbulent Diffusivity

The turbulent diffusivities appearing in Eq. 1.23
absorb mixing due to molecular diffusion, turbulent
velocity fluctuations, and depth-averaged differential
convection. Recalling the assumptions leading to
Eqs. 1.6 and 1.23, the depth-averaged transverse dif-
fusivity €, may be written

€ %% - WY WD
€ = = (3.1)
3 ac/az

where the straight overbar denotes a local time aver-
age and all terms are depth-averaged. The three

terms appearing in the right hand side numerator of
Eq. 3.1 represent, respectively, the molecular, con-
vective, and turbulent contributions to depth-averaged
transverse mixing. Absorption of all three mechanisms
into a single apparent diffusivity has little theoret-
tcal basis, but is commonly justified by the computa-
tional convenience of the resulting pgradient-law des-
cription of the depth-averaged mixing process.

For flows in a prismatic channel, secondary
circulation is generated only by differential resis-
tance related to the channel shape, and may be con-
sidered negligible insofar as transverse mixing is

concerned (Holley, 1971). Thus wY = 0, and the

difforential convection term w ’ €’ in Eq. 3.1
disappears. Furthermore, the molecular diffusivity
Ly is several orders of magnitude less than turbulent
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diffusivity, (Sayre and Chang, 1968), so that Eq. 3.1
may be written for prismatic channels as

1 1
€, = - . (3.2)
3C/3z
Equation 3.2 has an indirect theoretical basis

through the Reynolds analogy between vertical trans-
port of mass and momentum in a turbulent boundary
layer, Since the vertical transport of momentum per
unit mass, - u'v', can be described as a gradient
mixing process such that

3u
1 = —

-u'v' €y 3y (3.3)
where £y is the eddy viscosity, Reynolds hypothe-
sized that

—_ 3¢
= VCH =8 —} (3.4
v v 37 )

the analogy has been well established for vertical
mixing in wide open channels.

The Reynolds analogy is especially attractive
because it allows the direct estimation of the ver-
tical diffusivity - & . Noting that pu'v' is the

turbulent shear stress, which varies linearly with

distance above the bed, and assuming that £, = €,
Elder (1959) obtained Y
a-%» 4
£, 7 ——— (3.5)
¥ du/dy
where
U, = shear velocity, (10/911’2,
W™ bed shear stress, athS,
p = fluid density, and

hydraulic radius, cross-sectional area
divided by wetted perimeter.

=

Assuming a logarithmic velocity distribution, Elder
integrated Eq. 3.5 over the depth of flow to obtain

uUH

L4

K
o, =k (3.6)

where ¥ is von Karman's constant, approximately
equal to 0.4.

The development leading up to Eq. 3.6 is made
possible by the requirement that the shear stress must
vary linearly from a maximum at the bed to zero at
the water surface. No analogous constraint can be
placed on the transverse shear, s, putat, to
achieve a comparable result for transverse eddy vis-
cosity and/or diffusivity.



Recognizing that a transverse equivalent to
Eq. 3.6 could not be developed from theoretical
considerations, Elder simply postulated that the
transverse diffusivity can be written similarly as

e, = KUH % (3.7)

where K is a constant requiring experimental deter-
mination. The analogy may be justified qualitatively
on the basis of the strong correlation between verti-
cal and transverse turbulent velocity fluctuations.
It is important to note that Eq. 3.7, which is widely
assumed to represent correctly the transverse diffu-
sivity, suggests that transverse diffusion is attrib-
utable entirely to bed-generated turbulence. Experi-
mental results described in Chapter 4 suggest that
this may be an incomplete description of transverse
mixing.

3.2 Experimental Determination of Transverse
Diffusivity

With few exceptions experimental determinations
of €, have been conducted in rectangular channels,

often with large width-to-depth ratios, and have .
utilized continuous tracer injection into a steady,
longitudinally-uniform flow of constant velocity U,

For these conditions the Gaussian concentration dis-
tribution, Eq. 1.29, is expected, (for €y vanish-

ingly small), the variance of which is given by

2
= 2e t
% e’
or, noting that €, is a constant and the diffusion
time t = x/U,

dcz
z

ax

g =
Z

3] Rt

(3.8)

Thus to determine e, one need only compute the

transverse variance of steady-state distributions at
successive downstream locations, (before significant
amounts of tracer reach the banks), and find the slope

of a straight line fit to the plot of Gi versus X.

Equation 3.8 may also be obtained by taking the second
z-moment of the appropriate simplified version of
Eq. 1.23. The method has been applied to mixing in
nonrectangular channels and nonuniform flows such as
the Columbia River (Glover, 1964) and the Missouri
River (Yotsukura et al., 1967), using for U the
discharge velocity Q/A. The resulting values of K
have been summarized by Okoye (1970) and Prych (1970);
K ranges from as low as about 0.1 in a straight
laboratory channel, to about 0.7 in large natural riv-
ers, with Elder's value of 0.23 widely adopted for use
in rectangular flumes and small canals. Fischer
(1970) reported values of K as high as 2.5 in a
curved laboratory flume, where the mixing due to
w?Y c Y was significant.

Implicit in all the early analyses was the
assumption that €, is constant within a cross sec-

tion; this appeared reasonable, since tracer was in-
jected at the centerline of the channels, where there
was little transverse variation of depth or velocity,
or at the bank of a nearly rectangular channel
(Fischer, 1970). The only mixing experiments conduct-
ed in a zone of transverse variation of welocity or
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depth are those reported by Holley (1971), in which

. the effect of groin-generated turbulence on transverse

mixing was investigated using bank injection; these
experiments and their analysis are discussed in
Sect 3.3,

The study of transverse mixing in zones of
roughly constant depth and velocity has provided use-
ful general information on the mixing process in riv-
ers; moreover, this type of mixing is amenable to
analysis using Eq. 3.8. Yet many pollutant spills
occur at or near the bankline, where concentrations
can be relatively high due to the limited depths
available for dilution, and where transverse varia-
tions of depth and velocity might influence the mix-
ing, The transverse diffusivity in such a region has
even less theoretical basis than in a region of con-
stant depth and velocity; therefore recourse must
again be made to experiments for information on the
magnitude and variation of the transverse diffusivity.

3.3 The Generalized Change of Moments Method

3,3.1 Mathematical basis. The magnitude and
distribution of the transverse diffusivity in a non-
uniform flow in a channel of arbitrary shape can be
determined by using the Generalized Change of Moments
(6CM) method developed by Holley (1971). The method
effectively extends Eq. 3.8 to allow for transverse
and longitudinal variation of depth, velocity, and
transverse diffusivity, and allows for depth-averaged
transverse velocities. Equation 1.23, written for
steady-state mixing in a flow with negligible longi-
tudinal diffusivity, becomes

2 2 b e 2
% (huC) + r1y (hwC) 3 (hez az). (3.9)

After assuming that £, could be written
, = Ko(x,2), (3.10)

where 4(x,z) = some function of x and z, Holley
took the second moment of Eq. 3.9 with respect to =z,

a reference transverse coordinate, and integrated the
result longitudinally to obtain

2
d(o - G)
huC "
T = 2K (3.11)
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232, % left and right channel boundary

z-coordinates.

P 2
The quantity ThuC

tracer mass flux; the parameter F may be thought of
as a modified length variable, (dimensions of length
squared) which is always positive, since 3C/3z and
z generally have opposite signs when z is taken

is the transverse variance of the

as the transverse location of the peak concentration.
G represents mixing due to net transverse velocities.
Equation 3.11 is valid throughout the mixing zone,
whether or not the tracer has reached the banks. For
idealized conditions of u = U = constant, w = 0, and
an infinitely wide channel, Eq. 3.11 reduces to

Eq. 3.8.

The GCM method is quite a powerful tool for the
estimation of transverse diffusivities using observed
concentration distributions from continuous injection
in a natural channel. The proper choice of the dif-
fusivity function ¢(z) should result in a linear

plot of [cﬁuc - G) versus F, the slope of which is

2K. The generality of the GCM method is obtained at
the expense of increased data requirements and compu-
tations, including the need to estimate 3C/3z from
scattered data points, and to estimate w by inte-
grating the two-dimensional continuity equation as
described by Holley (1971). For most applications the
computation may be considerably simplified by assuming
w to be negligible; the validity of the assumption
may be checked by using the GCM-determined diffusivity
in a numerical simulation of the experiment.

3.3.2 Application to Delft experiments. The GCM
method was used to analyze groin-influenced mixing in
laboratory and natural channels by Holley (1971) who
proposed the following four possible diffusivity
functions:

3/2
= K! =
e, = K} UH=KH (3.12a)
U!
= N s =
€, K2 uh K2 uh (3.12b)
a
e =K uh= Kh2 (3.12¢)
z 3 > 3 :
= 1
EZ K4 uah = K4h (3.12d)
where Ki, Ké, Ké, and KA are dimensionless con-
stants, and Kl* K2, K3, and K4 are dimensioned

constants for a particular cross section,

/2

Ky = K (g5)* (3.13a)

/

CORGTN (5.13b)
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Ky= KL (gS}l/z

5= K (3.13¢c)

= L]
K4 K4 Ua

(3.13d)
Equation 3.12a is the traditional constant-diffusivity
assumption, equivalent to Eq. 3.7. The remaining
functions have no theoretical basis, according to
Holley, but simply introduce transverse variation of
€, through local analogy with cross-sectional

average parameters. Holley demonstrated that, partic-
ularly for side injection into a trapezoidal channel,
peak concentrations near the source are particularly
sensitive to the choice of the diffusivity function.

The difficulty of obtaining true time-average
concentrations in an experimental dispersion study
within reasonable constraints of time and effort
precluded the drawing of firm conclusions from
Holley's experiments, which were conducted at Delft
Hydraulics Laboratory, the Netherlands. Indications
were, however, that the functions which allowed trans-
verse variation of diffusivity, i.e., Eqs. 3.12b -
3.12d, were more appropriate than the constant
diffusivity, Eq. 3.12a, in the laboratory channels
with and without groins. In these channels the cross
sections were approximately rectangular, the presence
of groins accounting for most of the transverse
velocity gradient.

3.3.3 Computational application. The GCM method is
applied to the experiments reported in Chapter 4. As
suggested by Holley (1571), the reference coordinate
24 is taken as the centroid of the tracer flux dis-

tribution for injections at the centerline of a chan-
nel, or as the coordinate of the bank for bank injec-
tions. For injections at other locations, Holley
gives no guidance as to the best choice of z but

the GCM derivation requires that z, not be a func-
tion of x, even though the centroid of a concentra-
tion distributin shifts toward the center of the chan-
nel as the tracer becomes completely mixed. Therefore
the centroid of the distribution at the injection
point is used in this case.

The various terms in Eq. 3.1l are evaluated
numerically using normalized concentration distribu-
tions (described in Chapter 4) and the stream-tube
discretization of the test channel, as described in
Appendix E. Velocities, depths, and incremental
widths are assigned to each measured concentration at
a cross section by linear interpolation between depths
and velocities previously assigned to stream tube cen-
troids; velocities are assumed to be zero at the
banks. The integrations of Eq. 3.11 are then approxi-
mated by simple summatioms.

The scatter in measured concentration
distributions requires that special consideration be
given to the evaluation of the concentration gradient,
3C/9z, appearing in F. If the functional form of the
distribution is known a priori, it is possible to fit
the function to the data using a least squares tech-
nique; for example, considering centerline injection
in a wide, rectangular channel, a Gaussian distribu-
tion can be fit to the data, and the gradient computed
analytically. But in general the functional form is
not known, especially in a natural channel. If the
data define a smooth curve, a polynomial of appropri-
ate order can be fit to sets of data points, and the
gradient again computed analytically. The technique
breaks down, unfortunately, when a particular data



point does not follow the general trend of the
distribution,

These difficulties were obviated by using a
linearization technique to compute the concentration
gradients from data described <in Chapter 4. The
technique averages the slopes of least squares lines
fit to successive groups of data. Figure 3.la illus-
trates the method applied to five data points, fit
three at a time. Define the line by

C= slz + .2

where 3, and a, are the slope and intercept of the

line, computed by standard formulas (see Carnahan et
al., 1970). The slope ay is computed for points 1,

2, and 3, then for 2, 3, and 4, and finally for 3, 4,
and 5, as shown on the figure. The appropriate slope
at each data point is taken as the average of the
slopes of the lines computed using that point. Thus

K

az 1 . 81[132:3}
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ac 31(1,2.3) + 31(21314)

GP2 " p

% . 31(1,2,3) + a1(2,3,4] - a}(3,4,5]
3z’ 3 3
etc.

The gradient thus assigned to each data point
describes the general trend of the distribution with-
out giving undue weight to an isolated bad point. The
procedure is illustrated for three-point computations,
yet an arbitrary number of points may be used. The
tradeoff is between the need to use enough points to
smooth the curve, without losing local gradient trends
by using too many points. In practice, three-point
fits were found to reproduce the general data trend
most faithfully. Figure 3.1b shows the gradients thus
computed for a typical set of concentration data from
the Missouri River (Yotsukura et al., 1967); noting
that the method is used only to estimate the gradients
of the distribution at measured data points, the

results are satisfactory.
-




Chapter IV
TRANSVERSE MIXING EXPERIMENTS IN A TRIANGULAR FLUME

Limited dispersion experiments were conducted in
a laboratory flume of triangular cross section at
Colorado State University from August through
December, 1974, The purpose of these experiments was
partially to verify the numerical model of Chapter 2
in a nonrectangular channel, but primarily to test the
hypotheses of Holley (1971), Eq. 3.12, in a channel
having transverse variations of depth and longitudinal
velocity.

4.1 Goal and Strategy of Experiments

The choice of a channel shape for the experiments
was governed by the need to maximize the effects of
depth and velocity variations on the mixing process,
while not violating the assumptions made in deriving
Eq. 1.23, the depth-averaged mass conservation equa-
tion. Specifically, this required that transverse
variations of depth not be so severe as to induce
strong secondary flow cells which might dominate the
transverse mixing. Moreover, it was considered impor-
tant approximately to reproduce prototype values of
the Froude number and width-to-depth ratio. The tri-
angular cross section shown in Fig. 4.la was adopted
as a reasonable compromise among several alternatives
which included trapezoidal sections and a composite
section of discrete rectangular elements; the Froude
number was about 0.3 (based on average velocity) and
the width-to-depth ratio was about 10, a minimum value
for small streams and artificial canals. The Reynolds
number, based on depth-averaged velocity and flow
depth, ranged from about 5,000 near the flume wall to
about 90,000 at the centerline; by comparison, Elder's
(1959) experiments used a Reynolds number range of
2,300 to 4,500.

Once the cross-sectional shape had been selected,
it was necessary to determine what types of water flow
and tracer injection would most effectively amplify
the effects of transverse variations of diffusivity.
Steady water flow is required by the numerical model,
and no particular advantage in using nonuniform flow
was apparent. Therefore steady, longitudinally-
uniform flow was adopted for all dispersion tests.

An important question to be answered before the
experimental program could be designed was whether
continuous or instantaneous tracer injection would
respond most clearly to the transverse variation of
transverse diffusivity. The question had been studied
using a mathematical model of the symmetrical compos-
jte channel sketched in Fig. 4.2; longitudinal veloc-
ities were computed by the backwater routine described
in Appendix E. Tracer was injected at the upstream
boundary centerline of the model by means of either
continuous injection or as a short-period sine wave.
Comparisons between the two injection methods were
made by considering the effect of two diffusivity
assumptions on the peak centerline concentrations
resulting from each injection. Let (x) denote the
ratio of centerline concentration computed using
. .23U,H to the centerline concentration computed

using ¢, = .23U,/Ua uh; for the unsteady injection

y is evaluated using the peak concentration occurring
at x during the passage of the tracer cloud.

Figure 4.3a demonstrates that for both types of injec-
tion, ¢ differs from unity at most downstream loca-
tions; this simply verifies that the centerline con-
centrations are indeed sensitive to the transverse
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variation of diffusivity. But y differs more
greatly from unity for the unsteady injection, and
this is significant, as it suggests that unsteady
injection may be a better experimental technique for
the detection of the proper distribution of transverse
diffusivity when & transverse velocity gradient
exists. However Fig. 4.3b indicates that, when the
longitudinal velocity is forced to be a constant in
the entire flow field, the variation of ¢ with x
is relatively insensitive to the mode of tracer
injection.

In spite of the apparent advantages of
instantaneous injection for detection of the proper
transverse diffusivity function, there are three
practical reasons why continuous injection is more
attractive.

(a) The diffusion of a single cloud of tracer
represents a particular realization of the turbulent

“flow field; another cloud may diffuse quite different-

ly. Therefore the results of many instantaneous
releases would have to be averaged to obtain a con-
centration distribution which is representative of
the time-averaged properties of the turbulent flow
field. But for continuous injection, (an infinite
superposition of instantaneous puffs) time averaged
concentrations at fixed points are sufficient to
describe the average turbulent mixing process.

(b) Measurement of the diffusion of
instantaneous injection clouds requires that multiple
fixed probes or samples record the time history of
concentration as the cloud passes. Continuous injec-
tion mixing requires only that finite-volume samples
be collected for later analysis using a single probe
or instrument.

(c) The powerful Generalized Change of Moments
method is applicable only to steady-state mixing
resulting from continuous injection.

For the above reasons, continuous tracer injection

was adopted as the more practical technique for use

in these limited tests. But the potential advantages
of instantaneous injection must not be overlooked in
future studies, especially if available resources per-
mit the use of more extensive instrumentation.

4.2 Experimental Equipment and Data Collection System

4.2.1 Flume and water circulation system. The
experiments were performed in the 60-foot long, four-
foot wide tilting flume belonging to the Agricultural
Research Service, United States Department of Agricul-
ture, and operated at Colorado State University's
Engineering Research Center. The facility recircu-
lates water through a 1000-cubic-foot sump, a 12-inch
return line, and a 0.45-foot orifice plate which is
calibrated to measure discharge from 0.25 to 2.5 cubic
feet per second.

The flume bottom, and consequently the invert of
the triangular section built upon it, deviated con-
siderably from a plane surface. Using a surveying
level, the bottom contour was established as shown on
Fig. 4.4; piezometer tubes mounted at either end of
the flume and connected by a one-inch pipe indicated
the net slope of the bottom, i.e., the slope of the
dashed line on the figure,



The exact dimensions of the triangular section,
shown on Fig. 4.1, were fixed by the standard dimen-
sions of lumber used' to frame the false bottom as
sketched on Fig. 4.5a. Artificial roughness was added
using expanded metal lath placed over the entire bot-
tom and dimensioned as shown on Fig. 4.5b, The metal
lath was chosen over discrete blocks or strips because
it generates turbulence uniformly, avoiding any local
zones of accelerated mixing. Vent holes were provided
through end and intermediate wedge supports to allow
the underside of the false bottom to fill completely
and thus avoid the possibility of the entire structure
popping up should any unwanted leakage occur.

4.2.2 Velocity measuring system. Time-averaged point
velocities were measured with a 1/8-inch diameter
Dwyer Pitot Tube; differential pressures were measured
using a Validyne transducer with a 0.1 psi diaphragm
installed, connected to a Pace Model CD 10 Carrier
Demodulator. Differential pressure measurements of
from one to two minutes were recorded on a Mosley
Strip Chart Recorder, connected in parallel with a
large capacitor to damp the turbulent fluctuations,
The voltage trace on the strip chart was averaged by
eye, and then the linear calibration between output
voltage and velocity was applied to obtain a time-
averaged, point velocity. The transducer calibration
was obtained using a two-chamber head tamk with micro-
meter point gauges, and a pitot-tube coefficient of
unity was used as suggested by the manufacturer. The
transducer calibration was found to be quite stable,
as long as no air was allowed to accumulate in the
pressure lines.

4.2.3 Dye injection system. The choice of a tracer
injection system was governed by the need to inject
over the full depth at a constant rate and with mini-
mum disruption of the flow field. - These objectives
were met by injecting through a’vertical 5/32-inch
0.D. brass tube, plugged at the lower end, with 1/16-
inch holes drilled at 1/4-inch centers over the full
injection depth. Tracer was supplied by a five-gallon
constant-head Muerriat vessel; the tracer flowrate

was controlled by a Poly-Flo needle valve downstream
from a Fischer and Porter Company Precision Bore Flow-
rator, which accurately measures flows from 1 to 200
ml/min (millileters per minute).

Rhodamine WT was chosen as the tracer material,
of its availability and favorable characteristics as
described by Wilson (1968). Test injection solutions
were made up by diluting from four to six milliliters
of 12 percent (by weight) WT solution in five gallons
of flume water. Tracer solution was injected at
140 m1/min, allowing as much as 135 minutes for a test
run,

4.2.4 Tracer sampling system. A siphon system was
used to withdraw discrete water samples from the
flume, The samplers were 18-inch-long, 1/16-inch I.D.
brass tubes bent 90 degrees at the bottom so that the
tube openings faced into the flow direction. Once
the siphons were primed, 1/8-inch I.D. Tygon tubes
carried the samples over the flume walls and down to
pint sample bottles.

It was important to ensure that the sampling tube
withdrawal velocity was about the same as the flume
flow velocity at the sampling point, so that the
sampling process would not affect the flow immediately
upstream. The required siphon heights can be deter-
mined by an application of the Bernoulli equation and
a quick experiment. Let Ah denote the vertical
distance from the water surface down to the open end
of the siphon tube. Application of the Bernoulli

27

equation between the two ends of the siphon tube,
assuming a constant diameter, constant friction fac-
tor, and laminar flow, yields

th = cu, (4.5)

where u, is the siphon tube entrance velocity and ¢

is a constant related to the tube dimensions and fric-
tion factor. The constant could be computed, but a
more reliable value was obtained experimentally using
the actual siphon system. Tests in still water
showed that Eq. 4.5 is indeed linear, and that for
this particular system c = 1.435 sec. The value was
checked in an actual sampling configuration and found
to be satisfactory.

For any sampling location the local velocity u
was known. Setting u = ugs Ah  was computed, and

the siphon tube opening was clamped at that distance
below the water surface. Four samples were collected
at a time, over a period of from one to three minutes;
individual sample volumes ranged from a quarter to a
half pint.

4,2.5 Concentration measuring system. Samples
collected from the flume were analyzed using a Turner
Model 111 Fluorometer. The instrument was recalibrat-
ed using standard solutions before each test; sample
temperatures were recorded frequently, and all fluoro-
metric dial readings were adjusted to the calibration
temperature, following the procedure suggested by
Wilson (1968). The fluorometer calibrations were
found to be quite stable, and linear. Samples taken
near the tracer injection often read off-scale, and
had to be diluted using flume water before the concen-
tration could be determined.

4.3 Test Procedure

Before any dispersion tests were conducted, the
hydraulic characteristics of the flume flow were
measured in detail. This process included a trial-
and-error establishment of approximately uniform flow,
and the detailed measurement of velocities and water
surface elevations throughout the flume.

Each dispersion test began with the mixing of an
injection solution in the Muerriat vessel, the con-
centration of which was made strong enough to ensure
good resolution of concentrations at the downstream
end of the flume. Once the flume flow had reached
steady state at the desired discharge, the injection
was turned on and allowed to stabilize. Sampling
was begun at the downstream end of the flume, and
moved progressively upstream through a total of seven
cross sections. Sufficient time was allowed to ensure
that the siphon lines were fully purged between
samples. The entire process occupied about two hours
for one test.

The limited sump capacity of the Agricultural
Research Service flume made it especially important to
monitor the buildup of background concentration as the
test progressed. A grab sample was taken in the head-
box upstream of the injection point as each set of
four samples was being siphoned downstream. Then the
fluorometer dial reading of the background sample was
subtracted from the reading for each test sample be-
fore concentrations were computed, effectively giving
the concentration with respect to the background
level. While this procedure correctly adjusted the
observed concentrations, it did not account for the
steady decrease of effective tracer injection strength



as the test progressed. That the decrease in strength
was occurring can be seen by imagining an unlimited
supply of tracer solution of fixed concentration Co

injected continuously into a recirculating flume water
supply until the flume concentpation, Cf, approached

C, the injection strength, given by qo(co - Cf),

would approach zero.

The decrease in effective injection strength was
not of sufficient magnitude to cause any concern in
the tests reported herein. For all tests Co was
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about 10 ppb, while the background concentration Cf
rose from 0 ppb to about 30 ppb during a typical test.
The maximum change in source strength was thus less
than one-half of one percent during a test,.

4.4 Analysis of Test Data

4.4.1 Hydraulic conditions. Two flume roughness
configurations were used, and approximate uniform
flow was established for each. For dispersion tests
A, B, and C, the expanded metal lath covered the
entire flume bottom; the center half of the metal lath
was removed for tests D, E, and F. Table 4.1 lists
the overall hydraulic characteristics of each flow.
The energy slope S was estimated by adding observed
water surface elevations to the known flume invert
elevations with respect to a horizontal datum, thus
taking into account the waviness of the invert; the
velocity head was approximately constant at all longi-
tudinal locations, as the flow was essentially uni-
form. Note that the discharge cross-sectional area,
and average velocity for each flow were approximately
equal, though the slopes were different to compensate
for the different roughnesses,

It was recognized during the planning of the
experimental program that to have a high relative
roughness in the shallow areas near the flume walls
could induce sufficient secondary flow to dominate the
turbulent mixing process. For this reason a low-
roughness, flat-slope flow was considered best, even
though it might mean that the energy slope could be
difficult to measure. The flow cross-sectional area,
the mean velocity, and thus the discharge were chosen
to produce the desired water surface elevation and
Froude number; then the bed slope and the flume tail-
gate were adjusted until the centerline depth was
approximately constant throughout the flume. The
expanded-metal-lath roughness, while achieving the
goal of a uniform roughness without inducing signifi-
cant secondary flow, was still relatively smooth, as
reflected in the energy slope and Manning roughness
coefficient in Table 4,1, The drop in water surface
elevation from one end of the flume to the other was
less than the deviations of the wavy bottom from a
plane surface, and the water surface, or energy, slope
could not be measured with any precision over such a
short distance. Moreover, the full-roughness flow was
so smooth that removal of the center half of the
metal-lath mesh had only a small effect on the depth-
averaged velocity distributions, to be discussed
shortly. The secondary flow strength was qualitative-
ly estimated by observing the transverse movement of
surface floats and/or instantaneous point source dye
clouds as they moved downstream from various trans-
verse injection points. No net transverse movement
could be observed over a 40-foot length, suggesting
that the turbulent mixing process would not be too
strongly influenced by secondary flow.

In summary, the need to minimize secondary flow
effects demanded that the energy slope be so flat that
it could only roughly be estimated. The slopes in
Table 4.1 were obtained using a least-squares fit to

. the water surface elevations above a horizontal datum;
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but note that the total drop in water surface
elevation was less than 0.3 feet over a length of 50
feet.

Complete time-averaged velocity measurements were
made at five longitudinal locations for tests A, B,
and C, and at three locations for D, E, and F. From
these measurements it was evident that the flow became
fully developed in the first twenty feet downstream
from the headbox. Figure 4.6 shows the time-averaged
velocity contours at x = 40 feet for the full rough-
ness flow, and at x = 30.6 feet for the half-rough-
ness. From the contours it is evident that the flow
was essentially symmetrical about the centerline, and
that the centerline velocities were actually lower
for the half-roughness flow. The smoother center
section of the half-roughness flows causes a thinner
turbulent boundary layer, allowing the depth-averaged
velocity to be closer to the bed, thus reducing the
velocities at the surface. Figure 4.7, a plot of
depth-averaged velocities for both flows, shows also
that the depth-averaged centerline velocity is de-
pressed relative to the full roughness flow, although
continuity is preserved by higher velocities in the
region half-way to the flume wall. This behavior
cannot directly be explained without more extensive
velocity measurements; it most likely represents the
effect of weak secondary velocity cells on either side
of the centerline, generated by the roughness dis-
continuities at z = 0,92 feet and 2z = 3.08 feet.

4.4.2 Dispersion test data. Since the mathematical
model and the GCM analysis both deal with depth-
averaged concentrations, it was necessary to obtain
depth-averaged values in the laboratory experiments.
The experimental effort could be greatly simplified by
taking concentration samples only at mid-depth, as a
satisfactory approximation to an actual depth-aver-
aging process. Two tests were conducted to test the
efficacy of this approximation, using test B and F
conditions. Figure 4.8 shows the observed vertical
concentration distributions at two transverse posi-
tions at each of two longitudinal positions, for in-
jection at the centerline and at z = 3.0 feet. From
these data it is apparent that mid-depth sampling
should provide a reasonable estimate of the depth-
averaged concentration.

Three continuous-injection dispersion tests were
performed in each of the two roughness configurations,
half and full. The primary variable among these tests
was the injection location, which is listed with the
source solution strengths in Table 4.2, For each test
the injection was at x = 18 feet; mid-depth samples
were taken at seven cross sections from x = 20 feet
to x = 50 feet, Transverse sample locations were
chosen so as to describe the transverse concentration
distribution in sufficient detail; for tests C and F,
which used centerline injection, most samples were
taken on only one side of the centerline, with a few
on the other side to check the symmetry of the distri-
bution. The measured distributions from all tests are
presented after the following discussion of concentra-
tion normalization and adjustment.

At steady state, the measured tracer flowrate
should be the same as the injection tracer flowrate
for a conservative tracer. Nonetheless, factors



such as experimental error in measuring
concentrations, loss of dye through seepage in a river
or leakage in a flume, and chemical decay of the
tracer can cause the observed tracer flowrate to devi-
ate above or below the injection strength. Figure 4.9
is a plot of the recovery ratio,, RR, versus x for
all six tests, where RR is defined as
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' The recovery ratio for tests B and E is greater than
unity at x = 20 feet, just downstream of the source,
and remains above unity for most of the mixing region.
This strongly suggests that the measured injection
vessel concentrations were inaccurate, which is quite
possible due to the need for a large dilution of the
injection solution sample before it could be analyzed
on the Fluorometer. Since the injection concentra-
tions were subject to error, it is more instructive to
consider the trend of values on Fig. 4.9 than the
numerical value of the recovery ratio. Ideally, for
a particular test RR would not deviate from its
value at x = 20 feet, That it deviates a fair amount
for most tests suggests that samples of larger volume
and longer duration should have been taken to obtain
more representative time averages at a point. Other
sources of error undoubtedly include the mid-depth
sampling, Fluorometer errors, and some loss of dye due
to leakage.

Whatever the cause of recovery ratio deviations
from unity, it is necessary to adjust measured con-
centrations so that continuity of tracer is preserved.
This was done at each cross section by dividing each
concentration by the recovery ratio, thus uniformly
increasing or decreasing the concentration magnitudes.
The adjustment may be combined with a normalization
technique whereby the concentration magnitudes reflect
the relative strength of the injection source.
Specifically, each adjusted concentration C, is

divided by the concentration which would result if the
injected solution were fully mixed over the cross sec-
tion, coqolQ. to yield a normalized concentration

Cn. Thus, writing both the adjustment and the normal-
ization together,
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Thus recovery-ratio adjustment and source-strength
normalization may be accomplished in a single step.

The normalized concentrations for all six tests
are shown on Figs. 4.10 to 4.15. Note that for the
centerline injection, tests C and F, some of the data
points for =z < 2.0 feet are not actual measurements,
but are mirror images of measured concentrations on
the opposite side of the centerline.

4.4.3 Analysis of dispersion test results. The
measured concentration distributions were used to de-
tect the proper assumption for transverse diffusivity
through a two-stage process. First, the normalized
distributions for each test were analyzed using the
Generalized Change of Moments method for each of the
first three suggested diffusivity assumptions,

Eq. 3.12a-c. Although the fourth assumption,
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Eq. 3.12d, appeared to be most appropriate for
groin-influenced mixing in Holley's (1971) experi-
ments, it was not suggested by Holley as a potential
general diffusivity function, but rather as a special-
ized function for mixing in groined channels. There-
fore the applicability of Eq. 3.12d was not investi-
gated in this study.

Application of the GCM method to the test data is
summarized in Figs. 4.16 through 4.21, which show

the resulting plots of Giuc versus F, It is imme-

diately evident from these plots that the scatter of
data points is sufficiently great to preclude using

the apparent linearity of a ciuc versus F plot to

detect the proper diffusivity assumption. But the

slope daiuc/dF of each line may be determined using

a least squares fit, and the proper coefficient K
thus established for each possible assumption as if it
were the proper one, using Eq. 3.11. The variances

at x = 50 feet for tests A, E, and F departed signif-
icantly from the general data trends, and thus were
not used in the least squares computations. Since
concentration sampling began at x = 50 feet for all
tests, the anomalous variances are probably a conse-
quence of allowing insufficient time for the steady
state distribution to develop before sampling was
begun.

The resulting least-squares K values are listed
in Table 4.3, along with the mean coefficient values
for each flume roughness configuration, half and full.
If one of the three diffusivity functions analyzed is
the correct description of the mixing process, then
the coefficient K for that function should be a
constant property of the flow conditions. Thus the
averaging of K values for each flow condition, i.e.,
half and full roughness, should provide an estimate
of the proper K for each function in that flow,
regardless of the injection location. Note, however,
that the K values for test A were quite high com-
pared to tests B and C. This fact, coupled with the
obviously severe GCM data scatter for test A as seen
on Fig. 4.16, lends suspicion to the validity of the
test A GCM results. Therefore the full roughness K
values were obtained by averaging only test B and C
results.

In the second stage of the analysis, the complete
diffusivity functions for each assumption were used in
a numerical simulation of the experiments, thus pro-
viding a direct means of detecting the proper assump-
tion through comparison of observed and simulated
distributions. The hydraulic characteristics of the
model were established using the velocity distribu-
tions shown on Fig. 4.7; Table 4.4 lists the param-
eters of the 21-tube models developed for the full and
half roughness flows; the stream tube arrangements are
sketched in Fig. 4.16. Input concentration distribu-
tions were taken as the observed normalized distribu-
tions at x = 20 feet, reproduced within the con-
straint of fixed stream tube transverse positions.

The models were run for at least five times the slow-
est transit time through the mixing region, to ensure
that steady-state predictions were obtained.

The numerical model predictions, using the mean
diffusivity values for each roughness as in Table 4.3,
are plotted with the normalized test data on
Figs. 4.10 through 4.15. The 'predictions'’ at
x = 20 feet for each test are actually the stream-
tube equiﬁalents of the observed distributions; the




apparent low simulation values are a result of the
need to spread the contribution of high point values
of concentration over stream tubes of finite width.
As expected, the predicted concentrations distribu-
tions resulting from injection at the centerline

and at z = 3.0 feet (tests B, C, E, and F) are
fairly insensitive to the assumed diffusivity
function; but the side-injection simulations, tests A
and D, clearly show that a constant diffusivity,

Eq. 3.12a, best reproduces the peak concentrations at
the bank, Note also that, considering tests B and E,
the constant-diffusivity simulations predict a more
rapid movement of the peak concentration to the bank
than the other two diffusivity assumptions, and in so
doing better predict the observed data at the bank.

The concentration distributions could be better
reproduced by the numerical simulations if the exact
K values for each test were used in the simulation.
The use of the averaged values in Table 4.3 is more
consistent with the assumption that, if the proper
diffusivity function is used, K should be a constant
for the flow conditions.

4.5 Discussion of Test Results and Data Analysis

Much of the data scatter in the recovery ratio
plots, the measured concentration distributions, and
the GCM analysis is due to the limited nature of the
experimental program. A more extensive program would
have taken longer samples, probably of at least five
minutes duration, and would have obtained depth-aver-
aged concentrations by averaging samples taken at
multiple locations along a vertical line, rather than
relying on mid-depth concentrations as an approxima-
tion to depth averages. Also, a more complete program
would include multiple tests of the same flow and in-
jection conditions, to check the reproducibility of
the data.

The major conclusion of the experimental program
is that the assumption of a constant transverse diffu-
sivity is more appropriate than the two other assump-
tions suggested by Holley (1971), at least for the
particular triangular section tested. The conclusion
is based essentially on the results of the side-injec-
tion tests A and E, for both of which the constant-
diffusivity assumption reproduces the peak concentra-
tions and the general shape of the distributions quite
well. Since the conclusion is based on the numerical
simulation rather than the GCM analysis, it is impor-
tant to be sure that the results do not depend on the
particular stream tube arrangement used in the model.
Table 4.5 lists the specifications of an alternate
21-tube model. Stream tubes have now been concentra-
ted on the right side of the flume, where most of the
mixing takes place in a side-injection test; Fig. 4.lc
is a sketch of this alternate configuration. Test D
was resimulated using the alternate model and the same
K values used previously for the half roughness flow.
Figure 4.22 shows the results of the simulation, and
clearly demonstrates that the changed stream tube
discretization had no effect on the conclusion that
the constant diffusivity best reproduces the test
data. The consistent underestimation of peak concen-
trations is due to the fact that the simulation uses
the average Kl for tests D, E, and F, which is

higher than the value for test D alone as shown in
Table 4.3,

There is little theoretical basis for a rational
explanation of the apparent constancy of the trans-
verse diffusivity in the triangular channel.

Chapter 3 points out that the functional form of
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transverse diffusivity in a rectangular channel, which
is supposed to describe mixing due to transverse
velocity fluctuations, is assumed by analogy with
vertical diffusivity, which describes mixing due to
vertical velocity fluctuations. Evidently the analogy
is acceptable in channels of roughly constant depth,
but in a channel with transverse variations of depth
and velocity, a transverse shear must contribute to
transverse mixing of mass; yet the analogy with verti-
cal diffusivity takes no account explicitly of trans-
verse shear. In the shallow flow near the flume wall,
the proximity of the free surface to the bottom limits
the scale and intensity of vertical turbulent fluctua-
tions, and, due to a strong correlation, transverse
fluctuations. Yet the transverse shear, as reflected
in the transverse velocity gradient, is greatest near
the wall, At the centerline, on the other hand, ver-
tical turbulent fluctuations can be of larger scale
while the transverse shear is negligible. The net
effect of the two contributions to transverse mixing,
one bed-generated and the other transverse-shear-
generated, might be a roughly constant transverse
diffusivity across the entire section.

The values of Ki for the test data, which can

be obtained from the Kl
the depth and estimated slope, are from two to three
times larger than those reported in the literature for
rectangular channels. But as discussed earlier, the
energy slope could not be measured with any precision
for these tests, and this undoubtedly accounts for
some error in the apparent Ki values. However, it

values in Table 4.3 using

is also quite possible that the transverse shear in

the triangular channel is reflected in a Ki value

which is higher than the values found in rectangular
channels where bed-generated turbulence governs the
mixing process. The higher Ki values reported by

Okoye (1970) were from natural, nonrectangular chan-
nels where transverse shear could well have dominated
the mixing.

The above arguments are heuristic at best. But
they serve to illustrate the fact that past analogies
between bed-generated turbulence and transverse dif-
fusivity are incapable of describing the effects of
transverse shear. There is a great need for a de-
tailed analysis of the interaction between vertical
and transverse shear in producing apparent transverse
diffusivity; experimental studies must include mea-
surements of the transvefse velocity-concentration
covariances, as reported for vertical mixing by Keefer
(1971).

The problem of assigning diffusivities to the
overbank flow area when a river is at flood stage is
not addressed by the single-channel experiments dis-
cussed here. It is possible to have distinct changes
in depth, roughness, and velocity at the bankline in
such a case, suggesting that the overbank flow be
treated as a separate channel insofar as mixing prob-
lems are concerned., Thus a constant transverse dif-
fusivity should be assigned to each of the quasi-
separate channels, using the functional form of
Eq. 3.12a, and using Okoye's (1970) review for
guidance as to the proper value of Ki.

A secondary conclusion to be drawn from the
experimental program is that the numerical model des-
cribed in Chapter 2 provides an effective and versa-
tile means of estimating steady-state transverse
mixing in a nonrectangular channel, once the diffusiv-
ities are known.



Part 111
APPLICATION OF MODEL TO FIELD PROBLEMS

Chapter V

TRANSVERSE MIXING IN THE MISSOURI RIVER

It is the purpose of this chapter to illustrate
the application of the numerical dispersion model to
steady-state mixing in a natural river. A six-mile
reach of the Missouri River was chosen for the appli-
cation, since its hydraulic and mixing properties were
reported in detail by Yotsukura et al. (1967).

5.1 Description of Field Experiments

The study reach, immediately downstream from
Blair Highway Bridge in lowa, was selected by
Yotsukura et al., because of fairly gentle meandering
over a six-mile reach, the availability of a bridge
from which to inject the tracer, and minimum river
traffic. Figure 5.1 shows the general alignment of
the reach, in which the average width and depth were
about 600 feet and nine feet, respectively, for the
test discharge of 34,100 cfs. A Rhodamine BA solution
was injected at a constant rate for four hours near
the center of the river at the Blair Highway Bridge.
Steady-state concentration distributions were measured
at ten cross sections downstream from grab samples
taken from a boat. These distributions, combined with
detailed depth and velocity measurements taken at two
cross sections in the reach, are the basis of compari-
sons with the numerical model.

5.2 Adaptation of llydraulic and Geometric Data to
Numerical ‘odel

The availability of velocity and depth data at
only two cross sections required that data be assumed
for the rest of the reach. The measured sections were
just above the injection site, at mile 648.5, and
midway through the reach, at mile 645.0; these veloc-
ity distributions were distributed over the reach as
suggested by Yotsukura et al. At the injection point
and at station 5, the mile 648.5 distribution was as-
sumed to apply. At mile 645 the measured distribution
was used, and its mirror image was used at the mid-
point between stations 8 and 9. The mirror image of
mile 648,5 was used at station 10. At each of these
five reference sections the cross-sectional area was
assumed to be the same as the source section; depths
were thus uniformly adjusted as the widths were in-
creased or decreased to correspond to known channel
widths. Table 5.1 summarizes the reference section
locations and adjustment factors.

Eleven stream tubes of equal discharge were
assigned to each of the two source sections by the
procedure described in Sect. 2.6.2; Fig. 5.2 shows the
resulting stream tube configurations and velocity dis-
tributions.. Table 5.2 summarizes the stream tube
dimensions and velocities at each reference section
after width and depth adjustment; a constant energy
slope of 0.0002 for the entire reach was suggested by
Yotsukura et al. Longitudinal computational points
were established at approximately 600-foot intervals;
ten of the 54 total points were at the dye sampling
stations shown on Fig. 5.1.
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5.3 Generalized Change of Moments Analysis

Concentration distributions as reported by
Yotsukura et al. were normalized as described in
Sect. 4.4.2, then analyzed using the Generalized
Change of Moments method (assuming w = 0). In view
of the apparent invariance of the transverse diffusiv-
ity as discussed in Sect, 4.4.3, and the general
insensitivity of centerline injection mixing to the
diffusivity function, only Eq. 3.12a was tested.

Figure 5.3 presents the curve of aiuc versus F; the

relationship is linear within the limits of data scat-

ter, and indicates an apparent Ki value of 0.63.

This is in good agreement with the value of 0.60
determined by Yotsukura et al. through a trial-and-
error application of the steady-state numerical model
described in Sect. 1.9. It should be noted that
Yotsukura et al. attempted to apply Eq. 3.8 to this
nonuniform flow, and obtained Ki = 0.71 wusing con-

centration variances from the injection location down-
stream to station 7, where significant amounts of
tracer began to reach the banks. The GCM method, on
the other hand, utilized all ten distributions and
took account of transverse variations of depth and
velocity.

5.4 Simulation of Field Experiments

The GCM-determined value of K! was used with

1

the observed concentration distribution at station 1
to simulate the field mixing experiment. Steady-state
distributions were obtained by running 37 time steps
of 12 minutes each for a total time of 7.4 hours,
compared with a transit time through the reach of
about 1.5 hours., Figure 5.4 shows the predicted and
measured normalized concentrations at seven of the
sampling stations; the station 1 "predictions" are
simply stream-tube equivalents of the observed tracer
flowrate. Peak concentrations are generally estimated
well, as are the shapes of the distributions. Appar-
ent transverse shifts of the predicted distributions
as compared to measured ones are no doubt a conse-
quence of the rather gross use of only two measured
cross sections to describe the entire reach.

The prediction described above is not unique but
corroborates the results obtained by Yotsukura et al.
using the steady-state model described in Sect. 1.9
with 20 stream tubes and a slightly different assumed
stream geometry. The comparison was made further to
verify the numerical computational method, to demon-
strate its utility, and to confirm the rather large
value of Ki previously reported. Results indicate

that this large value is indeed appropriate, thus
supporting the demonstrated need for further analyti-
cal and experimental studies of the magnitude and
variation of transverse diffusivity in natural
channels.



CHAPTER 6

UNSTEADY MIXING IN CLINCH RIVER

The strength of the numerical model described in
Chapter 2 is its capability of predicting unsteady
mixing in nonuniform flow, to include cyclical injec-
tion from a submerged outfall, or sudden injection
from, say, a barge collision anywhere in a river. Yet
experimental data for these types of unsteady mixing
simply are not available. Unsteady mixing experiments
have been performed only for the special case of in-
stantaneous plane source injection, to test the one-
dimensional mixing assumption of Sect. 1.8, and to
evaluate the overall longitudinal mixing coefficient
Kx' It is the purpose of this chapter to verify the

numerical model to the extent possible for instantan-
eous plane source injection, and then to demonstrate
the utility of the model by simulating unsteady bank
injection into nonuniform flow.

6.1 Description of Field Experiments

Godfrey and Frederick (1970) reported eleven
tests conducted in natural rivers to test the one-
dimensional dispersion assumption. Their test 10,
performed on a straight, four-mile reach of the Clinch
River, near Speers Ferry, Virginia was selected for
the model application. In that test, detailed
velocity and topographical data were first obtained at
six cross sections. Then radiocactive tracer was in-
jected at the upstream limit of the reach; it took
about one minute to distribute the tracer over the
entire cross section. Concentrations of the passing
cloud were determined at five downstream stations, at
each of which radiation detection equipment recorded
the time history of centerline concentrations at an
unspecified distance below the water surface,

Table 6.1 summarizes the hydraulic and geometric
properties of the six reference sections.

6.2 Adaptation of Hydraulic and Geometrical Data to

Numerical Model

Eleven stream tubes of equal discharge were
assigned to each of the six reference sections as des-
cribed in Appendix E; Fig. 6.1 shows the resulting
stream tube configurations, the dimensions and veloci-
ties of which are tabulated in Table 6.2. The first
50 feet from the left bank at section 1 had no flow,
and thus was ignored in the stream tube
discretization.

6.3 Simulation of Field Experiment

Since neither the rate of tracer injection nor
the injection concentration were known precisely, the
simulation used for the measured concentration distri-
bution at section 1, x = 2,260 feet, as upstream in-
put. Although only centerline concentrations were
measured, it was necessary to assume the same concen-
tration-time curve for each stream tube at section 1,
as if the dispersion upstream of x = 2,260 feet was
due entirely to turbulent diffusion, with no spreading
due to differential convection.

Time and distance steps were chosen so as to
minimize numerical dispersion without requiring exces-
sive computer memory and/or computation time. The
input distribution, shown on Fig. 6.2, was spread over
about 18 minutes, or, using an average velocity of
about 2.5 ft/sec, 2,700 feet. In order that the dis-
tribution be described by at least 10 computational
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‘pridri, obviously.

points, it was necessary to use 4x = 250 feet near
the source. Knowing u and Ax, it was important to
use At less than 100 seconds to keep uAt/Ax ap-
proximately equal to or less than unity. Computer
program output constraints made it more convenient to
use an initial time step of only 30 seconds. The sim-
ulation could have been run using these time and dis-
tance steps throughout, but some economy could be
achieved by increasing them as the distribution spread
out in time and space., Based on the observed distri-
butions reported by Godfrey and Frederick (1970), the
distance step &x was gradually increased so as to
describe the distribution by at least 10 points every-
where. The maximum allowable time step was corres-
pondingly increased gradually to keep uAt/4x approx-
imately equal to unity. Table 6.3 summarizes the time
and distance steps finally used in the simulation.

A more typical field application would not have
the benefit of concentration distributions known a
For such a case it is best first
to compute 4x and At using the assumed concentra-
tion input, and to run the full simulation using these
conservatively small values. Once the approximate
dispersion pattern is known from the simulation, &x
and At may be increased as above to minimize compu-
tational cost on repetitive trials.

Transverse and longitudinal diffusivities were
chosen as if no special information was available.
The diffusivities were assumed to be constant within a
cross section, as traditionally assumed and supported
by the results described in Chapter 4. Elder's (1959)
coefficients, also commonly accepted, were adopted, so
that

™
i

5.93 UH (6.1a)

and

(6.1b)

€. = 0.23 UMH

z

Note that Eq. 6.la represents longitudinal diffusion
due both to turbulent fluctuations and to differential
convection related to the vertical gradient of veloc-
ity. The simulation was run for two hours, i.e., long
enough for most of the tracer to be convected out of
the reach; this required 80 seconds of computation
time on the CDC 6400 digital computer at Colorado
State University.

Direct comparison could not be made between the
measured concentration-time curves (at specific loca-
tions) and the computed concentration-distance curves
(at specific times). Nonetheless, a rough comparison
can be made by converting a computed concentration-
distance curve to an equivalent concentration-time
curve using the convective velocity of the tracer
cloud, and assuming no change in the shape of the
distribution as it passes the station in question.
The computed curve at t = 0.61 hours, which peaked
at X 8,970 feet, was transformed to a concentra-

tion-time curve peaking at to = 0,62 hours (to cor-

respond to the measured section 3 distribution) by the
relation

2 (6.2)



equivalent time corresponding to x,

time of peak concentration passage at
measured section,

x = longitudinal coordinate of simulated concen-
tration value,

+
uon

X, = location of peak concentration for simula-
tion, and
Uc = convective velocity of tracer cloud.

The convective velocity Uc’ taken from Fig. 6.4

(to be discussed further) was about 3 ft/sec.

Figure 6.2 shows the measured and computed curves;
units of concentration are microcuries per cubic feet.
The trailing edge oscillations in the computed curve
are an inevitable consequence of the finite-difference
computation, and are caused by the differential celer-
ities of Fourier Series solution components as pre-
dicted by Eq. 2.33; the sample computation for pure
convection shown in Fig. 2.4 displays the same oscil-
lations. Fortunately, however, the oscillatory be-
havior always occurs on the trailing edge of a distri-
bution, whereas the leading edge and the peak

concentrations are generally of most practical impor- -

tance in pollution problenms.

The computed concentrations appear to begin
rising sooner at x = 8,170 feet than the measured
ones; the error is due in part to the effects of
numerical dispersion, and the transformation of the
concentration-distance curve to a concentration-time
curve. But it also suggests that Elder's coefficient
of 5.93 may overestimate the longitudinal diffusion,
at least upstream of this particular location. Note
also that the simulation underestimates the peak con-
centration by 17 percent; but Fig. 6.3, which compares
peak concentrations over the entire reach, indicates
that at most locations the simulation predicts peak
concentrations quite well. Figure 6.4 shows also that
the celerity of the peak centerline concentration was
accurately predicted by the simulation. It is impor-
tant to recognize that the celerity is determined by
the interaction between differential convection and
transverse diffusion; the apparent value of about
3 ft/sec from Fig. 6.4 falls between the mean stream
velocity of approximately 2.6 ft/sec and the center-
line velocity of approximately 3.3 ft/sec. Moreover,
the good general agreement of the simulation predic-
tions with experimental results reinforces recent
criticism of the one-dimensional mixing concept
(Section 1.8) in natural rivers; Nordin and Sabolt
(1974) showed that the Clinch River experiments could
not be modeled as a one-dimensional Fickian process.

The simulation's accurate prediction of the
Clinch River experimental results provides a strong
argument for its efficacy and utility. Neither cali-
bration nor coefficient adjustment were required;

topographic information, water surface elevations, and
velocity measurements were input along with tradition-
ally assumed diffusivities to provide mixing informa-

tion essentially as good as that obtained by a costly

field experiment,

6.4 Simulation of Hypothetical Unsteady Bank
Injection

A final demonstration of the numerical model's
utility is its application to the prediction of mixing
resulting from the injection of a slug of pollutant
near the bank of a river. Such a situation might
result from a temporary breakdown of mechanical
equipment in a sewage treatment plant or chemical fa-
cility, such that untreated waste is discharged
through a submerged outfall for a short period of
time. Outfalls are designed to provide as much ini-
tial dilution as possible, so that complete mixing
over the depth is an acceptable first assumption.

The Clinch River was again chosen for the
simulation; the computational grid and time steps were
left unchanged from the instantaneous plane source
simulation described earlier. A full sine wave
concentration curve of period 15 minutes and peak
concentration 100 ppb was input into tube 2 at
x = 2,260 feet:

C(t) = 50[1 - sinn[%-ﬁ-*- %—n

(6.3)
where t is in seconds. The simulation was run for
two hours, long enough to convect the cloud through
most of the reach, and for three diffusivity combina-
tions, as follows:

(a) E * 5.93 UH, &, = 0.23 UH
(b) € = o, = 0.23 UH
(c) € = 0, €= 0.23 U, /U uh

Run (a) represents conditions normally assumed; (b)
tests the influence of the longitudinal diffusivity;
and (c) tests the influence of nonconstant transverse
diffusivity (Eq. 3.12b) in this channel. Figure 6.5
shows the results of the simulation at two times, one
only 16 minutes after the start of the injection, the
other after 71 minutes. At each time the transverse
concentration distribution is shown at three arbitrary
x-locations, showing the three-dimensional shape of
the tracer cloud. Two conclusions are immediately
evident: first, the mixing is quite insensitive to

the magnitude of the longitudinal diffusivity L

as has been suggested in the literature (Sayre and
Chang, 1968; Holley, 1971). Second, in this channel
the distribution of transverse diffusivity has only a
minimum influence on the mixing process.



CONCLUSIONS

The primary objective of this study was to
develop and apply a numerical model for the prediction
of time-dependent mass dispersion in natural streams.
Numerical diffusion in the computation of streamwise
convection is eliminated by using the double-step
implicit-explicit second order method described by
Peaceman and Rachford (1955); numerical dispersion can
be minimized by judicious choice of time and distance
steps. Computation time and computer storage require-
ments are kept reasonably conservative by the use of a
tri-diagonal matrix solution technique for the impli-
cit computations. The overall result is an easily-
applied model for the computation of both steady-state
and time-dependent depth-averaged mixing of a conser-
vative, neutrally-buoyant pollutant in steady but non-
uniform channel flow of arbitrary cross section. Both
longitudinal and transverse diffusion are computed;
depth-averaged transverse velocities are taken into
account, and mixing due to transverse secondary circu-
lation can be absorbed in the transverse diffusivity,
which need not be constant within a cross section,

The numerical model was verified against
analytical solutions for simplified flow fields.
Comparison with solutions for a continuousvertical
line source in a rectangular channel of constant ve-
locity, and for an instantaneous vertical line source
in an unbounded fluid having a constant transverse
gradient of longitudinal velocity, indicated that mod-
el provides satisfactory prediction of the analytical
concentration distributions. Model predictions are
relatively insensitive to the magnitude of time and
distance steps used in the numerical computation.

The secondary goal of this investigation was an
experimental determination of the variation of trans-
verse diffusivity in a triangular laboratory channel.
The capability of numerical models to allow the trans-
verse diffusivity to vary within a cross section ex-
poses a need for information on not only the magni-
tude, but also the distribution of the diffusivity
within a cross section. The experiments were designed
specifically to test the diffusivity functions pro-
posed by Holley (1971). Analysis of steady-state con-
centration distributions resulting from continuous
injection at the bank and at two other transverse
positions indicates that the traditional constant dif-
fusivity assumption best reproduces the observed dis-
tributions. The apparent invariance of the transverse
diffusivity represents an interaction between bed
shear and transverse shear, the relative contributions
of which cannot yet be determined.
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Application of the numerical model to two field
experiments confirms its utility. The previously
reported constant transverse diffusivity in a reach of
the Missouri River was verified using Holley's (1971)
Generalized Change of Moments method, and a numerical
simulation of the continuous-injection experiment
using minimal hydraulic and geometric data success-
fully reproduced the measured concentration distribu-
tions. The model's capability for predicting time-
dependent mixing was demonstrated through comparison
with an instantaneous plane source injection experi-
ment performed on the Clinch River. The decay and
convective velocity of the peak centerline concentra-
tion, as well as the general shape of the longitudinal
centerline concentration distributions, were predicted
quite well by the numerical model. The predictions
used commonly accepted values for longitudinal and
transverse diffusivity, requiring no adjustment or
calibration to reproduce the observed behavior.

Application of the model to predict
time-dependent mixing from a hypothetical vertical
line source near one bank of the Clinch River con-
firmed the insignificance of longitudinal turbulent
diffusion for most situations. Moreover, these simu-
lations demonstrate that, in an approximately rectan-
gular channel, predicted concentration distributions
are insensitive to the assumed variation of transverse
diffusivity. The applicability of the numerical model
should further be tested through comparison with
mixing experiments in natural rivers using vertical
line sources of finite duration.

This study has demonstrated that a relatively
simple finite difference model can successfully pre-
dict time-dependent concentration distributions in a
river. But the predictions are no more accurate than
the transverse diffusivity assigned by the user. The
diffusivity is assumed to describe mixing due to mo-
lecular diffusion, turbulent velocity fluctuations,
and differential convection; yet existing theory and
experimental investigation have been focused solely on
the relationship of diffusivity to bed shear. There
is a need for a better theoretical and experimental
understanding of the individual contributions of sev-
eral components comprising transverse diffusivity.
Specific effort should be devoted to the mixing con-
tribution of transverse gradients of longitudinal ve-
locity and secondary circulation in bends.
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APPENDIX A

TABLES
Table 2.1. Stream Tube Dimensions and Injection Table 2.2. Stream Tube Dimensions and Velocities,
Concentrations, Rectangular Channel Uniform Shear Flow
11-Tube Model 21-Tube Model Width Velocity
Tube B! u
Tube Width Injection Tube Width Injection (ft) (ft/sec)
B' Concentration B' Concentration
1 ft
il (ppb) el (ppb) 1 10.000 0.000
1,11 0.55 0 1,21 0.55 0 2 0.100 0.000
2,10 0.26 0 2,20 0.10 0 3 0.100 0.286
3,9 0.10 0 3,19 0,10 0
4,8  0.10 0 4,18  0.05 0 4 0.100 0.571
5,7 0.04 0 5,17 0.05 0 5 0.095 0.850
6 0.02 10 6,16 0.05 1] 6 0.010 1.000
7,15 0.05 0
8,14 0.02 0 7 0.095 1.150
9,13 0.02 0 y 8 0.100 1.430
30,32 /0.0075 7 9 0.100 1.710
11 0.005 40
10 0.100 2.000
11 10.000 2.000
Table 4.1. Hydraulic Test Data
Tests A,B,C Tests D,E,F
Q(cfs) 1.69 1.69
ACEtD) 1.53 1.56
U(ft/sec) £.13 1.08
R(ft) 0.37 0.37
S(ft/ft) 0.00052 0.00025
n(sec/£t/3) 0.0158 0.0112
u, (ft/sec) 0.079 0.055
Froude No. 0.32 0.31

Table 4.2. Dispersion Test Injection Data

Injection Injection Injection Injection
Test  Roughness  Location, Concentration Rate Strength
zg.. Co 9% qoco
(ft) (ppb) (ml/min) (ppb-cfs)
A Full 4.0 3.53(104 140 2.884
B Full 3.0 a.9x10* 140 4.038
c Full 2.0 5.4x10% 140 4.450
D Half 4.0 4.3)(104 140 3.543
E Half 3.0 4.3:104 140 3.955
F Half 2.0 6.2x10* 140 5.109
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Table 4.3. Results of Generalized Change of Moments
Analysis for Test Data

Least-Squares K'for

< Indicated Diffusivity Function
Test ' » " g‘. ]
K, U*H K " uh K3 uh
a
A 0.45(1) 0.s0( 0.481)
B 0.30 0.20 0.18
c 0.34 0.27 0.25
Average of
(2) (2) (2)
Tests A,B,C 0.32 0.24 0.22
D 0.55 0,48 0.45
E 0.67(1) . 0.39(1) 0.35(1
F 0.63{1} 0.50{1} 0.48(1]
Average of
Tests D,E,F 0.62 0.46 0.43

(1) Excludes variance at x=50 ft.

(2) Full-roughness averages formed using test B and C results only.

Table 4.4. Stream Tube Parameters for Numerical Model of Triangular Channel

Fnl.ﬂl -iol:hglmess Flnwu :Tlf - Roughhness Flow -
Tube (ft) (ft) (ft/sec) < (£2) (ft) (ft/sec)
1 0.1 0.0996 0.4925 0.1 0,1098 0.2350
2 0.2 0.1435 0.7486 0.2 0.1540 0.5800
3 0.2 0.2020 0.8274 0.2 0.2130 0.7200
4 0.2 0.2605 0.8865 0.2 0.2720 0.8500
5 0.2 0.3190 0.9456 0,2 0.3310 0.9950
6 0.2 0.3775 1.0047 0.2 0.3900 1.1000
7 0.2 0.4360 1.0737 0.2 0.4490 + 1.1550
8 0.2 0.4945 1.1426 0.2 0.5080 1.1950
9 0.2 0.5530 1.2116 J 0.2 0.5670 1.2050
10 0.2 0.6115 1.2608 0.2 0.6260 1.1950
11 0.2 0.6700 1.3002 0.2 0.6850 1.1830
12 0.2 0.6115 1.2903 0.2 0.6260 1.2000
13 0.2 0.5530 1.2707 0.2 0.5670 1.2200
14 0.2 0.4945 1.2214 0.2 0.5080 1.2150
15 0.2 0.4360 1.1525 0.2 0.4490 1.1750
16 0.2 0.3775 1.0934 0.2 0.3900 1.1160
17 0.2 0.3190 1.0145 0.2 0,3310 1.0000
18 0.2 0.2605 0.9357 0.2 0.2720 n.8500
19 0.2 0.2020 0.8471 0.2 0.2130 0.6650
20 0.2 0.1435 0.7584 0.2 0.1540 0.5350
21 0.1 0.0996 0.3940 0.1 0.1098 0.2250
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Table 4.5. Stream Tube Parameters for Alternate Numerical Simulation, Test D

B! h u
Tabe (fr) (£t) (£t/sec)
} ¢ 1.0 0.2425 0.7708
2 1.0 0.5375 1.2090
3 0.5 0.6113 1.2141
4 0.4 0.4785 1.2090
5 0.3 0.3753 1.0881
6 0.2 0.3015 0.9420
7 0.1 0.2573 0.8060
i 0.09 0.2292 0.7254
9 0.08 0.2042 0.6650
10 0.07 0.1820 0.6096
11 0.06 "% o.1620 0.5743
12 0.05 0.1466 0.5239
13 0.04 0.1333 0.4165
14 0.03 0.1230 0.3044
15 0.02 0.1157 0.2243
16 0.01 0.1112 0.1762
17 0.01 0.1083 0.1442
18 0.01 0.1083 0.1121
19 0.01 0.1024 0.0801
20 0.01 0.0994 0.0481
21 0.01 0.0965 0.0160

Table 5.1. Missouri River Source Reference Sections

X Source Width Width Depth
Section adjustment adjustment
(ft) (mile) (ft) factor factor
0 648.5 601 1.0 1.0
11,850 648.5 627 1.043 0.958
17,105 645 738 1.0 1.0
25,050 645* 631 0.855 1.170
32,970 648.5* 509 0.847 1.181

* denotes mirror image

39



Table 5.2.

Missouri River Reference Section Stream Tube Parameters

Section 1 2 3 4 5
x =0 ft x = 11,850 ft x = 17,105 ft x = 25,050 ft x = 32,970 ft
“Tube | B' h u B' h u B" h u B" h u B'" h u
(ft) (ft) (ft/sec) |(ft) (ft) (ft/sec) |(ft) (ft) (ft/sec) |(ft) (ft) (ft/sec) |(ft) (ft) (ft/sec)
1 213 6.3 2.3 223 6.0 2.3 191 5.6 2.9 67 10.4 4.5 42 15.5 4.8
2 90 8.3 4.2 94 8.0 4.2 81 7.1 5.4 37 12.0 7.0 26 16.9 7.0
3 49 10.4 6.1 51 10.0 6.1 58 9.2 5.8 40 12.0 6.5 19 19.3 8.5
4 38 11.7 7.0 40 11.2 7.0 67 9.4 4.9 28 12.0 9.3 17 19.1 9.6
5 32 13.0 7.5 33 12.5 7.5 48. 10:9 6.5 38 11.5 7.2 24 18.3 7.1
6 28 14.1 7.9 29 13.5 7.9 48 9.4 6.9 41 11.0 6.9 24 16.6 7.9
7 28 15.5 7.2 29 14.8 7.2 4 9.8 7.2 41 11.7 6.5 27 15.3 7.5
8 20 16.2 9.6 21 15.5 9.6 33 10.3 9.1 57 11.0 5.0 32 iS.E 7.0
9 22 16.3 8.7 23 15.6 8.7 47 10.3 6.4 50 10.8 5.8 42 12.3 6.1
10 31 14.3 7.0 32 13.7 7.0 43 10.3 7.0 69 8.3 5.4 76 9.8 4.2
11 50 13.1 4.8 52 12.6 4.8 78 8.9 4.5 163 6.6 2.9 180 7.4 2.3
Table 6.1. Clinch River Channel Geometry and Flow Data
Section 1 2 3 B 5 6
x(ft) 2,260 5,170 8,170 11,800 15,300 19,300
B(ft) 200 165 160 183 175 166
H(ft) 5.70 5.31 6.50 7.43 7.37 8.92
S(ft/ft) .0012 .00078 .00058 .00044 .00044 .00040
Q(cfs) 3,030 2,820 3,150 3,070 2,960 3,010
U(ft/sec)  2.66 3.22 3.03 2.26 2.29 2.03
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Table 6,2.

Clinch River Reference Section Stream Tube Parameters

Section| x = 21,260 ft X - 52,1?0 ft x = 8.31'.-'0 ft x = 11‘,800 fr X = 155,300 fr X = 196,300 ft
Tube B' h u B! h u B' h u B' h u B! h u B' h u
F(ft) (ft) (ft/sec) |(ft) (ft) (fr/sec) |(ft) (ft) (ft/sec) |(ft) (ft) (ft/sec) [(ft) (ft) (ft/sec) |(fr) (ft) (ft/sec)
I (27 &2 L& [ 49 21 33 4.5 1.8 [40 6.0 1.1 33 6.0 1.4 31 5.0 1.8
2 10 6.4 3.6 13 6.1 3.5 13 7.6 2.8 14 9.3 2.1 13 7.9 2.7 17 10.2 1.6
3 11 6.3 4.0 12 6.4 3.6 12 8.0 2.9 12 8.8 2.6 12 7.9 2.9 10 11.8 2.3
4 8 8.6 4.0 13 59 3.6 12 7.5 3.0 11 8.6 2.9 11 B.5 2.9 8 11.9 2.9
5 9 8.0 3.8 14 53 3.7 10 8.0 3.4 11 8.3 3.0 13 8.2 2.6 7 11.4 3.4
6 12 5.5 4.2 11 6.6 3.8 89 8.9 3.4 11 8.0 3.1 11 B.6 2.9 10 11.2 2.4
7 6 6.2 7.3 11 6.4 3.9 B 9.4 3.6 11 8.0 3.1 13 7.3 2.9 9 11.1 2.7
-] 7 7.8 5.2 8 6.2 5.5 10 7.8 3.5 10 7.5 3.6 12 7.4 3.1 10 10.9 2.5
9 9 B8.0 3.8 10 6.9 4.0 9 8.9 3.4 120 8 5% 11 8.6 2.9 13 10.7 2.0
10 12 8.1 2.8 12 6.4 3.6 11 7.9 3.6 13 7.3 2.6 13 9.3 2.3 14 9.3 2.1
11 35 6.7 1.2 27 4.2 2.4 31 4.5 2.0 ¥ 55 1.4 32 5.5 1.6 33 5.9 1.4
Table 6.3. Clinch River Simulation Time and Distance Steps
Distance Time
Range Ax Range At
(ft) (ft) (hours) (sec)
2,260 - 3,715 100 0.0 - 0.067 30
3,715 - 9,985 200 0.067 - 0.683 60
9,985 - 13,550 275 0.683 - 1.383 120
13,550 - 17,300 300 1.383 - end 180
17,300 - 19,300 350
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APPENDIX C
ANALYSIS OF SEVEN ADDITIONAL FINITE DIFFERENCE
METHODS FOR THE COMPUTATION OF CONVECTION

The double-step implicit-explicit scheme
described in Sect. 2.4 was chosen from eight schemes
initially considered. In this Appendix the remaining
schemes are presented, and their numerical character-
istics are summarized without detailed derivation.

A. Asymmetrical explicit scheme, first order. This
relatively simple scheme is used in Sect. 2.2 to dem-
onstrate numerical diffusivity.

t
n+l |
\
|
/
- ,
n —
X
1~ 1 I+l
Fig. C.1. Scheme A Discretization

Figure C.1 shows the computational method, whereby
Eq. 2.2 is written

.n+1 n
a1 = a1
it

n n
e - O
Ax

u(C

= 0. (C2)

For this scheme

R1 = [1+2r(1-r) (cos cax-l}]l/z
and
arctan —--—-*-r SIRM*-——ngxnﬁx
1-2r ﬁlnh 2—
R, =
2 ught

The scheme is unstable for r>1, stable and non-

diffusive for r=1, and introduces numerical diffusion
L

for r<l. R2 H:-d,

but is generally less than unity for other values.

The method is computationally attractive due to the

possibility of a direct, single calculation for each

concentration at each time step, but obviously suffers

from numerical diffusion problems if r<l, as it must

be at most locations in a natural channel.

is equal to unity when r=1 and

B. Asymmetrical implicit scheme, first order.
Figure C.2 indicates
1
n+ | —_—
\
|
|
I
n -
X
1-1 1 I+|
Fig. C.2. Scheme B Discretization
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that this scheme is just an implicit version of

Scheme A. Equation 2.2 is written
n+l n n+l n+l
€101~ Cta1 L Cro - € ) a
At AX a
and

R, = [1+2r(1+r) (l-cos 0&8]1-1/2

r sin ofx ]
R = 1+r(l-cos oAx)
2 ught

arctan |

(C€3)

It may be noted that R1<1. always, (unless Ax=0),

so the scheme is unconditionally stable but diffusive.
éi. R <1, and numerical
dispersion can be quite severe for r>2 and %< 50.

For all values of T and

Thus the method offers no major advantage in spite of
the greater computational complexity demanded by the
implicit discretization.

C. Symmetrical implicit scheme, first order. Some
improvement over the first order implicit scheme can
be gained by using a centered space

t
n-l -ﬂ ™
\
\
|
]
I
/
n
X
-1 I I+l
Fig. C.3. Scheme C Discretization

derivative as on Fig. C.3. Equation 2.2 is written

n+1 n n+l n+1
G =G Wl 8 5
At 24x
and ¥
Rl = (1+r2 s:i.n2 ahx) 1/2
R, = arctan (r sin oldx)
2 ught

Again the method is unconditionally stable but
diffusive although R1 tends to be closer to unity

then for the asymmetrical method. The scheme is also
dispersive, but R, tends to be closer to unity than

for the asymmetrical method.
D. Symmetrical explicit "leap frog' method, second
order. By stepping the time derivative back-
wards the centered.explicit method can be made




t
n+l
Al
i
n I~
|
/
‘ X
I=I I I+1
Fig. C.4.. Scheme D Discretization

almost nondamping.
be written

As shown in Fig. C.4, Eq. 2.2 can

1 - %
24t 24x%

Cn+1 n+1 1 ?

where for r<l, R1=l.

for r>1, Rl=-r sin Uﬂx:(rz sin2 cax-l]l/2

T sin gAx
arctan

7
r<l, R, = £{l-r" sin” a&x)lfz

and for 5 e

Thus for r>1 the method is unstable. But for r<l
it is stable and nondamping; moreover, for r<l, R2

approaches unity rapidly as ﬁ; increases.

E: Symmetrical explicit "leap frog" method, fourth
order. Fourth order accuracy can be added to the

explicit leap frog method by extending the space deri-

vatives. As suggested in Fig. C.5, Eq. 2.2 is written
n+l n-1 4 n n 1 n n.
o Sl P A TR VL £ Tl L7 Y
ZAt 2A% 44x ’
1
nti
\
n i =
I L =
Hh..‘_‘_ —
I~
/
n—| x
[-2 I-1 1 I+ I+2

Fig. C.5. Scheme E Discretization

It turns out that

Also, for r<l,

%(8 sin ofAx - sin 2o04x)

rZ
14-6

arctan

7
(8 sin oAx - sin 2Uﬂx)2 172

2 uoAt
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The method is stable and nondamping for r<l, but Rs
can reach nearly 1.4 before converging back toward 1.0

Li o
as -— increases.

Ax
F. Double-step implicit-explicit scheme, fourth

order. An extension of the space derivatives
gives fourth order accuracy to the method first des-
cribed in Sect. 2.4. As shown on Fig. C.6, Eq. 2.2
is written in two parts as

n+l 3 T nsly n+!;
& -G, f5e -5_1_3&:“2- )
28x

1 I+1 1-1
4t

followed by

1. 1

n+l n+l Dl n+' 1
v Atk 2 ”E €~ %) 3 fcm * St z)}

Tatj2 2hx
t
n+l
N+l P il G
“= —
\
n ./
I-2 I-1 I I+l 142
Implicit Half Step
t
n+l
: I Rl o Bt
n |
I-2 I-1 I I+ 142
Explicit Half Step
Fig. C.6. Scheme F Discretization

A derivation similar to that of Sect. 2.4 shows that

Rl =1
and

5T ? s
2 arctan[12[851n gbx - sin 2 oAx)]

ks oult

As is the case with its second-order counterpart,
this method is unconditionally stable and nondamping.
However the additional fourth-order complexity re-
sults in only a slight improvement in the numerical
dispersion characteristics as displayed by Rz.

G. Double-step predictor-corrector scheme. A minor
variation of the second-step time derivative in the
double-step implicit-explicit scheme of Sect. 2.4

can reduce the numerical dispersion. With reference
to Fig. C.7., the first half-step is applied to

Eq. 2.2 to yield

n+i n n+ls n+'s
eI T i
At/2 20%

e

e G 1 £ e O

i e A A

1
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Fig. C.7. Scheme G Discretization

and for the second step

n+l n

By =81

At
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The coefficients Rl and R2 must be computed for

two conditions.

For r sin gAx < 2,
_ T e -1/2
Rl_(l+ o sin oX)
and
arctan (-2— sin oAx) zarctan [-r sin onx[4-r2 sin® aax]-”z]
Ry ® ught 2
For r sin oAx > 2,
R =L sin oAx i{rz sin2 ghx - 4)”2
1 (2 + r2 sin2 anjl/z |
and arctan [% sin oAx) + w/2
RZ = uoght

Here R1 is less than unity always, so the method is

unconditionally stable but also damping, compared to
the nondamping characteristics of the parent scheme,
Sect. 2.4. Thus the slight improvement in numerical
dispersion characteristics is obtained at the expense !
of numerical damping. !



APPENDIX D
DESCRIPTION OF DISPERSION MODEL COMPUTER PROGRAM

The dispersion model as described in Chapter 2
and Appendix E is programmed in Fortran IV, and as
presented here is written for the CDC 6400 computer.
The program consists of the following major elements:

SUBROUTINE GEOMIN - Reads stream tube data from
permanent file.

SUBROUTINE DATAIN - Reads time history of source
injection at upstream end of each tube; supplies
appropriate injection concentration for each tube
at any time during the simulation.

SUBROUTINE UANDDI - Computes longitudinal and trans-
verse diffusivities for all stream tubes at all
computational points.

SUBROUTINE CONCEN - Executes the dispersion simulation;
revises time step, requests output.

SUBROUTINE CONVECM - Solves Eq. 2.38 for one time step
using the second order implicit-explicit double
step scheme. b

SUBROUTINE DIFFUS - Solves Eq. 2.48 for one time step
using the centered fully implicit scheme.

SUBROUTINE LODIFF - Solves Eq. 2.55 for one time step
using the centered fully implicit scheme.

SUBROUTINES LABEL, EDIT, EDIT 3 - Print out complete
concentration fields and stream tube data.

Included in this Appendix is a complete listing
of the program and a generalized flow chart. The
following list of important variables is by no means
complete, but includes all input and most output
variables:

Variable Description
ALFA (real) Dimensionless K'-
coefficients, Eq. 3.12.

B (real) Width of stream tube.

BWAUT (integer) Number of computational
points for which complete
printout of stream tube

specifications is desired.

Variable

INDEX (integer)

LALFA (real)
LONGD (logical)
NBPTS (integer)

NCIN (integer)

NCYCL (integer)

NDT (integer)

NTUBE (integer)

Q (real)
RDATA (logical)

STR (real)

T (real)

TEND (real)

TIME (real)

Description

Number of iteration cycles
between outputs of concen-
tration field; if zero,
output will be generated
only at end of simulation.

Dimensionless longitudinal
diffusivity coefficient.

If true, longitudinal dif-
fusion is computed.

Number of longitudinal
computational points.

Number of concentration-
time pairs input for up-
stream end of each stream
tube.

Number of simulation
iteration cycle.

Number of times at which
time step is changed; if
zero, time step is constant

Number of stream tubes.
Total stream discharge.

If true, stream tube
velocities and depths are
read in, not computed.

If RDATA=true, velocity of
stream tube; if RDATA=false,
Strickler coefficient of
stream tube.

In DISPERS, the array in
which all variables are
stored columnwise; in sub-
routine DATAIN, the times
(in decimal hours) at which
input concentrations are
specified.

Decimal time, in hours, at
which simulation ends.

Decimal time, in hours at
which simulation begins.

C (real)
CINIT (logical)

DTH (real)

EPSL@C (integer)

G (real)

IN (integer)

Concentration.

If true, concentrations set
equal to zero initially; if
false, initial concentra-
tion field read in.

Beginning simulation time
step, in hours.

Specifies the transverse
diffusivity function to be
used, keyed to K'-
subscripts, Eq. 3.12.

Gravitational acceleration.

General subscript incolumn-
wise variable array.

TITLE (alphanumeric)
ZBOT (real)

User-specified title of run.

If RDATA=true, depth of
stream tube; if RDATA=false,
bed elevation of stream
tube.

The use of program NISPERS first requires that a
permanent file be established on disk or tape storage
containing stream tube data for the river being
studied. These data, which are read by subroutine
GEOMIN, are prepared by the user based on known data
and the procedures described in Appendix E.

As presented here, the program is dimensioned and
formatted for a maximum of 22 stream tubes, The re-
striction can be removed by revising subroutine EDIT
to print out additional sets of 11 tubes each.

T T el T

gk

R T




PROGRAM DISPERS

control
data

Compute
locations of
variables in

T

Read
time step
revisions

Loads
Stream tube
data
Call loads
DATAIN input
concentrations
Call |._.] Computes
UANDDI diffusivities
Call }...] Executes
CONCEN dispersion
simulation
Stop

SUBROUTINE GEOMIN

Read stre
tube data
from disk
storage

am
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SUBROUTINE DATAIN

for each
stream tube

no

Locate
T,C pairs
which bracket
simulation time

:

Interpolate

to obtain

input concentration,
each tube

SUBROUT INE CONCEN

Increment
time
Call -~ Loads input
DATAIN concentrations,
each tube
y
Call Computes
CONVECM [ ™" convection
Call | __| Computes
DIFFUS transverse
diffusion
Call Computes
LODIFF ---1 longitudinal
(if LONGD=T) diffusion

Write
concentration
field

Revise time
step when
appropriate

yes

Return



SUBROUTINE UANDDI

SUBROUTINE DIFEUS

Gar)

! ) Compute
Compute 01:02,03.
Q,A,B,U,,U, D2*,D2**
for eacﬁ val
section 4
Compute
i L,F values
Compute Diffusivity ‘
ex,az for function Tomput
"""" 1 specified ,
each tuber EgSLUCIe by concentrations
each section by recurrence

]
Compute ((Return)
(he ;) 1;a,4-1

etc.

SUBROUTINE LODIFF

Write

complete & N @

Compute

! G1,G2,G3
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TWO-DIMENSIONAL MASS DISPERSION COMPUTER PROGRAM
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TWO-DIMENS IONAL MASS DISPERSION COMPUTER PROGRAM (CONT'D)
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TWO-DIMENSIONAL MASS DISPERSION COMPUTER PROGRAM (CONT'D)
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TWO-DIMENSIONAL MASS DISPERSION COMPUTER PROGRAM (CONT'D)
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TWO-DIMENSIONAL MASS DISPERSION COMPUTER PROGRAM (CONT'D}
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APPENDIX E
RECOMMENDED PROCEDURE FOR THE COMPUTATION OF STREAM TUBE WIDTHS,
DEPTHS, AND VELOCITIES

Stream tube dimensions must be chosen so as to
satisfy continuity in each. The derivation of
Eq. 2.57 requires that there be no flow of water
across transverse stream tube boundaries; consequently
the discharge in each tube must be the same at all
longitudinal computational points. Topographical and
hydraulic information are generally available at only
a few cross sections in a typical study reach; stream
tube dimensions are determined at each of these 'ref-
erence' sections, and then assigned to intermediate
longitudinal computational points by linear interpola-
tion. The computations at a reference section require
the cross-sectional geometry and transverse distribu-
tion of longitudinal velocity; if only the cross-
sectional geometry is known, the velocities may be
estimated by a gradually-varied flow computation, des-
cribed below.

Optional computation of transverse distribution of
longitudinal velocity. If velocities must be esti-
mated, topographic information for the reach must be
sufficient to describe the cross-sectional geometry at
each reference section in terms of bed elevations ref-
erenced to a common datum. Once these cross sections
have been plotted, each one may be divided into an
equal number of rectangular elements, not to be con-
fused with stream tubes. The element widths are cho-
sen to coincide with zones of roughly constant bed
elevation as shown on Fig. E.1. The elements at the
banks must be chosen so that their bed elevations are
below the expected water surface elevation. The com-
putations begin with a straightforward backwater com-
putation, by which the loss of total energy head,
i.e., water surface elevation plus velocity head, is
balanced by an equivalent friction loss. The friction
slope S may be expressed by Manning's equation,

8= (R)?
1

where Q is the total discharge, and K, 1is the to-

5
tal conveyance at the i h

any two reference sections
equation is -

reference section. Between
i-1 and i the energy

(x. - x. ,)
Q.2 1 i i-1 Q.2 Q 42

R )'1_1 * (A fg- (E.1)

i-1

where the friction slope applicable to the reach be-
tween i-1 and i has been taken as the average of
the slope at the end points, and

¥y the water surface elevation at point i,

A, = the cross-sectional area at point i,
and
g = gravitational acceleration.

The computation is started with the known water sur-
face elevation at the furthest downstream reference
section, L. Then an estimate of the water surface
elevation is made for point L-1, and the total con-
veyance for each cross section is computed as the sum
of the conveyances of each element, or
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Fig. E.1. Discrete elements for estimation of
longitudinal velocities.
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i
where n, j is the estimated Manning roughness coef-

»
ficient for the jth element at the ith reference sec-
tion, and ybi j is the corresponding bed elevation.

The water surface elevation YL-1 which satisfies

Eq. E.1 is found by a Newton-Raphson iterative compu-
tation; once the proper value is found (usually in
less than ten iterations) the water surface elevation
and the energy slope are stored, and the entire com-
putation repeated at successive upstream sections.

The above procedure establishes the water
surface elevations and energy slope for a given dis-
charge Q. Assuming that the Manning equation can be
written for each element using the overall energy
slope at section i, the longitudinal velocity in
each element may be estimated as

i 0 1.49
i:3 n. .
1,]

(y; - b, (E.3)

2/3 Q.
L -
It must be emphasized that the velocities

estimated by Eq. E.3 are no more valid than the rough-
ness estimates n, 5 An estimate of the cross-sec-

tional average Manning coefficient may be based on
experience and methods described by Barnes (1967).
But transverse variations of depth in Eq. E.3 do not
fully account for observed velocity distributions;
transverse variations in bed material size and bed
forms in alluvial channels, and bank roughness all
contribute to an apparent transverse variation of
Manning's coefficient. Nonetheless, there is no basis
for a computation of this transverse variation, which
must therefore be estimated based on the engineer's
experience and knowledge of typical transverse veloc-
ity distributions. As a first approximation, the
estimated cross-sectional average roughness should be
decreased slightly in the center of the stream, and
increased slightly near the banks.

Stream tube dimensioning by graphical integration. At
each reference section 1 the transverse variations
of depth and velocity at the desired discharge must be
available either from direct measurements or from an
estimate such as that described above. The depth h,
velocity u, and the partial discharge hu, are all
plotted versus the transverse position z referenced
from the left bank (see Fig. E.2). The cumulative
partial discharge, defined as

B A s

e e d—————.



(1.32)

is then obtained by graphical integration (planimeter-
ing) of the partial discharge curve. Since the total
discharge at each reference section 1 may not exact-
ly equal the assumed discharge Q, denote the dis-
charge at ecach reference section as

B
Q; = [ hudz
0

(E.4})

The number of stream tubes, and their individual
widths or discharges, must be chosen for the furthest
upstream reference section. If the dispersion process
to be modeled is expected to occur over the entire
cross section, it is usually best to use tubes of
equal discharge in each., If, on the other hand, the
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Fig. E.2. Definition sketch for dimensioning of

stream tubes.

dispersion is expected to take place primarily near
one bank, it is best to use tubes of smaller discharge
(narrower width) in that region. The cumulative par-
tial discharge at the right hand boundary of each cho-
sen stream tube J 1is denoted by Q- The following

procedure is then followed at each reference section
i: (see Fig. E.2)

a) Compute the cumulative partial discharge at
the right hand boundary of each tube J at reference
section i as
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b) Locate the right hand boundary of cach tube
J at reference section i hy entering the cumulative
partial discharge curve for that scction with a; g

widths B. by subtraction.

compute the stream tube i
"

c¢) Estimate the appropriate stream tube velocity

u for each tube using the transverse velocity dis-

i,J
tribution already plotted.

d)
tube J

Compute the required depth for cach stream
as

1
B0 5 (44 3 = %.5)

where (qi 3 =Gy J-l) is simply the desired dis-

charge in tube J.

e) Adjust the velocity in cach stream tube 50
as to obtain the desired total discharpe:

G N R
i,J 5o E ks
J
The computation outlined above is best done by hand,

since it relies upon the user's judgment as to the
appropriate wvelocity to be assigned to each streum
tube. Note that step d) requires a computation of
stream tube depth, ensuring that the discrete depths
and velocities satisfy the continuous cumulative par-
tial discharge curve at the tube boundarics. Depths
thus computed must always be checked apainst the mea-
sured depths falling within that stream tube,  The
final velocity adjustment e) is required to ensure
that continuity is satisfied in cach stream tube as
well as between overall refercnce scctions.

Once the stream tube dimensions and velocitios
have been established at the reference scotions, the
tube depths and widths are established at the compu-
tational points by linear interpolation hetween ref-
erence sections. Then tube velocitics are determined
by dividing the desired tube discharge by the inter-
polated tube area, thus ensuring that continuity is
satisfied.
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space configuration in a stream of any geometry with non-
uniform steady flow. Problems of numerical instability
and damping in the convective stage of the computation
are avoided through the use of a half-implicit and half-
explicit second order differencing scheme for the space
derivative. The result is a model which is uncondi-
tionally stable with accuracy not dependent on the time
and distance steps.

The triangular-channel tests performed indicate that
the transverse diffusivity is constant within a cross
section. This suggests an interaction between bed shear
and transverse shear. The applicability of the model is
demonstrated through simulation of dispersion experiments
for the Missouri River and Clinch River.
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