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ABSTRACT 

The structural analysis of area-time hydrologic process of monthly precipitation is based on the concept 
that these processes are composed of deterministic components specified by periodic parameters and a stationary 
stochastic component, with the coefficients of the periodic parameters fol lowing regional trends. 

Sets of monthly precipitation series at stations within two regions are used as examples to demonstrate 
the structural composition. Region I, located in eastern North Dakota, South Dakota, and Minnesota has 41 
monthly precipitation stations; Region II, located in eastern Nebraska has 29 monthly precipitation stations. 
Both have such precipitation characteristics so that the above concept of structural analysis may be incorpor­
ated. 

Mathematical models for the periodicity and trends in parameters are inferred, with five regional con­
stants and three regression coefficients for each of the t wo regions. When the periodicity and regional trends 
in parameters are removed, the stationary stochastic components of monthly precipitation series are found to be 
approximately t ime independent processes. In addition they follow closely the identical three-parameter gamma 
probability distribution. The independent stationary stochastic components of monthly precipitation are highly 
cross correlated, with the lag-zero cross correlation coefficient found to be primarily a function of the in­
terstation distance. This correlation coefficient may be more generally specified as a function of the sta­
tions location within the reiion, the interstation distance, the azimuth of the straight line connecting the 
stations, and the time of the year. 

The developed methodology permits the generation of new samples consisting of a set of time series for 
a region, either at the observed station points or at any new grid of points. 
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CHAPTER I 

INTRODUCTION 

This introductory chapter describes the approach 
used in studying the regional extraction of infor­
mation on various hydrologic parameters and in de­
scribing the hydrologic processes, particularly the 
area-time properties of monthly precipitation. The 
objectives of this study are defined. Also as an in­
troduction to subsequent chapters, the procedures used 
in the investigations are outlined and the related 
contributions in literature are cited. 

1.1. Basic Approach for Regional Extraction of 
Information on Hydrologic Parameters . The basic geo­
physical random processes found in nature are four­
dimensional space-time processes, x{x,y,z,t} ; x, y, 
z are the space coordinates of any point, and t is 
the time. When a surface (i.e., area, region, river 
basin) is considered, the process becomes an area-time 
process, x{x,y,t; Zd} ; zd is well define~ for the 
surface either as a constant or as a funct~on of x 
and y . A line-time process is represented by x{x,t; 
Ydi Zdl ; Yd and Zd are functions only of x . Fi­
nally, the point-time process is defined as X{t; . xd, 
Yd. Zd} , with the precise coordinates of the po~nt, 
xd, Yd' 1d · 

Statistical parameters, which are usually used to 
describe the point-time, line-time, area-time, and 
space-time hydrologic processes and which must be es­
timated from the data, include the following parame­
ters based on moments: mean, variance (standard devi­
ation), coefficient of variation, autocorrelation co­
efficients, skewness and kurtosis coefficients, the 
amplitudes and phases of the harmonics of periodic pa­
ramet·ers, the lag cross correlation coefficients, etc . 
The regression coefficient s of polynomials used to de­
scribe the trends in these parameters must also be es­
timated from data. The classical approach used in ob­
serving natural multi-dimensional processes is to de­
fine t he space by a set of points and to observe the 
time varying processes at these points. The processes 
are then analyzed as a set of point-time processes. 
If the individual point-time processes are observed.at 
discrete times, or are averaged or totaled over t~me 
intervals, instead of being recorded continuously, 
then the variable values are available at a set of 
points and at a set of discrete times or time inter­
vals. The continuous processes have then been approx­
imated by N discrete observations in time for each 
of t he M discrete points. For example, in the case 
of the area-time processes, the M regional stations 
(points) and the N time intervals result in a total 
of MN observations. 

Hydrologic area-time processes are usually depen­
dent both in area and in time. Thus a dependent area­
time process with a total of MN ~bs~rvatio~s has in­
formation on population character~st~cs eq~valent.to 
an effective number of points, M~M , and an effect1ve 
sample size, N~N, of an equivalent area-time stocha~­
tic process which is independent both in area and 1n 
time. Since the product Me Ne is usually much smal l ­
er than MN , the station-time approach to study the 
area-time dependent hydrologic continuous processes 
(such as the classical station-year approach in hydro­
logy) has much less information than the product MN 
for independent processes. However, it should be not­
ed that Me Ne is usually greater than N . 

Two among several problems may be relevant in hy­
drologic investigations of area-time processes: 

(1) To improve the reliability of estimated hy­
drologic parameters at a given i-th point of observa­
tion by using all observations at M points, including 
the point of interest . The basic hypothesis is that 
the time series data of M-1 points around the given 
i-th point have additional information which can im­
prove the estimates of models and parameters of the 
i-th point-time series beyond that information con­
tained only in the N observations at that point. 

(2) To estimate the basic hydrologic parameters 
of time series at m points other than the observed 
M points, with these m points being inside or very 
close to the area of the M points. This is equiva­
lent to transferring information inside an area from 
the M points with observed time series to the m new 
points having no observations. 

The problems of improving the reliability in es­
timates of models and parameters at given points are 
numerous for the line-time, area-time, and space-time 
processes. The case of area-time processes is used in 
this study as an example of investigating the improve­
ment of model and parameter estimations. This is done 
because a great many hydrologic stochastic processes 
are referred to an area (such as river basin, region, 
lake or reservoir surface, infiltration surface, etc). 
Precipitation, evaporation, effective precipit ation 
(precipitation minus evaporation), unit area runoff, 
infiltration, unit area erosion, temperature, snow 
depth, unit area snow melt, and other simila: vari­
ables are typical area-time hydrologic stochast1c pro­
cesses. The monthly random area-time precipitation 
process is used as a representativ~ .pro~ess. for the 
further investigation. Because prec1p1tat~on 1s a pe­
riodic-stochastic time process for time units of less 
than one year, the monthly discr ete time series of 
precipitation at M points in a region ~rovide bo~h 
an example and testing data for the follow1ng analysts. 

The problems studied are now defined as follows: 

(1) To determine the best method for esti~ting 
the parameters of x{t; Xd, Yd• zd} process, the pre­
mise is that a set of point-time series, x{xi, Yi• t; 
Zd} , i • 1,2, •.. ,M, has more information than a par­
ticular point-time series, x{t; xd• Yd• Zd} · There­
fore, estimates of the parameters of x{t; Xd, Yd. Zd} 
using all xfx1, Yi· t; zd} observed sampl~s sh~uld 
be more reliable (unbiased, and more effic1ent, 1.e. 
having lower sampling variances), than using only the 
observed sample of the X{t; xd• Yd• Zd} point-time 
process. 

(2) The pr~mise is that the estimates of parame­
ters at a set of points, of the process xlxj~ Yj • t; 
zd} , with j=l,2, ..• ,M, of the general area-t1me pro­
cess x{x, y, t; zd} , by using the observed data of 
individual point-time series, x{xi• Yi• t; Zd}. , i=~, 
2, . .. ,M, may or may not represent the same po1nts 1n 
the area defined. 

The underlying assumption for the solution of the 
above two problems is that the mathematical models 



used to describe approximately the individual point­
time processes are the same for all M(or M+m) point­
time processes. However, their parameters vary over 
the area with a well defined trend which may be de­
scribed by functions. In general, this is valid for 
any point in the area defined by the M observational 
points . In other words, the mathematical description 
models, and their parameters , of all periodic-stochas­
tic point-time processes in the area are jointly in­
ferred by using all data of the M available point­
time series. 

A classical concept in climatology and hydrology 
is the concept of regional homogeneity or non-homoge­
neity. The usual understanding of this concept is that 
various basic parameters change only slightly over a 
region; thus the region can be considered homogeneous 
for that parameter and for a given climatologic or hy­
drologic random variable. Since all parameters of any 
random process continuously change to some extent 
along a line, in an area, or in a space. the homogene­
ity would become an objective concept only if the 
rates of change, 3v/ 3x, 3v/3y, and 3v/3z , of a pa­
rameter v , are prescribed in advance as to the rates 
of change tolerable within the definition of homogene­
ity. Integrated over the range of x, y , or z , these 
rates would give the limits of parameter fluctuations 
along a line, across an area, or over a space, for 
which the term homogeneity could be used. 

The approach to be used in this study does not 
divide regions into hydrologically or c l imatologically 
homogeneous or non-homogeneous regions. It does, how­
ever, divide the regions into those for which simple 
first or second-order polynomical functions can fit 
well the areal changes in the parameters studied, and 
those which have large changes so that higher-order 
orthogonal polynomials (the third, the fourth and 
higher-order polynomials) must be used to fit well the 
regional variation of the parameters studied. UsuallY­
the gently rolling and flat continental areas will 
have a regional change of parameters which may be well 
described by the first-order (small areas) and the 
second-order polynomials (large areas). A proper sta­
tistical inference must be made to support any conclu­
sion concerning the goodness of fit. Highly rolling 
and mountainous terrains would require third or higher 
order polynomials. Because an increase in the order 
of the polynomial requires more points for an accurate 
estimate of a larger number of polynomial coefficient~ 
the accuracy of coefficients estimates usually de­
creases with an increase of the polynomial order. This 
is true because usually the number of polynomial coef­
ficients increases and the number of observation 
points decreases with the increase of orographic com­
plexity. When this complexity is very large, the idea 
of determining a deterministic regional trend surface 
for the parameters may become untenable because of the 
low accuracy in the estimation of the polynomial coef­
ficients. A change in the approach may then be neces­
sary by using another method of transferring the in­
formation on parameters from the (M-1) - points to the 
i-th point, or from the M points of observations to 
m points inside the same area which have none or 
a limited number of observations. 

All hydrologic parameters may be assumed either 
to follow a deterministic. periodic time process with 
the periods equal to known astronomical cycles or to 
be constants in time (properties of stationary pro­
cesses of a given order}. However, both the average 
values of these periodic parameters and the coeffi­
cients of their periodic functions fol low determinis­
tic trend functions. 
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The regional extraction of information concerning 
hydrologic parameters offers the following advantages: 

(1) The mathematical description models of time 
series structure are more adequate when developed from 
and tested on a large set of point-time series; 

(2) The regional estimation of time series pa­
rameters gives more reliable estimates; 

(3) The models and parameters can be obtained at 
all points of interest, rather than only at the points 
of observations, which are usually selected on the ba­
sis of various convenience factors; 

(4) The future points of interest for the area­
time hydrologic processes may not be known at the pre­
sent time; however, the reliable estimation methods 
using regional extraction of information enable the 
future reconstruction of both models and parameters of 
the time series at these points of inter est; 

(S) Tho study of the regional extent of extreme 
events, such as floods and droughts, may be made much 
simpler and more accurate if related to a systematic 
grid of points, from either the analytical or the data 
generation methods of solution, than if related only 
to points of the observed time series; 

(6) The use of regional extraction of informa­
tion will result in a more accurate generation of a 
set of point-time series, both at the observed and at 
any new grid of points . 

In cases for which either the use of the historic 
(observed) discrete point-time series, or the use of 
analytical methods to solve problems cannot yield re­
liable results for probability related problems , the 
data generation method (Monte Carlo or experimental 
statistical method) may be the only approach for find­
ing reliable answers. This approach would then con­
sist of three stages: (a) the regional extraction of 
information for models and parameters; (b) the genera­
tion of a set of samples of a given size at a set of 
points, either at the observed points or at any new 
grid of points; and (c) the use of these generated 
samples for finding the area-time properties of random 
variables related to the problems being studied (such 
as finding the most reliable characteristics of re­
gional droughts). However, the studies of this paper 
are limited to the first subject , namely the regional 
extraction of information. This is a prerequisite for 
the reliable solutions to the latter two subjects. 

Two approaches appear feasible for the joint re­
gional estimation of parameters at a set of points: 
(a) by fitting a trend function through the set of pa­
rameter estimates of individual point-time series in 
such a way that the deviations between the function 
and the individual estimates may be inferred to be on­
ly the sampling variations, with the trend function 
fitted by some appropriate technique; and (b) by de­
veloping procedures of joint estimation of parameters 
at the selected points using all the data from a set 
of observed points, and without the fitting of trend 
functions. The first approach may be divided into two 
alternatives: the use of equal weights for all points 
in a least-square fitting procedure for the selected 
trend functions; and the use of different weights for 
the point estimates, because of unequal variances of 
the point estimates. 

The development of fast digital computers pres­
ents a relatively economical approach to the regional 



extraction of information on hydrologic parameters. An 
optimum is sought between the total available informa­
tion in data, the reliability (accuracy, efficiency) 
in the extracted information, and the cost of extrac­
tion. Computers have permitted the use of much more 
sophisticated statistical methods in estimating models 
and their parameters than the precomputer computation­
al devices permitted. 

The underlying approach for investigations is il­
lustrated by the following example: the precipitation 
of a region is measured by rain gages at a set of 
points, with the observations totaled into monthly 
time series. The study is concerned with the regional 
variation of the basic parameters of these monthly 
precipitation series, as deterministic regional popu­
lation properties, and the annual periodicity in many 
of the parameters of the time series. Once the deter­
ministic models of space and time variations have been 
inferred as mathematical functions with estimated co­
efficients, these deterministic variations can be re­
moved from the series, with the remaining stochastic 
components of monthly series well approximated by a 
second-order or higher-order stationary stochastic 
proce$S. The particular investigation is related to 
the regional dependence among the standardized, ap­
proximately independent, second-order stationary sto­
chastic variables of monthly precipitation. Because 
these variables are standardized, and their higher­
order moments and boundaries are approximately equal 
for all months, they may have the same probability 
distribution and be mutually dependent but identically 
distributed random variables. It is expected that the 
correlation coefficients between the pairs of these 
variables would follow a well defined decay function 
dependent on the distance, in addition to occasionally 
being dependent on the orientation, season, and posi­
tion of the pairs of stations. 

This study is further directed toward demonstrat­
ing the application of the simplified, but appropriat~ 
regional models to two regions having a relatively 
small rate of change in parameters with longitude and 
latitude. A comparison of the basic statistics for the 
stochastic variables of the two regions is made to 
demonstrate that only sampling variations are involved 
in the distribution characteristics for these stan­
dardized, approximately independent, identical ly dis­
tributed stationary stochastic components of monthly 
precipitation series . 

1. 2. General Obj ectives of Investigations on Re­
gional Extraction of Information. One of the general 
objectives of these investigations relates to those 
water resources problems which depend on both the area 
and the time characteristics of the problem. Such a 
problem is the evaluation of the area-time probabilis­
tic characteristics of hydrologi c droughts . For 
droughts many descriptors are relevant, particularly 
such properties as the areal extent, total water defi­
cit , duration, maximum unit-time deficit, and shape of 
uninterrupted water deficiencies. To find the joint 
probability distribution of a set of drought descrip­
tors, for series samples of a given size, and consid­
ering all descriptors as random variables, the most 
reliable regional information for mathematical models 
and parameters of the drought defining hydrologic ran­
dom variables should be extracted·. The joint distri­
bution of drought descriptors cannot be more accurate 
than the accuracy in estimating the mathematical mod­
els and their parameters in the structural analysis of 
this area-time hydrologic stochastic process. 
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Atmospheric circulation determines the basic char­
acteristics of precipitation and evaporation in a re­
gion. In general, the further a region is from the 
oceanic sources of moisture and the smaller the oro­
graphic effect on precipitation and evaporation, the 
smaller is the total annual precipitation. In cases of 
small precipitation, evaporation usually takes a large 
portion of the precipitation, which results in a 
smaller runoff. This situation is accompanied by a 
l arger variability of precipitation and runoff, both 
across the region and in time. 

Because of definite climatic patterns and river 
basin characteristics , it can be expected that the ba­
sic hydrologic parameters exhibit some deterministic 
regional characteristics. At present the regional 
variations of hydrologic properties are mainly deter­
mined statistically from the observed data . In the fu­
ture one should expect other inputs, such as those re­
sulting from studies on atmospheric circulation, pat­
terns of deposition of moisture, and on evaporation. 

In the absence of solid physical information on 
t he regional variation of the basic hydrologic parame­
ters concerning precipitation, another objective of 
this investigation is to utilize as much as possible 
the statistical methods of extracting the maximum in­
formation on the regional variation of hydrologic pa­
rameters. This variat ion can be expected to be in the 
form of a deterministic regional trend surface func­
tion with an increase of its complexity as the area 
increases. The distance from the sources of moisture 
may change significantly, and the patterns of atmo­
spheric circulation and orographic effects may also 
change as the area increases. It can be expected that 
the goodness of fit of a hypothesized mathematical 
trend surface function to point estimates of a hydro­
logic parameter will decrease , on the average, as the 
size of the region increases. 

A criticism can be made that the efforts in vari­
ous water resources analyses have been directed more 
towards understanding the structural composition of 
hydrologic point-time processes than towards under­
standing the line-time, area-time, and space-time pro­
cesses. However, an expansion of the interrelated wa­
ter resource uses across a region, the regional varia­
tions of the basic hydrologic parameters deserve as 
much attention as the analysis of their time proper­
ties . 

Therefore, the objective of this paper is to 
study the regional properties of hydrologic parameters 
by using trend functions fitted to their point esti­
mates. The general joint estimates of a parameter at 
a set of points in a region by techniques other than 
by fitting trend functions are not considered in this 
paper. 

1.3. Procedures Used in Investi ations. In gen­
eral cases of area-time y rologic stochastic process­
es, the hydrologic parameters usually vary ov er the 
basic astronomical time periods in a complex periodic 
process, and across an area in a complex deterministic 
trend surface. Fitting the periodic changes in param­
eters by a limited number of harmonics in the Fourier 
anal ysi s of periodic processes and the area variation 
in parameters by a trend function, usually as a poly­
nomial with a limited number of terms , poses the prob­
l em of determining t he cut-off points as to t he number 
of harmonics and the number of polynomial terms . When 
properties of underlying processes are simple, such as 



in the case of t ime independent, but area dependent, 
multivariate normal processes , or both time and area 
dependent multivariate normal processes with relative­
ly simple time and area dependence mode l s, the proper 
statistical inference techniques can be designed to 
decide upon these cut-off points. However, the ana­
lytical approach for designing these inference tech­
niques for more complex processes may itself be of 
questionable reliability. Therefore, the dilemma of 
selecting the cut-off points may be resolved in such 
a way that the individual harmonics and the individual 
polynomial terms beyond the cut-off point mainly rep­
resent sampling errors. The neglected harmonics and 
polynomial terms should then contribute only relative­
ly small percentages to the explanation of either the 
total periodic variation or the total regional deter­
ministic variat ion in estimates of the parameter under 
consideration. 

A significant part of periodic estimates of a pa­
ramet er may represent sampling errors . This can be 
demonstrated in estimating parameters by increasing 
the sample size in steps, and each time comparing the 
deviations from each smooth fitted periodic function 
having a limited number of harmonics. The variance of 
these deviations decreases with an increase of the 
sample size N . The eventual convergence of this vari­
ance to approximately zero , as N goes to infinity, 
justifies the use of a small number of harmonics for 
the populat ion periodic function of a parameter. Sim­
i larly, the variance of deviations of the point esti­
mates of a parameter about fitted polynomials, having 
a l i mited number of terms, decreases with an increase 
of t he sample size N . This variance may also be as­
sumed to converge to approximately zero when N goes 
to infinity, justifying the use of a deterministic 
polynomial function with a small number of terms, as a 
good approximation to the regional population trend 
surface . 

Periodic movements and regional surface trends of 
various hydrologic parameters may be close in many 
cases to be proportional, or simply related, to the 
periodicity and trend surface functions of the mean. 
This property may significantly decrease t~e number of 
parameters and coefficients which must be estimated. 
A simplification in the description of the area-time 
monthly precipitation process can be accomplished in 
five ways: (a) by neglecting the harmonics of periodic 
parameters having relatively small amplitudes; (b) by 
neglecting the small magnitude terms, with relatively 
small regression coefficients, in deterministic re­
gional polynomial trends; (c) by using the proportion­
ality, or simple relations existing between the peri­
odic functions of basic parameters; (d) by using the 
proportionality, or simple relations , existing between 
the trend surface functions of basic parameters; and 
(e) by properly inferring that some parameters and co­
efficients are not significantly different from a con­
stant either over the time period of 12 months or over 
the region under study. These will be the major pro­
cedures used in this paper to economize on the total 
number of parameters and/or coefficients to be esti­
mated for the area-time monthly precipitation process. 

1.4. Regional Hydrologic Information. The region­
alizing of.parameters of a random phenomenon has in­
terested hydrologists for a long time. The drawing of 
smoothed isolines for a set of point estimates of a 
parameter is equivalent to fitting a complex trend 
surface. However, this approach does not use a test of 
goodness of fit of these smoothed isolines to the es­
timated values. Assigning weights to point estimates, 
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in determining the overall regional averages of param­
eters, has also been of constant interest to hydrolo­
gists . Recently, Amorocho and Brandstetter [1] studied 
the problem of estimating regional description parame­
ters based on the density of a network of P,recipita­
tion stations . Alternative methods of weighting the 
estimates of parameters of precipitation stations on 
irregularly spaced networks were developed by Whitmore, 
Van Eeden, and Harvey [2]. Several computer approaches 
to the computation of mean areal depth of precipita­
tion are given by Akin [3] using available historic 
records. Solomon, Denouviller, Chart, Wooley, and 
Cadou (4] employ a technique whereby a dense square 
grid is placed over a region and grid points assigned 
within local boundaries previously selected. Once the 
grid is assigned, various hydrologic parameters can be 
rapidly determined for the area by the use of a com­
puter. 

Instead of using the subjective approach of 
smoothing the interpo l ated isolines between a set of 
point estimates of a parameter, an objective approach 
is preferred. Fitting the trend surface functions and 
testing the goodness of fit represents an objective 
approach to regional estimation of hydrologic parame­
ters. When the polynomials are used, and the procedure 
is to fit and test, in a sequence, the trends of the 
first-, second-, or higher-order terms, the approach 
is objective only if the testing criteria are pre­
scribed. 

The problem of fitting the trend functions to the 
line, area and space variations of basic hydrologic 
parameters is also very old. In addition to the mean 
areal depth of precipitation, the manner in which the 
mean of a point-time series changes over an area has 
been of continuous interest. This type of problem is 
currently found in nearly all geophysical disciplines. 
In geology, the character of the earth's crust is 
studied by surface mapping, and estimates of the 
thickness of ore deposits and similar thicknesses are 
made. Krumbein (5] has used irregularly spaced sam­
pling points to study the polynomial functions of best 
fit for use as trend surfaces . Chidley and Keys (6] 
have also investigated the use of trend surface func­
tions. Mandelbaum (7 ) provides a criterion of fitting 
these functions, based on the step-by-step variation 
in the explained variance by the fitted polynomials 
with an increase of the number of polynomial terms. 
Trend surfaces have been used in the extension of 
rainfall records by Unwin (8]. In the case of gravita­
tional data, Simpson [9] points out that '7here is 
some question whether or not the removal of regional 
effects from gravity may be effectively accomplished 
by the method of least squares . One of the basic as­
sumptions in the application is that the regional be a 
relatively low order effect." Oldham and Sutherland 
(10] have looked for regional trends in experimental 
data using orthogonal polynomials . The latter refers 
to equal spaced sampling points on a cartesian grid. 
These authors suggest that no unique solution should 
be expected for the terminology " ... 'regional effect' 
is in itself ambiguous." In discussing mapped data 
analyzed into "trend" and "residuals" , Grant (11] re­
inforces this position, and points out that, based on 
labor and cost considerations , polynomial fitting has 
objective advantages over smoothing and gridding meth­
ods. 

The dependence among the precipitation point-time 
series in a region is usually studied by using the 
linear correlation for these series taken pairwise . 
Then the correlation coefficients are expected to be 



related to the distance and the azimuth angle of ori­
entation between s tations . Sometimes, all t hese pair­
wise correlation coefficients of the M precipitation 
stations i n a region are presented in the form of an 
MxM squar e correl ation matrix. Hutchinson [12] uses 
a second-order polynomial for fitting the decay of the 
zero lag cross-correlation coefficients with the in­
terstation distance . Huff and Shipp [13] present areal 
correlation coefficient s for storm, monthly and sea­
sonal rainfall, with no mathematical functional rela­
t ions sought using the distance or azimuth. Steinitz , 
Huss, ~~nes, and Alper son (14), in evaluating the op­
t imum station network size for pressure and wi nd 
fields, arrive at a nonlinear exponential decay func­
t ion , p=A exp(Bd) + 1-A , wi th p , the zero lag cross­
correlation coefficient between the ser ies of two sta­
t ions, A and B , coefficients t o be estimated from 
the data, and d , the interstation distance. Alexeyev 
[15} uses a similar correlation mathematical model in 
the foTm p= l /(l+Ad) . This relationship consists of 
the first two terms i n the power expansion of the pre­
vious model. Hendrick and Comer [16] evaluated the 
space correlation for daily precipitation in Ver mont 
by using the model p=A+Bd-dC sin (220° - 2~) , with 
A , B and C , coefficients to be es timated, and p , 
d and ~ , the correlation coefficient, dist ance and 
azimuth , respectively. Cornish, Hill, and Evans [17} 
used the z-transform for p , and consider ed a linear 
plus a sinusoidal regression with distance and time of 
the year for the precipitation in Australia. Caffey 
[18] evaluated the correlation patterns for annual 
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prec~pitation serie~ in the United States by applying 
a we1ghted exponent1al decay function for p as a 
function of the interstation dis t ance and the azimuth 
angle . 

Since one objective of this study is to solve the 
problems of estimating regional drought characteris­
tics in probabi lity t erms , a brief review of refer­
ences r elated to the regional aspects of drought is 
given here. The eval uat ion of hazards caused by l arge 
continental droughts has long been of i nterest. 
Tannehill [19) and Campbell (20] made early studies of 
the cont inental drought phenomenon. The former gives a 
vivid history of the early United States in its f ight 
to endure droughts, while the l atter discusses a simi­
lar situation i n Australia . Yevj evich, Saldarriaga, 
and Millan [21 , 22, 23) present the concept of large 
continental drought in a stochastic hydrologic settin& 
while Barger and Thorn [24), and Hcrshfield [25] showed 
how water shortages affected local far mers . The re­
gional drought aspects have been evaluated subjective­
ly in Australia by Foley [26] in 1957 and again in a 
more recent symposium, and by Maher [27] in 1967 . Some 
rigor is needed in these methods for the objective 
definition and evaluation of droughts . 

Agreement continues to persist that (i) drought 
must be defined in terms of water use; (ii) precipita­
tion is one of the best single drought determining 
random processes; and (iii) a probabilistic area-time 
approach is needed for object ive drought investigation 
and evaluation. 



CHAPTER II 

AREA~TIME MATHEMATICAL MODELS 
FOR PRECIPITATION PARAMETERS 

This chapter presents the mathematical models for 
the structure of both the point-time series and the 
areal variation of basic parameters combined as a 
joint area-time structure necessary to reduce the M 
regional point-time series of monthly precipitation to 
M standardized, identically distributed, second-order 
or third-order stationary stochastic variables, inde­
pend.ent in sequence but dependent among themselves. 
These stochastic components of the precipitation time 
series are then cross correlated for the study of the 
areal dependence, and regional models are investigated 
to determine the relationship of the simple lag~zero 
cross correlation coefficients with distance between 
the corresponding pairs of stations. 

2. 1 . Mathematic Model for Time Structure of 
Monthly Precipitation. Define the random variable val­
ues Xp , as the precipitation for a given station 
i (i"'l,Z, . .. ,M) , with M the number of stations stud­
ied in a region, p=l,2, ... ,n, the sequence of years, 
n the sample size expressed in years , t=l , 2, ... ,w, 
the sequence of intervals wi thin the year, and w the 
number of i ntervals of discrete series in a year (for 
the monthly precipitation, w=l2) . Also define tp , t 
as the standardized random variable with the period1c­
ity of the mean and the standard deviation removed 
from the station series as 

e: p , T 

X - 11 p, t T 

(1 
T 

2.1 

in which ~, is the periodic mean and cr, is the pe~ 
riodic s t andard deviation for the station series over 
the interval w within the year. 

The new variable e:p,T may be a second-ord~r or 
third~order stationary random process; however, 1n the 
case of stationarity, it is either independent or de­
pendent in sequence. Generally, the variable ~.t may 
have periodicities in the autocorrelation coefficients 
and in the third- and fourth-order parameters . The 
general autoregressive linear model with periodic sec­
ond-order parameters may be expressed as 

e: p,T 

with S m,T 

m 
L 

k=l 
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where t=max(i,j) , m is the order of the model, cxk , 
is the k-th periodic autore~essive coefficient of 
e:p T which is a function of the periodic autocorrela~ 
nbn coefficients Pk , , and ~p, t is a second-order 
stationary and independent stochastic variable . 

The periodic parameters 11t , o, , and Otk t in 
Eqs. 2.1 and 2. 2 are symbolized by v, . The mathemat­
ical description of the periodic variation of vT is 
represented in the Fourier series analysis by 

2. 3 
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in which v is the average value of v, , C.(v) the 
amplitude, ej (v) the phase, j indexes theJsequence 
of harmonics {j=l,2, .. . ,h) , and h(v) denotes the 
total number of significant harmonics to be inferred, 
while A=2~/w is the basic frequency of the periodic 
process. 

The general mathematical model of the time st ruc­
ture of xp , t then becomes 

h(l1) 
11 + ~ 

j=l 
C .(~) cos[Ajt+e.(~) ] + 

J J 

e: + s ; I 
p , t-k m, t p,T ( 

2.4 

i n which the arguments ~ , o , S and exk for Cj 
and ej refer to parameters i n the Fourier series de­
scriptlon of the periodicity with h(~) , h(o) and 
h(cxk) the corresponding numbers of significant har­
monics . 

An assumption may be made that each periodic pa­
rameter has the same number of significant harmonics 
with the sel ected value of h so that h<<7 . This is 
equival ent to stating that the same harmonics are 
present in each parameter, but with different ampli­
tudes and phases. This may be justified if it can be 
physically inferred that the precipitation producing 
factors induce the same type of harmonics . Based on 
statistical inference techniques used this may not be 
true; however, it may be true for the effects of the 
physical process in generating precipitation . If a 
different number and different harmonics are inferred 
as significant, the h value becomes h(~) , h(o) and 
h(exk)'s , as shown in Eq. 2.4 . 

When Eq. 2.4 is applied to monthly precipitation 
with w=l2 , the maximum number of harmonics for all 
periodic parameters is w/2 or 6 . However, it is shown 
by various studies that for a monthly precipitation 
process, one, t wo, or a maximum of three harmonics are 
sufficient for each periodic parameter. Furthermore, 
other simplifications may be introduced and supported 
by regional tests. 

A simple model for the monthly precipitation se­
ries could be obtained under the following conditions: 

(a) Only the first harmonic having a period of 12 
mont hs has an amplitude significantly greater than for 
the non-periodic process; 

(b) The autocorrelation coefficients for the pre­
cipitation series in general are not periodic, and for 
monthly series the cxk values, especially a1 , are not 
significantl y different from zero, so that exk 1 =0 and 
Sm, t=l , with Ep, ,=~p,T . ' 



The simplified model , with the periodic 
o1 , and with the above hypotheses of time 
structure for monthly precipitat ion, is 

x ~ + c1 (~) cos [AT+8
1

(u) ] 
p, T 

+ {o + c1 (o) cos[AT +01 (o)]} ~p.• 

IJ 1 and 
series 
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The . ~P . T series is then an independent, standardized, 
stat~onary random variable at any station. When ~p -
is computed from Xp 1 by Eq. 2.5, the subscript p;~ 
may be r~placed by 'i ; that i s ~p . r by ~i , with 
i = w(p-1) + 1 . 

2. 2. Regional Structural ~todels for Basic Hydro­
logic Parameters. Let the hypothesis be that the re­
gional variation of any parameter v can be obtai ned 
from the ~1 point estimates vi (i=l, 2, . ..• ~1) , and is 
well described in the form of a trend surface f unction 

v = 'I'(X,Y) 2 .6 

with X and Y the coordinates (latitude and longi­
tude) of point positions. In sampling the populati on 
function 'I'(X,Y) by a limited number of station points 
and a l imit ed number of observations for each point 
duri ng n years, t he estimate of both the type of t he 
function ~(X,Y) and its coefficients by a sampl e fit­
t ed surface f(X , Y) requires a r egression equation 
such as 

v = f (X, Y) + 1; 2 . 7 

in ll'hich l; represents the sampling deviations and the 
di fferences between the true regional surface function 
and the fitted function. The larger the number of 
points and the l arger the sampl e size N=nw , t he 
smaller should be the variance of ~ , and the better 
arc the estimat es of the function and its parameters . 
By accepting f(X, Y) as the best estimate of Y(X,Y) , 
and by removing t he trends in al l parameters, the ran­
dom variable ~ is contained within the range of the 
i ndividual ~p. • series . 

Because 'I'(X ,Y) is a continuous funct ion, it can 
always be expanded in a power series form. When a 
polynomial in X and Y of the order t i s selecte~ 
Eq. 2. 6 becomes 

\1 = 61 + 62 X + 6
3 

Y + 

84 x2 + 85 
2 

y + 86 XY + . + 

sk. xt • 6k+l xt-1 Y • t 
+ Sk+t Y + O(X,Y), 2.8 

with Bj , j =l,2, .. . ,k+t , being regression coeffi­
cients to be estimated by theA method of least squares 
for the regional parameter v from its m estimates 
v1 , and O(X,Y) being the r emaining expansion error . 

Under the assumption that a first-order bivariate 
regression linear trend is adequate in order to ac­
count for the major variation over the region of any 
parameter v of the monthly precipit ation process xp,,, 
Eq . 2.8 becomes a simple plane, 

2.9 

wi th O(X,Y) an error term. 

The boundaries of trend surfaces are gr eatly af­
fected by the estimates vi of those stations located 
near the edges of a region. These estimates may intro-
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duce undesirable val ues of vi at these edges , as a 
kind of distortion, when the coefficients 8j of Eqs . 
2. 8 or 2.9 are estimat ed by a least squares method. 
The proper approach in estimating the Sj coefficients 
is not only for them to be as close as possible to the 
population values but also to have a minimum of dis ­
torti on on the trend surfaces at the boundaries . To 
minimize the boundary effect s, the trend surf aces may 
be fitted t o a larger region having more stations, 
rather t han the r egion under study with M stations . 
The 8· coefficients of Eqs. 2.8 or 2.9 are then es ­
t imat ed for all stations but are applied only to the 
small interior region defined by M stations. 

To evaluate the fi t ted function ~ = f(X ,Y) of 
v = ~ (X,Y) , estimated from the v. values, the resid­
uals e· = vi-v should be invcsti~ated . The standard 
error ot the fitted v can be used for this evaluation. 
However, a r egional plot of ei values and an i nter­
pretation of isol ines of ei usually will show clusters 
of subregions wi th positive and negative ei values . 
These "cells" of posit ive and negative residuals, sep­
arated by isolines of ei=O , are the results of areal 
dependence in the ei values. Because of a very high 
correlation between the underlying stochastic station­
ary process (~i} at close point s, the estimates vi 
of any parameter v around its true function v = ~(X,Y) 

must also be areally dependent. Therefore , large 
"cells " of ei with opposite signs , which are locat ed 
in different sectors of t he region under study, may 
imply that some minor surface trends have not been 
taken int o account by the estimated func t ion v = 
f(X,Y) . The larger a region, the greater is the prob­
ability of having cells distributed r andomly over the 
entire r egion, and the smaller i s the likel ihood of 
inferring by visual inspection of the ei isolines, 
that there i s an unaccounted trend r emaining . 

To further simplify the anal ysis of regional pat ­
t erns in hydrologic paramet ers in general, and in pa­
rameters of monthly precipitation in particular, some 
other hypothes es are worth testing . Let the hypothesis 
be that the variation of the estimated point means xi 
over the region, with i=l,2 , ...• ~l, accounts for the 
variation in all ot her parameters of Eq. 2.5 such that 
the surface trends in population values of other pa­
rameters are proportional to the surface t rend in the 
population mean. Then Eq. 2.5 becomes 

X p,T IJ{l + 

~{£:. + 
IJ 

cl (JJ) 
---IJ--- cos[AT+61 (ll)] } + 

c
1 

(a) 
---,--- cos[At +S

1
(o)]} ~ , 2.10 

"' p, T 

with the ratios c1 (~)/~ , o/~ , and C1(o)/ ~ assumed 
to be the regional constants , and ~ varying as a trend 
plane 1J = 81 + 82 X + 83 Y . If the simple models of 
Eqs. 2.5 and 2 . 9 are rejected by proper statistical 
tests, then the above hypothesis for the model of Eq. 
2. 10 and the more complex models of Eqs . 2. 4 and 2.8 
can be used. The phase angles which may be assumed not 
to vary over t he region can be t ested as such. As a 
consequence, three ratios of parameters and two· param­
eters can be studied as they change over the region, 
namely: C1 (u)/u , o/ u , C1(o)/~ , el(ll) , and 61(o) . 
The hypotheses to be tested are that these three ra­
tios and two parameters are not significantly differ­
ent from regi onal constants , being subject only t o 
sampl ing variation over the region because of the l im­
ited number of points m and the limited sample size 
of n year s for the point-time series. 



This sampling variation can also be evaluated by 
observing how the isolines of these three ratios and 
two parameters vary over the region, whereas the ratio 
can be evaluated by studying its variation in compari­
son with the variation of isolines of the numerator of 
the ratio . If no marked areal trend can be rightfully 
inferred, the hypothesis can then be accepted for this 
ratio as a regional constant. Also, the comparison of 
the original statistics of the numerator of the rat io 
and the ratio itself may be useful. For example, if 
the ratio is truly a regional constant, its variance 
should be small, and much smaller when compared to the 
variance of the numerator. 

2.3. Removal of Time Periodicity and Regional 
Trends in Parameters. In order to remove both the de­
terministic per~odicity and the deterministic regional 
trends of parameters, a combined area-time structural 
analysis is needed. The basic premise is that once the 
deterministic area-time components in the parameters 
of the basic random variable of precipitation Xp T 
have been estimated (both the mathematical models and 
their coefficients) and have been removed from all the 
point-time series, a second-order stat ionary indepen­
dent area-time stochastic process would remain. When 
this is shown to be the case, then {~i } is the basic 
stochastic process to be studied. To accomplish this, 
it is first necessary to estimate a minimum set of pa­
rameters for Eqs . 2. 9 and 2.10, namely the three re­
gression coefficients of Eq . 2. 9 and the five regional 
constant parameters of Eq. 2.10. The stochastic pro­
cess {~i} can then be considered as a multivariate, 
identically distributed, stationary area-time process, 
areally dependent but time independent. In other terms, 
the discrete point series at various stations arc mu­
tually dependent, identically distributed time inde­
pendent variables. To justify this reduction to sto­
chasticity, in this simple area- time process of month­
ly precipitation, the throe main conditions must be 
satisfied: 

(a) All point ~i series are approximately stan­
dardized variables (with the expected mean of zero and 
the variance of unity); 

(b) They have approximately the same expected 
lower boundary; and 

(c) The skewness coefficients of M point-time 
series cannot be distinguished statistically from a 
const ant . 

area-time process, 
to a stationary 
are pertinent: 

(a) Test that the process is independent in time; 

(b) Test that the point-time series in the region 
are identically distributed variables; and 

(c) Tests for the type of dependence among serie~ 
with a development of the regional mathematical depen­
dence model. 

the 
the 
the 

The time independence of ~P T is tested by using 
correlograms of individual Sample time series of 
~P T variable, and the average correlogram, with 

tolerance limits for independent series drawn 
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about the expected correlograms. The hypothesis of 
identically distributed ~p T for all M points in 
the region is tested by comparing their distribution 
parameters as estimated from the observed individual M 
time series. ~~en these two basic tests show that the 
Cp, T series are time independent, ident ically distrib­
uted variables, the series are designated by Ci , with 
1• 1,2, ... ,N, and N•wn, and the i nvestigation of re­
gional dependence can be undertaken . 

The present problem is the investigation of a 
stationary area-time process, represented by M point­
time series, independent in time but dependent areal!~ 

It is usually carried out in regard to the areal de­
pendence, using the linear correlation matrix. This 
matrix is a diagonally symmetric, square matrix with 
elements ~i · and a major diagonal having al l ele­
ments equal i6 unity. The Pi j correlation coefficient 
is the simple linear lag zero correlation coefficient 
between the i-th and j-th series . 

Let di j be defined as the interstational dis­
tance between the series of the i-th and j-th station~ 
and $i i be the corresponding azimuth of the straight 
line connecting these two stations. Then 

2 2 ~ d. . ((X. -X . ) + (Y. - Y.) ) 2 . 11 
1,) ~ J ~ J 

and 

for Xi , Yi and 
for stations i 

-1[\-X·] • tan ~ 
1 J 

2.12 ~· . l,J 

Xj , .Yj , the respective coordinates 
and J 

The hypothesis is that the relationship between 
the correlation coefficients and the four paramet ers 
X , Y , d and ~ is a continuous , positive definite 
func tion of the form 

p "'!'(X,Y,d,~) 2.13 

with p any Pi,j value, and X , Y , d and $ the 
corresponding values of Xi , Yi , di j and $i j . 
The X and Y , as the longitude and iatitude of'the 
station position, imply that the relation ~·f(d,~) may 
change from one point to another inside the region. 
Generally, the simple linear correlation coefficient 
between the ~ series at stations i and j is a 
func tion of absolute position of one of the two sta­
tions, the interstation distance, and the orientation 
of the line connecting the two stations . 

The approximation of the unknown population func­
tion '!'(X,Y,d,~) is made by a selected function f(X, 
Y,d,~) with its parameters estimated from a l imited 
number of points and a time series of sampl e size N at 
each point . This results in 

p" f(X,Y,d,$) + ~ 2.14 

in which c are the deviations resulting both from the 
use of an inappropriate function, and from the sam­
pling errors in estimating its coefficients due to the 
sampling errors in the individual ri j correlat ion 
coefficients used as estimates of Pi j . The larger 
the sample size N and the larger the'number M of 
points , the smaller should be the variance of C . 

It is dif ficult to study, test, and infer the ef­
fect of the position (X,Y) on Pi j for given d and 
$ . For that purpose, much more information is needed. 
Generally, the effect of (X,Y) position is significant 



when the region is extremely uneven topographically, 
or when the precipitation over the different subre­
gions varies. However, for a t opographically homoge­
neous region, the a~s~mption that Pi

1
j is independent 

of the absolute pos1t1on seems to be justified. 

It can easily be shown that the Pi j values are 
functi~ns no~ only of the distance di ~ but also of 
the or~entat1on of the connecting strai~ht line, mea­
sured by ~i j . However, the effect of $i · in most 
cases is mucn smaller than the effect of diJ j thus 
Eq. 2. 14 can be simplified to p=f(d) only as a first 
general approximation . 

When there is some evidence that Pi j , for given 
di,j and ¢~ , j. , varies in the region with X and Y, 
proper stat1st1cal test s are needed to support the ac­
ceptance of tho hypothesis that Pi j is independent 
of absolute position. In a r egion Wl t h a very dense 
network of precipitation st ations, this hypothesis can 
be meaningfully tested by subdividing the region and 
testing whether the functions of ~(d , 9) , estimated 
for each subregion, deviate significantly among them­
selves. If tho hypothesis of Pi,j being independent 
of $i , j is advanced , then the frequency distribution 
of ri,j is tested for their cir cular dis tribution . 

For this study of the ~(d ,9) function , a definite 
relationship of particular properties is required in 
advance . The r ange of p for the function should be 
between 1 and 0 for all values of d . For d=O by 
definition p•l , and for d•~ , p should be zero , 
because for two widely spaced pr ecipitation stations, 
t he variables ti and t j should be independent. Func­
tions which satisfy these conditions are available in 
the literature. 

Several functions relating the estimated inter­
st ation correlation coefficients Pi j with the in­
t orstat ion distance di j and the azimuth ¢i j have 
been sel ected for this study. They are listed i~ Table 
2.1. Details regarding these functions are discussed 
in Chapter s 3 and 4, where the appl ication of these 
models to actual data is made. Model s I and II of Ta­
ble 2. 1 follow from the work by Caffey [18] but have 
the disadvantage that the i ntercept is not p=l for 
d•O . Model II is the first term of Model I, wi th p 
independent of the orientation between stations. Model 
III is used by Steinitz et. al. (14], and has bias in­
troduced by tho par ameter A because p converges to 
1-A as d goes to infinity, which is contrary to the 
hypothesis of p=O for d•~ . This model can be used 
despit e p converging to 1-A , because: 

(a) The limits of the region studied may be in­
sufficient to provide the l arge d values needed for 
showing how p behaves at the right extreme; 

(b) Model III admits the lower bound of p•O for 
A=l , which is the anticipated value for A when d be­
comes a large value, with 8 negative; and 

(c) The intercept of p=l for d=O is of greater 
importance than p=O for the very large values of d. 

Model IV of Table 2.1 is similar to Model III. It 
has the linear t erm Cd which could possibly give a 
negative p for large d . Whether p will be nega­
tive depends on the limits of the observed values of r 
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and d .. However, the obtained relationship o•f(d) is 
only val1d for estimating the coefficient s in the re­
lation equation within the range of the observed r 
and d . 

TABLE 2. 1 

Regional Dependence Mathematical Models for 
the Stationary St ochastic Components of 

Monthly Precipitation Series 

Model Number Function 

p = A exp (Bd + Cd cos 29 + Dd sin 
II 0 = A exp (Bd) 

III p A exp (Bd) + 1-A 

IV p A exp (Bd) + Cd + 1-A 

v p = A + 8d + Cd2 + Dd3 
+ Ed4 

+ Fd5 

VI 0 (1 + Ad)-l 

VII p = (1 + Adfn 

VIII p exp (Ad) 

IX p exp (Ad)/(1 + Bd) 

X p ( 1 + Ad)-0 . 50 

26) 

Model V is a fifth order polynomial but is in­
cluded in this study for comparative purposes . This 
model also has the property that p=A for d• O , and 
P may not be defined for d infinite. The remaining 
models fulfi l l the boundary conditions of p•l for d=O 
and p=O for d=~ . 

Model VI is a simple one-parameter function 
which lends itself to a linear transformation . Such ~ 
transformation takes the form of 

!.=l+Ad 
0 

2.15 

For d=O , p•l , and for d very large or approaching 
infinity, p approaches zero, as should be. 

Model VI I does not require the exponent n to be 
and as a result inhibits simple linearization. Model 

VIII is a simple exponential decay. It can be linear­
ized, as can Model II, but wi th one less coefficient. 
Model IX which is a combination of Models VI and VIII 
has t he advantages of the exponential decay for small 
d and the inver se relationship to d f or large d 
in cases where the exponential decay may otherwis~ 
force p to zero too rapidly. Model X forces the ex­
ponent n=O . SO of Model VII in an attempt to modify 
Model VI. 

Models of Table 2.1 repr esent the simplified re­
lations between the interstation lag-zero cross corre­
lation coefficient and the interstation distance. 
Nothing restricts d except that it is the dis tance 
between the i-th and j-th stations. A matri x of d , 
with the elements bei ng the di, j values for a given 
set of M stations, can be obtained for regions with 
existing stations, or for regions with stations speci­
fied as the intersections of a cartesian grid. In any 
case, the dimension M and elements di j determine 
the matrix of correlation coefficients through the use 
of a selected relationship, p=f(d), defining the space 
dependence of the ;i process, if p has been deter­
mined to be independent of ~ . 



CHAPTER III 

APPLICATION OF MODELS TO REGION 

A joint area-ti me model of the important regional 
parameters describing the monthly precipitation series 
over a set of points is presented in this Chapter . 
This model is designed for a region which covers parts 
of North Dakota, South Dakota, and the state of Minne­
sota . Some parameters are studied as regional con­
stants, while the others vary over the region. The 
models· of Chapter II allow the reduction of the random 
part of monthly precipitat ion into an ensemble of sta­
tionary, identically distributed stochastic variables, 
independent in time and dependent among themselves. 

The demonstration of t he application of models in 
Region I, with a large number of station series, 
starts with a reduction of the appl icable area. Appli­
cabl e st ations are limited to t hose i n a subregion 
having an area i nternal to the total area. This inter ­
nal area contains only about one-half of all stations, 
while all other stations are used only to minimize the 
bias of the model at the boundaries of the reduced 
area . 

3.1. Data Assembly for Region I . Region I was 
selected as an area having a relatively simple varia­
tion of the basic parameters. This required mild topo­
graphical variations over the region. ~lountain ranges, 
where sudden changes of precipitation parameters are 
found , were excluded from this study. 

The area was selected in such a way as to satisfy 
the criteria used in the Hydrology Data Unit of the 
Hydro logy and Water Resources Program of the Depart­
ment of Civil Engineering at Colorado Stat e Universit~ 

(1) A minimum continuous series of 40 years of 
monthly precipitation; 

(2) Allow for a change in station location dur­
ing the period of observation of less than one mile in 
horizontal direction and less than 100 feet in eleva­
tion; and 

(3) No more than three years of missing data es­
timated by using data of adjacent stations for any one 
ser ies during the period of observat ion . 

Region I in the North Central Continental United 
States covers an area of 53, 300 square miles. It lies 
between 92.50 and 100.00 degrees west longitude, and 
43.75 and 47. 75 degrees north latitude. 

Seventy-seven pr ecipitation s tati ons were select ­
ed for use in investigations, each with 40 years of 
monthly values (N•480 values) for the period 1931-197n 
The position of Region I within the U.S.A. is shown in 
Fig. 3 .1. The locations of the 77 stations are given 
in Fig. 3.2. , upper graph, with the coordinates origin 
at 100.00 degrees west l ongitude and 43. 75 degrees 
north latitude. This origin is used for many of the 
graphs which demonstrate the analysis of the regional 
distribution of parameters. Table 1 i n the Appendix 
gives the station identity number, which is identical 
to the U.S. Weather Bureau index number, station name , 
degrees west longitude, degr ees north latitude, feet 
above the mean sea level, the 40-year monthly mean and 
the 40-year monthly s tandard deviation . The index num­
ber is prefi xed wi th 21 for Minnesota, 32 for North 
Dakota, 39 for South Dakota and 47 for Wisconsin (one 
border station included). No stati on has more than 
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5.62 percent of its monthly values estimated by data 
from the adjacent stations , and 30 stations had no 
missing monthly values . Of the 36,960 monthly values , 
0.62 percent are estimated by using the normal ratio 
method, Clark and O' Connor [28). 

Fig. 3.1. Location within U.S . A. of Region I , used as 
the example for the regionalization of parameters of 
monthly precipitation series . 
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chart . ' 



An area with only 41 stations was placed internal 
to the area of the 77 stations. Figure 3. 2., lower 
graph, shows these stations, and Table 2 in Appendix 
indicates the station number and percent of area of 
the Thiessen polygons for each of the 41 stations. The 
objectives in selecting an internal area having only 
41 stations are : (1) to minimize t he boundary distor­
tions in fitting the regional trend functions for pa­
rameters, and (2) to provide a closed network for the 
outer bounds in the Thiessen polygon 'net for the 41 
stations by using the entire 77 st ations. 

General precipitation features given in Fig. 3.3, 
show the average of monthly means, xi , of the 77 sta­
tions. It changes almost linearly from the wes tern 
boundar y (1.5 inches) to the eastern border (2.5 inch­
es) , with a slight south-north decrease . The general 
standard deviation, Si , of monthl y series varies in a 
like manner, increasing from the western border (1 . 5 
inches) to the eastern border (2.0 inches). 
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Fig. 3.3. Isolines of the 40-year general monthl y mean 
Xi , upper graph, and the 40-year monthly standard de­
viation si , l ower graph. 

Major storms usually enter the region from the 
southwest and move through the region toward the north­
east central zone. The eastern sector receives cold 
polar air from the north during most of the year. For 
prolonged periods moist warm air is supplied from the 
south , mainly from the Gul f of Mexico. 
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3.2. Time Variation of Parameters . The stochas­
tic component ;p T , assumed t o be a second-order s ta­
tionary and ergOdic process, is obtained from the 
~nthly precipi~ation series Xp,t at any station i , 
~=1,2, ... ,M, w~th p=l,2, ... ,n, and t=l,2, ... , w , M 
the number of station, n the number of years, and w 
the number of interval s wi thin the year . In the case 
of Region I, M=77 , n=40 and w=l2 for the large 
area, and M=41 , n=40 and w=l2 for the subregion. 

The hypothesis is that the monthly means follow 
the periodic cycle of the year, represented by the 
Fourier series of Eq . 2. 3. For the estimated sample 
monthly means, m, , the fitted Eq. 2.3 is then of the 
form 

h(IJ) 
ll, = x + I C.(IJ) cos[ljt+9 .(1J)) 3. 1 

j•l J J 

in which~ (or M, ) is the average of w values of m,. 
The ratio of the variance s2(1l,) of the fitted \Jy to 
the variance s2(11ly) of the estimated monthly means 
m,, is used to select the cut-off point in determining 
the significant h(IJ) harmonics, since the ratio in­
creases with an increase of the number of harmonics 
h(l!) 

Equation 2 . 3 is applied simqarly to that done 
for Eq. 3.1 and llt t o obtain the fitted periodic 
function o, for the estimated monthly standard de-
viations s, This gives 

h(o) 
5 + I C. (o) cos (1-j t+S. (cr)] 

T j=l J J 
3. 2 

with s, the mean of the w values of s, . Once h(IJ) 
and h(cr) have been inferred, the differences (mT-Ilt) 
and (St-o,) are considered the random sampling vari­
ations. This means that the annual cycle in basic pa­
rameters ror and s, is accounted for with only h(IJ ) 
and h(o) significant harmonics, respectively. 

For the m, and St seri es studied, h(~)=h{o)cl 

is hypothesized and tested by statistical analysis of 
all M time series. Table 3.1 presents the percent of 
variance of both the monthly mean, m,, and the monthly 
standard deviation, sy , explained by the fitted 12-
month harmonic of llt and ot for the area with the 
entire 77 stations. From 83.1 to 98 .3 percent of the 
variance , or on the average 92.6 percent, is explained 
by the 12-month harmonic in the case of m1 , and from 
75 .5 to 98.4 percent of the variance, or on the aver­
age 91.1 percent, is explained by this first harmonic 
in the case of s, . The second (6-month) harmonic 
explains only an average of 3.42 percent of the vari­
ance of mT , and 2.66 percent of St , while the third 
(4-month) harmonic has the corresponding figures of 
1.02 and 2.21 percent. The average unexplained vari­
ances of ror and s, by the first harmonic , 7.4 and 
8.9 percent, respectively, mean that on the average 
the remaining five harmonics (second through sixth) 
would explain only 1. 5 and 1.8 percent, respectively. 
The differences i n the order of magnitude of contribu­
tion between the fir st and all other five harmonics 
are l arge; thus a decision to retain only t he first 
harmonic in llt and o, seems justified. The gain in 
the explained variance due to the second and the third 
harmonics is not commensurate with the additional work 
required or the accuracy of the additional par ameters 
required. 

To test the significance of harmonics, the dis­
tributions of amplitudes of harmonics should be known 
under the assumption that both rnr and sy are pe­
riodic . A criterion that at least 90 percent of the 



TABLE 3.1 

Percent of Variance of Monthly ~leans m and Monthly Standard 
Deviations sT , Explained by the Fir:t Harmonic (12-month 

harmonic) of ~, and cr1 • (Underlined figures denote extremes). 

Station For Monthly For Monthly 

Number Mean Standard 
m Devi ation, s 

T 1 

1 .932 .928 
2 .974 .878 
3 .939 .933 
4 .951 .960 
5 . 950 .871 
6 .934 . 956 
7 .947 .894 
8 .936 .933 
9 . 959 .945 

10 .934 .904 
11 . 950 .847 
12 . 901 .949 
13 .924 .806 
14 . 976 . 984 
15 .952 .914 
16 .960 .905 
17 .952 .915 
18 .923 .908 
19 .942 .889 
20 . 983 .947 
21 .941 .849 
22 .944 .904 
23 .930 . 947 
24 . 907 .783 
25 .967 .909 
26 . 935 .870 
27 .935 .938 
28 . 945 .909 
29 .917 .911 
30 .983 .982 
31 .933 .868 
32 .971 .980 
33 .937 .818 
34 .977 .965 
35 .940 .960 
36 .969 .947 
37 .956 .937 
38 .914 . 956 
39 .920 .873 

variance of mT for 80 per cent of the station series 
for n=40 be explained by ~T , and a criterion that at 
least 85 percent of the variance of sT for 80 percent 
of the station series for n~40 be explained by crT , 
are simple objective approaches to determine h(~) and 
h(o) , respectively. By this criterion, all ~ and 
s T parameters of the 77 stations in Region I may be 
adequately approximated by only the 12-month harmonic 
of the ~, and crT periodic functions. The Fisher 
g-test is used and is premised on having a normal pop­
ulation distribution of residuals about ~T and crT . 
Under this hypothesis the critical g values for ~T 
and for 12 values are 0. 683 and 0. 788 at the five and 
one percent levels for the first harmonic, and 0.367 
and 0 . 399 at the f i ve and one percent levels for the 
second harmonic, respectively. At both the five and 
one percent levels, the 12-month harmonic has an am­
plitude significantly greater than zero in fitting ~T 

and crT functions to mT and sT in all but stat ion 
numbers 24 , 69 and 77 for the one percent level. At 
the five percent level, 34 stations have the second 

Station For Monthly For Monthly 

Number Mean Standard 
m Deviation, ST T 

40 .938 . 976 
41 .965 .941 
42 .964 .889 
43 .877 .935 
44 .928 .917 
45 . 907 .960 
46 . 903 .968 
47 .901 .955 
48 .913 .964 
49 .880 .915 
50 .879 .958 
51 .933 .933 
52 .914 . 924 
53 .905 . 968 
54 .937 . 934 
55 .907 .899 
56 .936 . 919 
57 .955 .942 
58 .859 .891 
59 .914 .950 
60 .841 .848 
61 .895 .948 
62 .946 .905 
63 .875 .933 
64 .9Z7 . 818 
65 .9:>4 . 958 
66 .868 .895 
67 .894 .936 
68 .926 .938 
69 .877 .755 
70 .923 .911 
71 .902 .882 
72 .857 .800 
73 .869 .833 
74 .8.31 . 815 
75 .926 . 969 

l 
76 .917 . 959 
77 .9.33 . 761 

Average 0.926 0.911 

harmonics significant in the case of mT and 19 sta­
tions in the case of s 1 • The hypothesis of normal 
distri bution of deviations of mT or sT from ~T and 
crT may be well satisfied. However, these deviations 
mT-~T and s,-crT are mutually dependent, and because 
of the periodicity in ~T and aT , the variances of 
these deviations are also periodic . Therefore, the 
Fisher's test is not applicable, though it gives the 
approximate results. However, in 64 of the 77 stations , 
or 83 . 2 percent, 90 percent of the variance of m1 is 
expl ained by only the 12-month harmonic of ~T , while 
for 65 of the 77 stati ons, or 84.3 percent, 85 percent 
of the variance of sT is explained by only the 12-
month harmonic in cr1 . 

Figure 3.4 gives the correlogram and the graph of 
spectral densities for the first station out of the 77 
station series given in Table 1 of the Appendix. The 
correlogram is very close to be the 12-month cosine 
function, while the spectrum has a significant spike 
only at the 12-month frequency. Similar spectra can be 
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shown for nearly all 77 series . These spectra also 
support the conclusion that the first harmonic in the 
mT series, computed . from the xp, T seri~s, is the most 
important, and the h1gher-order harmon1cs (the second 
through the sixth) can be neglected. 
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Fig. 3.4. Correlogram (upper graph) and spectrum (low­
er graph) of the first precipitation series (station 1) 
of Table 1 in the Appendix. 

The values of h (~ ) ·h(cr) = l satisfy the objecti ve 
of obtaining a minimum number of parameters using a 
minimum number of significant harmonics, and in nearly 
all cases the 12-month harmonic is required to account 
for the annual cycle in monthly means and monthly 
standard deviations. Therefore, only the first harmon­
ic is necessary for both the ~T and aT functions in 
Region I. 

3.3. Regional Variation in Parameters. Because 
only t he 12-month harmonic is selected to account for 
the annual cycl e in the basic parameters of xp, T for 
all st ations, interest is focused on how the basic pa­
rameter s , r epr esented by X (or mT) ' Cl(~) ' e l (P) , 
s T , C1(cr) , and e1(cr) , vary over the Region I. 

Of major interest is the general sample monthly 
mean, x or mT . Figure 3. 3 shows its overall varia­
tion within Region I for the 40-year observation peri­
od. Because of a marked west to east increase and a 
slight south t o north decrease, the simple linear 
plane trend for x over Region I is investigated first 
instead of starting with a quadratic or higher-order 
polynomial function. The hypothesis of regional vari-

ation in xi is then 

3.3 

in which ~i denotes the fitted regional means xi and 
el ' e2 and 63 are the r egression coefficients to be 
estimated . Xi , the longitude coordinate, is refer­
enced to Xo• lOO.OO degrees west l ongitude as the zero 
abscissa, and Yi , t he l at itude coordinate, is r efer­
enced to Y0 •43.75 degrees north latitude as the zero 
ordinate. Table 3. 2 presents the general stati stics 
for the sample series of 77 stations. The parameter Xi 
has the general average 1.902, the variance 0.107, the 
relatively smal l ske~~ess coefficient 0.091, and the 
excess coefficient -1. 243. Equation 3.3, by using the 
simple l east-square approach for est i mating el ' e2 ' 
and a3 ' becomes 

~i = 1.45870 + 0.14095Xi - 0.04452Yi 3.4 

With the statistically significant regression coeffi­
cients as shown in Eq. 3.4, this trend plane gives an 
expl ained variance of 94. 8 percent for the regional 
variation of Xi . This high percentage of explained 
variance, using such a simple model as Eq. 3.4 and t he 
simple least-square estimation method, i s as much a 
surprising r esult as that obtained in explaining the 
variation of IDt and oT by only the f i r st harmonic. 

Figure 3. 5 presents the differences between the 
estimated sample means Xi and the fitted model of 
means ~i by Eq . 3.4 . The isolines of differences are 
drawn with a stress given t o the zero isoline. The 
differences show that the sample means, xi, are larger 
than the model means ~i , in the middle, southwestern, 
and northeastern sectors , with a maximum value of 0.13 
inches. The negative differences dominate the north­
west , eastcentral, and southeastern sectors, with a 
minimum value of -0.20 inches. 

00 

13 

Pig. 3. 5. Differences , and isolines of differences of 
the estimated means and the fitted mean by simple 
least-square approach. The point denotes the station 
location. 



TABLE 3.2 

Average Statistics for Regional Parameters 
for the Set of 

Regional Standard 
Parameter Average Variance Deviation 

xi 1.902 .107 .327 

cl,i(ll) 1.537 .026 .162 

e1 . (II) 
,l 

2.840 .Oll . 107 

s T,i 1.185 .021 .147 

c1 . (a) 
,l 

. 772 .009 .099 

e1 . (a) 
, l 

2.705 .025 .160 

c1 . (11)/x. 
, 1 1 

.818 .005 .074 

s ./x. 
T 1 1 1 

.629 .002 .048 

c1 . (a) /x. 
'1 1 

.412 .007 .055 

The fit by Eq. 3.4 was made by using the least 
square method , giving each xi value the same weig~t. 
Figure 3.3, lower graph, shows that the standard devi­
ation si increases similarly as Xi does. A more 
proper approach in estimating 81 , 82 and 83 is by 
g1 Vlng weights 1/ si to the deviations CXi -IIi) . This 
makes the relative deviations CXi-lli)/si have a more 
homogeneous variance than was found i n the case of us­
ing only the (Xi-lli)-deviations for the least square 
fitting. The weighted deviations can represent an im­
provement in the estimation of models and coefficients 
of the type of Eq. 3.3. For example , by using this 
weighted approach for the case of xi , 81=1 . 4518 , 
~2•0.1394 , and B3•-0.0405 , with an explained vari­
ance for x~ of 98.04 percent instead of the 94.8 per­
cent shown for the equal-weight approach. Figure 3.6 
shows the CXi-lli)-deviations and their isolines for 
the case of weighted least-square approach. 

Y1 
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Fig. 3.6. The same points and isolines as in Fig. 3.5 
except that the weighted least-square estimation ap­
proach is used for standardized deviations. 

77 Station Series 

Coefficient Skewness 
of Coef-

Variation ficient 

.172 .091 

.105 -.027 

.038 .086 

.124 .128 

.128 .078 

.059 .082 

.090 .292 

.076 -. 043 

.134 .074 

Excess 
Coef-

ficient 

-1.243 

- .800 

- .455 

.958 

- .380 

- .097 

.373 

- .057 

- .737 

Chi-Square 
of Normal 

Fit 

14.31 

6.02 

20.71 

3.90 

7 . 32 

The clustering of positive and negative differ­
ences CXi-lli) into cells, as shown in Figs. 3.5 and 
3.6 , may be the result, as postulated earlier, of the 
areal dependence amongst the station series . In spite 
of the individual differences, these cells may be in­
ferred as being randomly dis tributed over the region, 
separated bY. the zero isoline. No particularly strong 
trend seems present in the areal distribution of the 
cells . Therefore, the remaining 5.2 or 1.96 percent of 
variation in Xi unaccounted for by the model is at­
tributable to sampling variation, and the mean xi 
changes approximately linearly over Region I. 

The five other regional parameters, C1., i (II) , 
el,i(\l) , sT i - , c1 i(o) , and e1 i(o) , are also hy­
pothesized to have 'linear regionil variation. Their 
general statistics are given in Table 3.2. The iso­
lines of the amplitude c1 i(ll) , of the 12-month har­
monic in the mean, are sho~n in the upper graph of Fig. 
3.7. These isolines suggest an east-west trend with 
the lowest values in the west (1.3 isoline) and the 
highest values in the east (1.7 isoline). On the first 
glance , the variation does not seem -linear as was 
found for xi • Under the hypothesis of fitting a trend 
plane for the regional variation in c1 i(ll) , the 77.1 
percent of its variance is explained by 

Cl,i(ll) a 1.33470 + 0.06329Xi- 0.01816Yi 3.5 

Because c1 i(ll) is a function of the second moment of 
variable values, the expected sampling variation of 
deviations about a fitted trend plane should be great­
er than for the mean xi . The amplitude c1 i(ll) has 
a regional mean 1.537, variance 0.026, and' skewness 
coefficient -0.027. It is expected that the weighted 
least-square fit would increase the explained variance 
of c1, iCII) . 

Because tne trend planes are fitted to both xi 
and Cl,i(ll) as the first approximations , another hy­
pothesis is advanced, namely that the ratio c1 i(ll)/xi 
is a regional constant. This is equivalent to'stating 
that the regional variation in C1 i(ll) is accounted 
for by the regional variation in ~ . It is expected 
that the variation in this ratio about i ts mean value 
would be highly reduced. The mean for 77 regional val­
ues of this ratio is 0.818, the variance is 0 .005 and 
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the skewness coefficient 0 . 292. Because of the very 
smal l value of the variance of c1 i(~)/xi , this ratio 
may not be significant ly different from its mean val ue. 
In other words, the inference is that the variation of 
the ratio about its mean is only the result of the 
sampling variation . The mean ratio is then considered 
to be a regional constant . Figure 3.7, l ower graph, 
shows how this ratio changes over Region I. The 0. 90 
and 0 . 80 isolines are north-south oriented, with the 
regional variation highly reduced. The variance of 
c1 i(~)/xi of 0.005 is only 18 percent of the variance 
of'0. 026 of C1 i(~) . The 22.9 percent of t he variance 
0.026 of c1 it~) , unexplained by Eq. 3.5, is 0 .006; 
this is greater than the variance of this ratio. In 
other words, the use of this ratio has a smaller sam­
pling variance than the use of the trend plane of Eq. 
3.5 for the amplitude cl,i(~) . 
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Fig. 3.7 . The isolines of the amplitude Cl,i(~) for 
the mean ~r , upper graph; and t he isolines of t he 
ratio cl , i(~)/xi ' l ower graph. 

Dividing the ratio into equal frequency class in­
tervals , and testing with chi- square stat isti c for the 
difference between this ratio and its average value of 
0. 818, for a normal distribution of tho ratio with the 
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mean 0.818 and t he variance 0.005, the chi-square is 
20 .717. This rel atively large computed chi-square is 
mainl y obtained because the normal ' distribution for 
the ratio might not be the best hypot hesis; twice as 
many ratios fall in the central class interval con­
taining the mean 0 .818 in case of nor mal distribution 
than in tho other class i ntervals. Because of the high 
dependence of the ratio over the region, the chi­
square t est may not be the best test . Therefore, for 
all practical purposes this ratio may be considered a 
regional constant. 

Figure 3.8 , upper graph, gives t he isolines of 
st i , the mean of tho 12 values of sT standar d devi­
ations for each of the 77 individual x t ser ies, 
while the lower graph gives the isolines gf st,i/xi . 
Equation 3.2 gives the values for s, i . There is a 
difference between the si est imates of' Fig . 3.3 , l ower 
graph, and the s 1 ,i individual means of sr of Fig. 
3.8 , upper graph; the st i values are smaller than the 
si values. Because of periodicities in the standard 
deviations, and the use of Eq. 3.2, t he regionaliza­
tion is done for s, i rather than for si . There is 
a general increase in sr i values from t he west to t he 
east, as for t he previous ly studied parameters . The 
mean for the 77 values of sr,i is 1.185, the variance 
0.021, and the coefficient of skewness 0.128. However, 
a uniform change from the isoline 1.0 to the isoline 
1. 2 i n Fig . 3.8 suggests t hat a trend plane may also 
wel l r epresent t he r egional variation of sT, i Wi th 
this hypothesis the plane is 

cri = 1.03990 + 0. 05794Xi - 0.03277Yi 3.6 

Equation 3.6 expl ains 81 . 6 percent of the variance of 
sr,i · 

Considering the ratio st i!Xi as a new regional 
paramet er, which has a mean 0.~29, variance 0. 002 , and 
skewness coefficient -0.043 for t he 77 station series, 
this reduced variance of 0 .002 as compared wi th the 
variance 0 . 021 for 51 i is about 10 percent . In t his 
case, u.sing the trend plane of Eq. 3.6, the unaccount­
ed variation of sr,i is approximately 0 .039, or about 
t wo t i mes the var iance of t his ratio . By using t he 77 
estimates of St , i/Xi , and considering t hem to be nor­
mal ly distribut ed about t hei r mean , 0.629, as a r esult 
of random sampling variation only, the computed chi­
square for 11 equal probability class intervals is 
3.90. This value is not s i gni ficant at t he 95 percent 
level because t he critical chi-square is 16.9 , regar d­
l ess of the fact t hat the 77 ratios are mutually de­
pendent values . The ratio sr,i/Xi is select ed as a 
regional constant of 0.629 . The isol ines and point 
values of this rat io are also shown in Fig. 3.8, lower 
graph . Its vari at i on, with the 0 . 65 i soline in the 
west and the 0 . 60 isol ine i n the east , is now east­
west oriented; however , this supports t he hypot hesis 
that st,i and xi are close to bei ng proportional 
parameters. 

The i solines of t he ampli tude of 12-month har mon­
ic of the monthl y s t andard deviation are shown i n Fig. 
3.9, upper graph. The regional variation of Cl , i(cr) 
has a general west-east i ncr ease . Cons equently, f or 
t he hypothesis of a trend pl ane, 

c
1 

. (a) = 0. 65824 + 0.02697X. + o.OOS34Y . 
, l l 1 

. 3 . 7 

The expl ained var iance in c1, i(a) by Eq. 3.7 i s only 
37 .6 percent . The very small r egression coefficient 
for Yi of 0 .00534 shows very small variation in 
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c1 . (o) in north-south direction . The fit by Eq. 3.7 
seMiis relatively poor. The mean of 77 values of C1 i (cr) 
is 0 . 772 , the variance 0 . 009 and the skewness coeffi­
cient 0.078. The unexplained variance of Cl,i(o) by 
Eq. 3.7 is 0.0056 . The ratio Cl , i(o)/xi ~a~ a mean of 
0.412 variance 0.007 and skewness coeff~c~ent 0. 074. 
The i~olines of deviations of this ratio from its mean 
value are given i n Fig. 3. 9, lower graph: Only t~e 
major isolines are drawn. Thou~h th~ var1anc~ of t~1s 
ratio of 0. 007 is relatively h1gh 1n companson w1 th 
the unexplained variance of C1 i(cr) by Eq . 3.7 of 
0. 0056 , or nearly 20 percent greater, this r atio can 
s t ill be considered as approximately a constant of 
0.412 and its variation over the region may also be 
considered as random sampling variation. Assuming the 
ratio is normally distributed about 0.412 with vari­
ance 0.007 the chi-square is 7.3 . Because this chi­
square is ~elatively small , the ratio is inferred to 
be a regional constant. 

The isolines and point values of the phase angle~ 
e1 · (~) for the periodic ~T, and 61 i(o) for the 
periodic o, , are shown in the upper and lower .gra~hs 
of Fig. 3.10, respectively. For el,i(V) the lSOl ~ne 

values range from 2.7 to 3 .0, and for e l,i(o~ f:om 
2. 5 to 2. 9, both increasing in the east-west d1rect~o~ 
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' 
The trend planes for these two parameters are 

e1 . (~) = 3.05755 - 0.03715X. - 0.03608Y. 
,1 1 l 

3.8 

and 

6 . (o) = 2.98795 - 0.05317X. - 0.03815Y. . 3 . 9 
1,1 1 ~ 

The variation in el iC~) is hypothesized to result 
only from sampling variation, normally distributed 
with mean 2.840 and variance 0. 011, and a chi -square 
of 14.31 is obtained , which is not significant at the 
95 percent significance level for 11 equal probability 
class intervals. Therefore, the parameter el i(IJ) is 
practically a regional constant having a 'value of 
2.840. The regi onal variation in el ,i(o) may al so be 
hypothesized to be the result of a sampling variation. 
Thus the parameter would be a regional constant of 
2. 705. Assuming a normal distribution of e1 i(o) , 
with mean 2.705 and variance 0.025, a chi-square of 
6.02 is obtained, which is not significant at the 95 
percent level . The east-west pattern i n 61 i(~) and 
e1 iCcr) may, therefore, be the result of regional de­
pe~dence of sampling variation rather than a popula­
tion characteristic. Because there i s no physical rea­
son why the phases for the periodic mean and the peri-



odic variance should be different, a further simplifi­
cation is obtained by sett'ing 8l, i(IJ)=8l,i(o) . In 
that case either 81=2.840 or the average 81=2 . 772 are 
used. Regardless of the advantages of this uni que 81 
value , the two distinct constants of 2.840 and 2.705 
will be used here in further analysis of monthly pre­
cipitation. 
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Fig. 3.10. The isolines and point-values of the phase 
angles : the 81 i(IJ) of the 12-mont n harmonic in pe­
riodic m~ , upper graph; and the e1 i(o) of the 12-
month harmonic in periodic s~ , lower graph. 

The Fourier series r epresentation of a periodic 
parameter has two parts: the average of the parameter 
and the_periodic variation about it . In the case of 
m~ i , Xi is the series mean, and C1 iCu) and 81 i(IJ) 
ar~ the amplitude and phase which d~termine the peri­
odic variation . The regional range in the isolines of 
Xi i s approximately 0.75 incheS while for C1 i(IJ) it 
is about half that amount, or 0.40 inches. The'coeffi­
cient of variation of xi is 0.172, which is 1. 63 t i mes 
that for C1 iCu) , while the mean of Xi is 1.24 times 
that for c1' i(IJ) . The regional variability in xi is 
greater than'in c1 i(u) . The fact t~at the major r~­
gional variation exists in the mean Xi rather than In 
the periodic fluctuation about the mean, measured by 
Cl,i(u) , suggests that the trend plane which accounts 
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for the variation in xi is the most important aspect 
in the regionalization of precipitation parameters . 

Applying a similar analysis to s, i , the monthly 
standard deviation , the range of regional variation in 
St i is about 0.40 inches, While in C1 i(O) , the 
first harmonic amplitude of s~ i ' it is c : 2o i nches. 
The regional mean of s, i is 1:18; this is 1.53 t imes 
greater than the mean of' C1 i(o) which is 0.772. How­
ever , the regional coefficients of variation for s,, i 
and C1 iCo) are approximately equal, namely 0. 124 and 
0.128. 'Again the major r egional variation is in the 
means, . r ather than in the regional variation of the 
amplitud~ of the first harmonic . The linear trend 
planes, which explain variances of 81.6 percent for 
s~ i and 37.6 percent for cl i(o) ' support the con­
cl~sion that the parameter of' periodic variation is 
the more difficult of the two to regionalize. This is 
due to a great er regional random sampling variation. 

Wi th the above regional models for various param­
eters , the second-order stationary component , (p t , 

for any station series, with both the numerator'and 
denominator divided by x , ·becomes 

l;p,T = 3.10 

Replacing x by Eq. 3.4, and the other five parameters 
c1(u)/x, e1 (u) , s 1 /x, c1(o)/x , and e1 (o) by their 
values, 0.8187, 2.8402, 0.6293, 0.4120, and 2.7053, 
respectively, then Eq . 3.10, for a given i-th s tation, 
having coordinates Xi and Yi , becomes 

uss7o • o.!Jo~x; . o.olls2Y1 • 
1 • 0·8187 •••(!7 • 2' 840l) 

).,t • 0.6293 • 0.4120 co>(-7; + 2.7053) 3.11 

Three approaches for selecting the sampl e parame­
ters were considered for determining f:p,T , as a st~­
tionary stochastic component . The first approach IS 
made using f;p , t of Eq. 3.11 as Model A. Th~ second 
approach is similar to Model A, except that, In place 
of the constant ratio C1 i(o)/x , the const ant value 
0.772 is used for Cl,i(o)' i n the form of Model B, 

x. c1 (u) } 
~1- 1 - ---x- cos[>.T+81 (~)) x 

3.12 

C;) X + cl (o) cos (>.t +91 (o)) 

which still has five regional contants, but with a 
linear trend surface for x . The third approach, Model 
c is in computing the tp series utilizing the lin-

' ,'t' f f . f ear regression equations In the orm o linear sur ace 
trends, fitted to each of the six regional parameters, 
x , c1 (u) , e 1 (~) , s, , C1 (o) , and 81 (o) . In the 
case of Model C, using the best estimates of regres­
sion coefficients for parameters, a reduction in the 
total number of parameters is made from 77 x 12 x 2 = 
1848 parameters in the case of the use of the non­
parametric approach, or the use.of all sample.values 
of m, and s1 at the 77 stations , to a .maxlmum.of 
6 x 3 = 18 regression coefficients of the Slx most Im­
portant parameters . For Models A and B the total n~­
ber of regional regression coefficients to be_ estl­
mated ~s reduced to three (Bl, 62, and 83) fo: x , and 
the five regional constants, for a total of eight. 

The economy in the number of estimates and the 
simplificati on in models are the major characteristics 
of the above regionalization of parameters of monthly 



prec1p1tation . More complex models are not justified 
due to time and regional sampling error s . Equation 
3.11 i.s used i n reducing xp,t to f.p , , =i;i random vari­
ables. However, further improvements may be obtained 
in t he est i mat ed coefficient s of this equat ion by us­
ing the weighted least-square fits for determining the 
parameters of both the periodic and regional models . 

3.4 . Testing Sequential Independence of Station­
ary Stochastic Component s . To determine how cl osely 
( . , where ( . is equal to ~p T, approximat es an 
iAdependent stationary stochast1c process, as a result 
of the simpl ifying assumptions for the det erministic 
periodic t ime and regional trend variat i ons in the ba­
sic parameters , the correlogram of each ~i series of 
t he 77 monthly precipitation series is tested for sig­
nificant departures . This is done on the 95 percent 
probability l evel , from the correl ogram of an indepen­
dent series . Onl y the first 20 l ags of cor relograms 
are used . The 95 percent tolerance l evels, ru and rt , 
for an independent series are computed by 

r (95%) = -l ± t~ 
u,i N-k-1 3. 13 

with k lag, t=±l . 96 being the deviates from the stan­
dard normal distribut ion for a two-tail test that Pk=O 
for k>O for the ~ i series, and N sample size . Table 
3. 3 pr esents the number of rk values for the l ags 1 
through 20 which are outside the tolerance limits for 
the 77 region stations and the 41 subregion stations 
of monthly precipitation series . The serial correla­
t ion coefficients rk for the lags 1, 5, 8, 11, 12 and 
19 in Table 3. 3 are oft en outside the tolerance limit s 
and for more than 4 series (5 percent of 77) . The rk 
values of other lags al so have some tendency to be 
out sid·e the tolerance limits. The same observations 
are valid for the sample of 41 series in the subregio~ 

TABLE 3.3 

Number of Ser ial Correlation Coefficients of 
~ - Outside the Tolerance Limits (T.L . ) of an 

1 Independent Ser i es 

Number of Stat 1on Senes 
Lags 77 41 

1 31 14 
2 4 2 
3 4 3 
4 5 1 
5 11 7 
6 3 1 
7 6 1 
8 18 8 
9 7 4 

10 1 0 
11 14 1 
12 48 24 
13 3 0 
14 2 2 
15 3 2 
16 1 0 
17 2 2 
18 5 1 
19 12 1 
20 8 2 

Total outside T. L. 188 76 
Number without values 

of r1 and r12 109 38 
Total numbered rk computed 1540 820 
Percent outside 12.2 9 . 3 
Percent without values 

of r l and r1 2 7.1 4. 6 

The first serial correl ation coefficient, r 1 , is 
affected both by some dependence in the monthly pre­
cipitation values due to t he dependence inher ent i n 
hydrometeorological synopt ic situations fr om day to 
day, and by an incomplete removal of harmonics of the 
periodic paramet ers, as the serial correlat ion coeffi­
cient r12 demonstrates. By negl ect ing the numbers of 
r 1 and r12 values outside the tol erance limits, the 
new percentages of r k values outside these limits are 
also given in Table 3.3 . In that case , for the 41 sta­
tion series , only 4.6 percent of rk values are outside 
the tolerance limits , instead of 9. 3 percent as in the 
case where r 1 and r 12 are i ncluded . 

For example, t he correlograms of two stati on se­
ries (nos . 8 and 22) out of t he 77 series are present­
ed for ; i in Fig. 3.11. For station no . 8 several rk 
val ues are outside (but close to) the tol erance l imit~ 

while station no . 22 has a correlo~am relativel y we l l 
confined within the 95 percent tolerance limits. 

The correlation coefficient corr(r1 i• rl ,j) be­
t ween the first serial correlat ion coefficients rl , i 
and r l · of the i-th and j-th series of <;; is given 
by [29 J ,J 

2 2 1 N(N-2) (rl, i + r 1.j) 

2(N+2) (N+4) 

3 .14 

with Pi j the estimat es of the lag-zer o correlation 
coeffici~nts of the ;i series for the i - th and j-th 
stations . Because the average, r 1 , of al l s eries is 
about 0.08 , i ts square is about 0. 0064 ·and t he term in 
the bracket~ of Eq . 3.14 is , therefore, very close t o 
unity. Even if one would use the individual values of 
r 1 . and r 1 . i ns t ead of using the average, r1 , to 

' 1 ' J . h 0 h repl ace r1 i and r 1 j 1n Eq. 3.14 , t e t erm 1n t e 
bracket is still close' to unity . Therefore , Eq . 3 . 14 
may be accurately replaced by 

N+2 . 2 
carr (r1 . , r 1 . ) = -N 1 p . . 3 . 15 

, 1 , J - l,J 

The effect ive number of stations in the region for 
corr(r 1,i, rl,j) , assuming the ~i are mutually un­
correlat ed ser1es, 
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M e 
M 

1 + corr (r
1 

., r 1 . ) (M-1) 
' l , J 

3. 16 

with corr(rl, i • r J, j ) estimated by (N+2)Pf ,j/(N- l) 

:y-
The average o. . for the 77 station .~ 1. series 

1, ) 

is 0.264, and the est i mate of corr(r1 . , r 1 .) is 
, 1 ,) 

0. 266 . Then Eq. 3.16 gives M ~3. 63 for M=77 . Simi-
e ~ 

larly, for M- 41 , the values are p .. =0 . 348 , the es-
1,) 

timate of corr(r1 . , r 1 .) 
, 1 , J 

is 0 . 351, and Me=2 . 72 . 

Figure 3.12 gives the aver age correlogram, rk= 
f(k) for the ~i series of 77 st ations, with the tol­
erance limits (rk)u and (rk)t at the 95 percent leve l, 
computed by 

[

var r ] ~ 
crk)u,t = rrk ± t T = 

- _ 1_ + t -IN-k 
N-k+l - (N-k+l) .rM; 3.17 

Similarly, Fig . 3.13 gives the average correlogr am for 
the 41 subregion stations . These two average correlo­
grams lead to t he following conclusions: 
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Fig. 3.11. Correlograms of ~; stochastic components with 95 
percent tolerance limits for Station series nos . 8 and 22. 

(1) In both cases, 77 and 41 stations, the r 1 
and rl2 are outside but close to the tolerance limits; 

(2) All other 
tolerance l i mits; 

are either on or within the 

(3) The 95 percent probability_level of toler­
ance l imits implies that only one rk value out of 
twenty should be outside the limits; in these cases 
there are two instead of one value outside the limits; 

(4) The squares of r l and rlz are about one 
percent (0.12), which has little effect on the time 
dependence of the ~i series ; for all practical pur­
poses, they can be neglected . 

Thus the ~i series may be considered as time in­
dependent processes . 

r 
0.10 k 

-0.05 
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Fig. 3.12. The average correlogram of the 77 series of 
~i variables (Region I), with the corresponding 95 
percent tolerance limits. 

The average of the means of the E;i independent 
stochastic components of the 77 precipitation series 
is 0.033 and the variance of the means is 0.007. The 
means of approximately standard ~i variables can be 
considered the same. The average of the 77 sample 
standard deviations of ~i is 1.067, with a variance 
of 0.006. 

The selected regional model of Eq. 3.11 accom­
plishes the following: 
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(1) It removes the series periodicities and the 
regional trend in the basic parameters; 

(2) It provides an approximately standard (0,1), 
stationary, sequentially uncorrelat ed set of stochas­
tic variables; and 

(3) It reduces the number of periodicity and 
trend parameters to only eight for the monthly precip­
itation series observed in Region I. 

-95% T.L. -----------
-0.10 

Fig. 3.13. The average correlogram of the 41 series of 
~i variables (subregion to Region I), with the corre­
sponding 95 percent tolerance limits. 

3.5. Analysis of Independent Identically Distri­
buted Stochastic Components. In structural analysis 
and mathematical description of monthly precipitation 
series it is useful to determine the form of the prob­
ability distribution function for the ~i series . The 
assumptions made and tests performed, in removing the 
periodicity and regional trends in the major parame­
ters, lead to the conclusion that the computed (. se­
ries is approximatel y an independent , standardized 
stochastic variable, which has absorbed into its fre­
quency distributions the major time and areal random 
sampling variations of the parameters. By standard­
izing a set of non-normal random variables, differ­
ences can appear only in the autocovariances and the 
third-order and fourth-order parameters. For the ~i 
series , the conclusion of time independence (at least 
by the series being linearly uncorrelated) implies 
that they are second-order stationary processes. Since 
their probability distributions can have different 



asymmetry and kurtosis , the basic problem is to inves­
tigate whether the vari ous ~ series have skewness and 
excess coefficients which are significantly different 
from bei ng constants . 

The differences between the estimated constants 
for the r egional ratios of parameters in Eq. 3.11 and 
the estimates from trend functions of the parameters 
evaluated at the observed points have a tendency t o be 
greater as the distance from the geographical centroid 
of the region increases . This can be inferred from 
Figs . 3 . 7 through 3. 10, in which the largest differ­
ences appear to be located at the edges of Region I. 
However, when only the 41 stations of the interior 
subregion are used, the differences at these new 
boundaries are reduced. This fact reinforces the as­
sumption of identically distributed, second-order sta­
t ionar y, ~ · series. Regardless of this decreasing ef­
fect at th~ boundaries for the 41 stations, the analy­
sis of i dentically distributed ~ · stationary variables 
is performed here for all 77 st ations of Region I. 

Using a standard computer program, tests were 
performed for each /;; to determine whether the fre­
quen~y distribution curve can be well fitted by one of 
three basic probability distribution functions : the 
normal distribut ion, the three-parameter lognormal 
distribution, and the three-parameter gamma distribu­
tion. Because the ~i variables have been standard­
ized, E(l;i) =O and E(var~i)=l , to f it the normal func­
tion, the values of the· skewness and excess coeffi­
cients are crucial . In fitting a bounded three-parame­
t er funct i on, either lognormal or gamma, the variation 
in the estimated lQwer boundaries is decisive in de­
termining the fit of these f unctions to the actual 
distribution of these 77 station (i series . 

The variables ~i of 77 stations, with i=l,2, . •. ,N 
and N=wn=480 , were found to fit the three-parameter 
gamma probability function, 

1 a-1 
f(t;) = SCI r(a) (~-y) exp(-~/S) 3. 18 

with a the shape paramet er, S the scale parameter, 
and y the l ower boundary. The chi-square values for 
the 77 fits were computed using 20 class intervals of 
equal probability with 17 degrees of freedom and were 
tested at the 95 percent significance l evel. Por the 
77 stations , 7.7 percent were found to be unacceptable 
as three-parameter gamma distributed variabl es, while 
for the 41 station subregion, only stations 15 and 26, 
or 5 percent of the 41 stations, have the computed 
chi-squares greater than the critical value 27.6. 

Table 3.4 shows the basic statistics and the com­
puted chi-square values for fitting the three distri ­
bution functions to the 41 series of the subregion. In 
case of the normal function , none of the 41 stations 
have computed chi-squares less than the critical value. 
For the three-parameter lognormal function , 21 series 
have unacceptable chi- squares . All series are posi­
tively skewed, and the regional average skewness coef­
ficient for the 41 series is 1.155. The averages of 
the maximum l ikel ihood estimates of the three-parame­
ter gamma distribution function are as fol l ows : (l)the 
lower boundary y=-1.694, with a variance of 0 . 003; 
(2) the shape parameter &=2.620, with a varian~e of 
0.090; and (3) the scal e parameter 6=0 .668, with a 
variance of 0. 004 . In addition, the average mean for 
the 41 variables is 0.042, with a range in the means 
of 0.379, from -0 .127 to 0 . 252, and the average vari­
ance is 1.136, with a range in the variances of' 0.704 , 
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from 0.914 to 1.616. Although the ~i variables are 
considered to be standardized, they do not have a mean 
of zero and an exact variance of unity, due to the 
simplifications made in the time and areal determinis­
tic functions describing the variations in the parame­
ters . However, the ensemble of the l;i variables is 
treated as if it had mean zero and variance unity. 

Considering the regional variation in the lower 
boundary to be a sampling variation, a fit of the nor­
mal function to this variation is tested and made, 
with. a mean of -1.694 and a standard deviation of 
0.056, regardless that the theoretical distribution is 
not normal. The normal f unction has a chi-square of 
1. 72 using f ive class intervals for the 41 values of 
y , which is not significant in comparison with the 
critical chi-square of 7.81 at the 95 percent l evel 
with three degrees of freedom. Therefore , al l ~i se­
ries may be considered ident ically distributed random 
variables , (considering the third-order stationarity) , 
with all parameters of the t hree-paramet er gamma pr ob­
ability distribution function being regional constants . 
The three sample parameters are each est i mated for the 
three-parameter gamma dist ribution function as the av­
erage of the estimat es for the 41 series. 

The 41 series of ~i variables in the subregion 
may then be considered as independent, s t andardized , 
third-order stationary, identicall y distributed random 
variables, with a three-parameter gamma probability 
density function . Table 3.5 gives the mean, variance, 
standard deviation and skewness coefficient for the 
mean, and the variance, standard deviation, skewness 
coefficient, and minimum observed value of the 41 com­
puted t i series, as well as the lower boundary, shape, 
and scale parameters of the 41 fitted three-parameter 
gamma distribution functions. The average of the means , 
0.042, with a variance of 0. 008, is cl ose to zero, 
while the average of the variances is 1.135 , with a 
variance of 0. 022, and is close to unity. The average 
of the 41 standard deviations is 1. 063 , with a vari­
ance of 0.002, while the average skewness coefficient 
is 1.156, with a variance of 0.033. The small varia­
tions of the a , s , and y estimates about the aver­
age values of 2.620, 0 .668, and -1.694, as well as the 
small variations of the above general parameters, im­
ply that t he ~i variables computed by Eq. 3 . 11 are 
from identically distributed, third-order stationary 
stochastic process. 

3.6. Regional Correlation Structure for Identi­
cally Distributed Stochastic Variables . The linear re­
gional dependence between the identically distributed 
ensemble of stationary stochastic variables is inves­
tigated for the lag-zero cross correlation coeffi­
cients as related to the interstation distance, d , and 
its azimuth, ~ , or its plane normal angle, e . Ten 
models are studied as given in Table 2. 1. The first 
model relates the lag-zero cross correlation coeffi­
cient of any pair of stations to their distance and 
plane normal angl e , following Caffey [18]. The next 
nine models are the i nvestigations for a simple depen­
dence between the lag-zero cross correlation coeffi­
cient and the distance. 

All of the ten models chosen are nonlinear in d, 
because the graphical plot of the (r, d)-points shows a 
nonlinear relationship. The unknown coefficients are 
estimated by using a nonlinear least-squarP.s fitting 
procedure , Dixon [30]. Models III, IV, and V are ap­
plied to all the correlation coefficients of the cor­
rei at ion matrix (actually only t• e upper triangle of 



Table 3.4 

Fitting Probability Distribution Functions to Frequency Distribution 
of (i Series Obtained by Model A 

No. in No. in NORMAL FUNCTION LOGNORt-1AL ruNCTION GN-11-IA FUNCTION Minimum 
77 41 Mean Standard xz Lower ~lean Standard xz* Lower Observed Variance Skewness 

seq. seq. Deviation Boundary Deviation Boundary alpha beta xz Value Coefficient 

1 1 -.073 . 997 102.30 -2.067 .573 .488 18.00 -1.612 2.315 .665 20.16 -1.575 .996 1.252 
2 2 - . 063 1.011 82.20 - 2.147 . 628 .463 14.58 - 1.650 2.490 . 637 21.00 -1.611 1.004 1.391 
3 3 -.000 1.018 111.91 -1 .690 . 320 .696 46.58 -1.687 2.585 .652 27.33 -1.650 1.038 .933 
4 4 .152 1.092 93.16 -2.095 . 697 .480 13.91 - 1.560 2.318 .739 15.08 -1.520 1.194 1.087 
6 5 .072 1.111 85.75 -2.227 . 723 .472 9.91 -1.659 2.339 . 740 8.00 -1.623 1.236 1.352 
8 6 -.020 . 958 76.08 -2.330 . 752 .416 14.83 -1.626 2.502 .642 17.75 -1.586 ·.919 .809 

10 7 .029 1.031 83 . 50 -2.289 . 747 .435 9.58 - 1.703 2. 722 .636 14.41 -1 . 662 1.065 1.139 
11 8 .109 1.120 103.25 -1.726 .413 .665 47 . 00 -1 . 722 2. 719 . 673 22.00 -1.690 1.255 1.296 
12 9 .137 1. 047 80 . 41 -1.741 . 454 .645 37.91 - 1.742 3.001 .626 17.33 -1.704 1.097 . 934 
15 10 . 097 l. 021 82 . 33 -2.430 . 849 .396 22.25 - 1 . 787 3.361 .560 21.75 -1. 621 1.044 I. 027 
16 11 .003 .979 58.50 - 2.450 .820 .396 26.50 -l. 655 2 . 590 . 640 24 . 50 - L. 616 .959 . 940 
17 12 .008 .994 77.25 -1.765 .403 .621 35.33 -1.763 3 .108 . 570 23.83 -1. 729' .990 1. 027 
19 13 .193 1.080 61.00 -1.768 .504 .631 30.66 -1. 769 3.108 .631 9.91 -1.731 1.169 .926 
21 14 .171 1 . 099 72 . 25 -1.746 . 467 .660 42.41 - 1. 747 2.884 . 665 14.66 -1 .708 1.211 1.103 
22 15 .103 1.112 109.08 -1.727 .413 .659 29.75 - 1.724 2.762 .661 34.66 -1.690 1.239 1. 254 
23 16 .169 1.163 100.33 -1.709 .427 .682 18.66 -1.704 2.601 . 720 10.75 -1.672 1 . 354 1.143 

N 25 17 .025 1.081 87.33 -2. 173 . 677 .470 14.58 -1.669 2.482 .682 16.33 -1.631 1.170 1.503 ..... 26 18 .055 1.068 97.66 -1. 752 .408 .650 31.41 - 1.750 2.869 .629 12 .00 -1.714 1.144 1.204 
27 19 .252 1 . 197 86.75 -1.673 .436 .724 42.08 -1.669 2.420 . 794 19.91 -1.634 1.435 1.076 
28 20 .072 .997 72.83 -1.662 .361 .677 44 . 08 -1.663 2.794 . 621 22.16 -I. 622 .995 .959 
32 21 . 031 .955 69.66 -2.395 .813 .384 22 .91 -1.751 3.469 . 514 21.91 -1.555 .914 1.160 
35 22 .161 1.089 67.50 -2 . 358 . 833 .428 18.75 -l. 625 2.462 . 725 14 . 33 -1.585 1 . 187 1.003 
36 23 . 088 1.075 54.66 - 1.797 .453 .653 37.50 - 1. 797 2. 918 . 646 11.91 -1.759 1.159 1.006 
38 24 . 047 1.066 104 . 33 -1.656 . 315 . 716 38.91 -l. 651 2.428 . 699 18. 75 -1.617 1. 139 1. 093 
39 25 .067 1.113 97 . 66 -1.676 . 344 .702 31.58 -1.671 2. 492 . 698 16.33 -1.637 I . 240 } .. 529 
45 26 -.083 1. 087 146. 08 - 1.751 . 301 .688 25.25 - 1. 744 2.994 . 666 29.66 -1.712 1.184 1. 432 
46 27 .082 1.104 100.41 - 2.112 . 664 .499 18.83 -1.601 2.177 . 773 19.00 -1.564 1. 221 1.060 
48 28 -. 028 l. 064 111. so -1.749 . 334 .695 35.08 -1 . 744 2.526 . 679 19.75 -1.712 1.354 1. 041 
49 29 .235 1. 270 139.41 -1.646 . 391 .748 31.00 -1.638 2.201 . 851 21.75 -1.607 1.616 1. 284 
so 30 -.109 .996 78.58 - 2.264 .666 .454 8 .66 -1 .702 2.412 . 660 11.00 -1.662 .993 l. 126 
52 31 -.049 1. 047 101.41 -2.224 . 668 .470 19.50 - 1.713 2.451 .679 15.58 -1.674 1.097 1. 234 
54 32 -.127 .980 102.41 -2. 140 .589 .472 10.50 -1. 709 2.594 . 610 12.75 -1 . 670 .962 1.269 
55 33 .005 1.063 103.41 -2.050 .596 .502 7 .41 -1.628 2.357 .693 17.33 -1.593 1.131 1.307 
59 34 -.045 .993 94.41 -1.617 . 231 .722 36.83 - 1.612 2.391 .655 13.08 -1.578 .987 1.065 
62 35 -. 079 1.070 123 . 91 -1.812 . 356 .664 24 .25 - 1.808 2.713 .637 24.41 -1.687 1.060 .986 
70 36 -.088 1.044 92.91 -1.701 .245 .751 31 . 16 -1.698 2.284 . 705 11.50 -1 . 661 1.091 1.179 
71 37 - . 047 . 984 67.91 - 1.731 . 332 . 666 35 . 91 -1.730 2.794 . 602 13.00 -1.693 . 970 1.024 
72 38 .007 1 . 099 91.41 - 2.216 .686 .478 ""5.41 -1.677 2 . 794 . 741 10.75 -1.635 l. 210 l. 353 
73 39 .016 1.182 107 . 75 -1.784 . 370 . 711 30.58 - 1.779 2.423 .741 21.66 -1 . 745 1.400 l. 631 
75 40 .010 1 . 039 83 . 83 -1.695 .333 .685 28.75 -1.692 2.630 . 647 9.66 -I. 656 1 . 082 1. 168 
76 41 .046 1 . 026 88.33 - 1. 739 . 399 .648 35.33 -1.738 2.929 .609 22.91 -1. 702 1.046 1.058 

.. --· x2 larger than t he x2 critical 



the matrix due to symmetry) and for the following: 
(1) the raw data, or the xp,T series; (2) the series 
t p, T computed by the non-parametric standardization 
met~od Cxn, 1-mJjsT for each station; and (3) the ~i 
ser~es obta~ned by Eq. 3.11. The other models are ap­
plied only to the correlation matrix for the ~i series. 

TAB:..E 3.5 

Four Statistics of the Various Parameters 
of the 41 ~i Stochastic Variables 

Standard Skewness 
Parameter Average Variance deviation coefficient 

Mean . 042 .008 .092 .306 
Variance 1.135 .022 .150 .972 
Standard 
deviation 1.063 .002 .068 . 743 

Skewness 
coefficient 1.156 .033 .181 .633 

~linimum 

value 
observed -1.651 .003 .056 .1 75 

Shape 
parameter 2.620 .090 .301 .972 

Scale 
paramet er . 668 .004 .063 .414 

Lower 
boundary -1.694 .003 .056 . 247 

The nonlinear least-squares fit to the (r,d)-
points of the function 

p "' f(d; A, B, ••• ,F) 3.19 

is made by using the Gauss-Newton iteration on 
A,B, ... ,F given the initial values for these coeffi­
cients·. The functions used contain f rom 1 to 6 coef­
ficients. Their initial computational values are given 
in Table 3.6. The mean square error is computed at 
each. iteration until the tolerance of less than lo-S 
is satisfied for the change in the mean square error 
between iterations. However, this may not always as­
sure optimum coefficient values for the model; the al­
gorithm used selects the parameter which provides a 
maximum reduction in the error sums of squares, Dixon 
[30]. 

~lodel I , when applied to P"'f(d,&) , has an ex­
plained variance of 90.0 percent; this is 30 percent­
age points above Caffey' s [18] method, which gives 60 

percent of the explained variance for t he annual pre­
cipitation series. The expression of ~1odel I when com­
pared with Model II offers very little in the way of 
the increased explained variance, namely only 2.6 per­
centage points, with twice as many parameters required. 
Model I is computationally more cumbersome because of 
having two independent variables. Model II fits the 
data well but does not satisfy the condition of P"' l at 
d=O . The fitted p=f(d) , for this model, accounts for 
87 .4 percent of the variation of the ~i correlation 
matrix. The coefficients for Models I and II, as well 
as for the other models, are given in Table 3. 7 . 

Models III, IV, and V, fitted to the set of 
(r,d)-points taking two series at a time, are applied 
to the two samples series, of 41 and of 77 stati ons. 
Model III is computationally convenient, since it re­
quires about half the comput er time of Model IV and 
~bout one-tenth of computer time of Model V to esti­
mate the model coefficients for the ; ; sample series 
of 41 stations , with 861 terms, or 41 variances and 
820 lag-zero cross correlation coefficients. The pre­
liminary trials suggest that the azimuth .p , or the 
plane angle 0 , is not an important parameter in de­
scribing the changes in the r parameter over the re­
gion. The inferred model, as the estimate of p=f(d) , 
is 

r = 0.613e-O.Olld + 0.387 3.20 

with an explained variance for r of 94.2 percent. This 
model is selected as the regional, mathematical con­
densation of information contained in the correlation 
matrix for the 41 series of the ~ i variable . Only two 
coefficients must be estimated, A and B . 

The interstation distances may also be expressed 
as the upper triangle of a symmetric matrix with the 
distances obtained from the station coordinates. The 
d values range from 12 to 312 miles for Region I. The 
constant (1-A) in Model III is introduced because for 
d=O the value of r should be equal to one . The use 
of the coefficients (1-A) in this model is unrealistic 
for large distances of continental dimensions, because 
r=0.387 for d=~ . In general, for d approaching in­
finity, r should approach zero, although there are 
other opinions, Steinitz et. al. [14). For the 77 sam­
ple stations, Model III is selected as the best of the 
three models, with the explained variance for r of 
87.4 percent for t he 3003 values of r and d , with 
d ranging from 4 to 424 miles. The A coefficient is 
larger than for the 41 st ations (0.722 in contrast to 
0.613), showing that A increases as the range of d 
increases . It can be expected that A goes to unity as 
d goes to infinity. 

TABLE 3.6 

Initial Computational Values of Coefficients in the Relation p=f(d) 
of Equation 3.19 with One to Six Terms 

Number of 
Coefficients A B c D E F 

1 0.001 

2 0.500 -0.010 

2 1.000 

3 1.000 -0.001 -0.080 

4 0.900 -0.005 1. 000 1.000 

6 1.000 -0 . 006 0.3x10 -4 -l . OxlO -8 2.Sxlo-10 -1. Oxlo-10 
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Regres sion 
Model Equation 

r=A exp(Bd + Cd cos 20 + 

l 
Dd sin 26 ) 

A=0.903 C=0.0005 
B=-0.004 0=0.0002 

II 
r=AeBd 
A=0.889 B=- 0.003 

Bd 
III r =Ae + 1-A 

A=0.613 B=- 0.011 

IV 
r=AeBd+Cd + 1- A 
A=0 . 279 B=-0.033 C=-0.0014 

Six term po1ynomi~s 

v A=l . 000_ 3 D=-10_10 B=-6xl0 _5 E= - 10 _13 C=2.15x10 F=1 . 011xl0 

III r=AeBd+ 1-A 
A=0.722 B=-0.008 

IV 
r=AeBd+ Cd + 1-A 
A=0.366 B=-0.019 C=-0.001 

Six term po1ynomi~s 

v A=l.OO _3 D=-1 0_10 B=-6xl0 E=- 10 -5 -13 C=2.05x10 F=1.507x10 
Bd r=Ae + Cd + l~A 

IV A=0.246 B=-0. 0242 C=-0 . 0006 
A=0.315 B=-0.0281 C=-0. 0021 
A=0.279 B=-0.0333 C=-0 . 0014 

-1 
VI r=(l+Ad) 

A=0.006 
-n 

VII r=(1+Ad) 
A=0.016 n=0.534 

Ad 
VIII r=e 

A=-0.006 
Ad -1 

IX r=e (1+Bd) 
A=0.001 8=0.009 

X tr=(l+Ad)-~ 
IA=O.Ol8 

Table 3 . 7 

Fitting ~ndels p=f(d) for the Dependence Among the ~. Series 
1 

Computer Number t-Ie an Variance Standard Mean 
Time of of of Deviation Square 

Series seconds Iterations* r r of r Error 

~. 28. 63 10 . 598 . 021 . 145 .002 
1 

(, 
1 

8 . 22 9 .598 . 021 .145 .002 

f;i 8.68 7 .598 .021 . 145 . 001 

f;. 15.27 11 .598 . 021 .145 . 001 
1 

f; 
i 

85 . 75 7 .598 . 021 . 145 . 002 

f;i 33 .10 8 .508 . 024 .158 . 003 

f;i 48 . 96 10 . 508 . 024 .158 .002 

(. 
1 

148 . 30 7 . 508 • 024 .158 .002 

13. 36 12 .721 . 009 .097 . 001 xp T 
E ' 10. 30 10 . 580 . 022 .150 . 001 
p,T 11 . 598 . 021 .145 . 001 

f;; 15.27 

(i 9. 16 8 .598 . 021 .145 . 002 

(i 21 . 64 10 .598 .021 . 145 . 001 

( i 7 . 71 7 . 598 . 021 . 145 . 004 

f;. 
1 

16. 60 9 . 598 . 021 .145 .002 

f; i 23.17 9 .598 . 021 .145 . 001 
-----·-

Number Percent of 
Sample of Explained 
Size Stations Variance R2 

861 41 90 . 0 

861 41 87 .4 

861 41 94 . 2 

861 41 91. 4 

861 41 94 .0 

3003 77 87.4 

3003 77 88 . 7 

3003 77 88.0 

861 41 88.4 
92 . 2 
91.4 

861 41 89.8 

861 41 90 .8 

861 41 78 . 8 

861 41 90 .4 

861 41 91.6 

*The figure is the number of iterations , up to 20, needed to converge to a tolerance of less than 10-S change in the mean souare 
error per iteration. 
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Figure 3.14 presents the (r,d)-points and the 
fitted r=f(d) functions of the 41 series for the xP•t 
series by using ~~el IV in graph (1). The same is 
done both for the Ep t series obtained by nonparamet­
ric standardization methods and by using Model IV in 
graph (2) , and for the ; i. series obtained by using 
~~el III in graph (3). The bias on the extreme right 
due to the constant (1-A) can be seen in al l three 
cases, forcing the fitted function upwards at large 
distances (say at 200-300 miles). Another important 
feature of these fitted functions is the range of the 
dispersion of observed points around the function as 
measured by R2 , the explained variance of r . These 
are shown in the last column of Table 3.7. The two 
graphs of Fig. 3.15 present a comparison of the fitted 
r=f(d) functions for the (r,d)-points of the 41 sta­
tion series . The first three curves represent Model IV, 
applied to the (r,d)-points, as follows: for the Xp t 
series with an 88 .4 percent explained var iance of r', 
and r=0 .721 • line (1); for the f;; series obtained 
by Eq. 3 .11 with a 91 .4 percent explained variance of 
r , and r=O.S98 , line (2); and for the nonparametri­
cally obtained tp,< series, with a 92. 2 percent ex­
plained variance of r , and r=0. 580 , line (3) . If 
the smal l differences in percentages of explained 
variances are disregarded, line (2) is close but above 
line (3) , with both l i nes (2) and (3) significantly 
below line (1). This shows that the removal of the pe­
riodic and regional trend variations in parameters 
significantly decreases the vertical position of the 
r=f(d) curve. Both Eq. 3.11 and the nonparametric 
methods of removing the periodicity and trends in pa­
rameters give very close r=f(d) functions for the ~i 
series. 

Lines (4), (5), and (6) of Fig. 3.1S represent the 
r=f(d) functions for Models V, III, and IV fitted to 
the (r,d)-points, with Eq. 3.11 used in producing the 
; , series. They '!xplain 94.0, 94.2, and 91.4 percent 
of the variance of r , respectively. Considering the 
expl ained variance attributed to each fitted model to 
be about the same, these three curves appear to be 
s imilar, except for large values of d . 

Models VI, VII, VIII, and IX of Tables 2.1 and 3.7, 
shown as lines (6), (7) , (8) , and (9) in the two 
graphs of Fig. 3.16, meet the requirements of p=l for 
d~O , and p=O for d•~ • Model s VI and VII, which are 
comput ationally more expensive than Model III, have 
the explained variances of 89.8 and 90 .8 percent, re-

(I) 

0.5 

d 0.0 ....._ ___ --~..._ ___ ---.J _____ ~~ 

1.0 

05 

d 
0.0 

0 100 200 300 
Miles 

Fig. 3.15. Comparisons of the fitted r=f(d) functions: 
(1) Model IV, Xp,t series (4) Model V, tp, t ser~es 
(2) Model IV, e:p,T series (5) Model III, ~p ,Tser~es 
(3) Model IV, ~P. T series (6) Model IV, t p,T ser1es 

spectively. Model VII has two parameters, requiring 
more than twice the computational time to converge to 
constants with a 10-S tolerance in the mean square er­
ror. The coefficients of Model VI, given by Alexeyev 
[15) as r=(l + 0.006)-1 , fall within the ranges quo­
t ed, namely O. OOS<A<O.lO, and A=0.006 . Model VII is a 
modification of Model VI to improve the symmetry of 
fit about the (r,d)-points for the values of O<d<lSO 
miles and especially for the values of O<d<75 miles . 
~lodel VII, which is 

r = (1 + 0.016d)-O.S34 3.21 

(2) (3) 
1.0 .---.---.---,.....----..--.--,...----, 

1.0 \ r 

:.\ . 
r 

0.4 1--+--+--+---+--t---t----! 

0.2 1---+--+-+--+---+--+--l 

QL--L--~-L--~-L--~d~ 
0 100 200 300 

miles 

1\r 
\: .. 

0.8 --~ .= ... · 
·:M ~ 

0.6 1---ll..lo..C!!i!ilt<::~''h::::-t--:-+--+--t---i 
·~ ... ~~~: . 

0.2 1---+-+---!--+--+---+--1 

0L--L--~~--~~--~d~ 
0 100 200 

miles 

300 

0.8 ;~~ 

· .... :.~~ · 
0.4 1---11----l-· _. 4'-'..:.· ·..:.· .:j.:·:;;".:f.·~-~·~-+--l .: ·:.. .=~. 

0 .2 1---+-+---+--t--+---+--t 

0 100 200 

miles 

300 

f d · r~AeBd+ Fig. 3.14. Correlation coefficient, r , versus the interstation distance, d , and the itte funct1on 
Cd+l -A (solid line); (1) for the historical Xp t series, A•0.315 , B=-0.0242, Cz-0. 00062 , (2) for the nonparamet­
rically det ermined e:p T series, A=0.315, B=-0.6281, C=-0.00217, and r=AeBd+l-A, and (3) for the regional t; se­
ries obtained by Model III, A=Ol613 , B=-0.011. 
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Fig. 3. 16. Comparison of the fitted r=f(d) function 
for the C; series for different models of Table 2 .1 
and Table 3.7. Line numbers coincide with the model 
numbers in these two tables. 

accounts for 90.8 percent of the variation in r , and 
the exponent is close t o -0. 50 ; perhaps this value of 
-0.50 would be superior to the use of minus one as 
used in Model VI . The selection of the exponent be­
tween 0.50 and 1.00 is not pursued further in this pa­
per. However, when the exponent is 0.50, defining the 
model as Model X, 

r • (1 + O.Ol8d)-O.SO 3.22 

which accounts for 91.6 percent of the variation in r. 
The fitted Model VII, line (7) of Fig. 3.16, decreases 
initially faster than line (6), but is close to line 
(3) and the line of the models using the (1-A) term 
and the six-term polynomial. Model VIII, which is a 
simple exponential function, explains 78.8 percent of 
the variation in r . Combining Model VIII with Model 
VI, as a gamma-type function, designated as Model IX, 
explains 90.4 percent of the variation in r . Model IX 
produces a more rapid drop for small values of d than 
does Model VI. 

There is very little difference between the best 
fitted models except for the symmetry of the (r,d)­
points about the f itted r~f(d) function. Model VII or 
Model X are best in this respect, but each requires 
twice as much computer time as Model VI. 
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For the following reasons it is difficult to 
study the distribution of r values about the fitted 
function: 

(1) The distribution of r is not readily ob­
tainable for the t · variables of the three-parameter 
gamma distribution;' 

(2) The dependence structure p=f(d) should be 
introduced in deriving the sampling distributions f(r) 
for given d ; 

(3) The bound of p=l requires a l l tolerance lim­
its to converge to p=l for d=O . 

Perhaps a good approach to placing t olerance lim­
its on the r=f(d) functions is to transform the r val­
ues into the Fisher's z variables, with the standard 
deviation of z defined as 

= _1_ 
cz ,fN::f 3.23 

in an interval 6d . For each d , the model p=f(d) 
gives the estimated popul ation value . Assuming z to 
be normal l y distributed, N(zp, cz), the tolerance lim­
its, zu and Zt , at the 95 percent level are 

z = z ± 1.96o u,t p z 3. 24 

This z transformation takes care of the fact that f(d) 
is bounded by p=+l , because z for p=l becomes infi­
nite. 

1.00 r--cr,....-..--r--..---r--r-- ..---. 
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Fig. 3.17 . Model III, upper graph, and Model Vii , 
lower graph for Region I with correspond­
ing 95 percent tolerance limits. 



Another appr oach is to consider the standard er­
ror of the estimate of the fitted p=f(d) function . 
This standard error of the estimate , Sp , is a measure 
of the size of residuals (the standara error or dif­
ferences between the obser ved and t he estimat ed values 
of r). Then the residual s may be assumed to be nor­
mally distributed wi th the mean of zero and the vari­
ance s~ for each interval Ad about a given d . 

Model III and Model VII are selected to illus­
trate the computation of the tolerance limi ts for the 

; ; variables. This information is shown in Table 3.8. 
Table 3. 8 also gives the percentage of point s outside 
these limit s in comparison with the expect ed percent­
age for the assumptions used in deriving either the 
distribut ion of r about p=f(d) or the distribution 
of the residua l s (r-p) . Figure 3. 17 gives t he toler­
ance limits for the p=f(d) functions of ( i , namely 
for Model III (upper graph) and Model VII (lower 
graph) , with the 95 percent tolerance limits computed 
by Eq. 3.24 . 

Table 3.8 

Tolerance Li mi ts f or p=f (d) Models for the ( i Series for 41 Stations 

Eq. 3. 24 Percentage Standard 

Interstation of points Error of 

Dist ance ~to del p=f (d) Tolerance limits outside Estimat e Percentage of point s outside 

Miles Values rl r 2 r 1, r 2 sp ;thp :t2sp 

0 1.000 -- --
so 740 . 777 . 696 

100 III . 590 . 645 . 528 18.1 0.047 23.3 5 .5 
200 . 454 . 522 . 380 
300 . 409 . 484 . 332 

0 1.000 -- --
50 .724 . 764 . 679 14 . 2 0.037 29.0 8.5 

100 VII .592 . 646 .529 
200 .457 . 522 . 380 
300 . 384 . 458 .304 
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'CHAPTER IV 

APPLICATION OF MODELS TO REGION II 

Region II is in the North Central Continental 
United States covering an area of 20,000 square miles. 
It lies between 96.00 and 99.50 degrees west longitud~ 
and 40.00 and 42.50 degrees north latitude. This re­
gion demonstrates that a smaller number of monthly 
precipitation series from gauging stations in a topog­
raphically homogeneous area can effectively be used 
for regionalizing the basic parameters of series, 
without using the subregion approach as it was done 
for Region I. Each of t he resulting stochastic t i 
variables obtained from the regionalization of the 
basic parameters, by accounting for the annual cycli­
city and regional trends in these parameters, are 
shown to follow the same three-parameter gamma proba­
bility distribution function. In addition, the linear 
correlation structure of the stochastic ~i variables 
can be modeled with a similar p•f(d) relationship 
for Region II, as was previously shown for Region I, 
with p the lag-zero cross correlation coefficient 
and d the interstation distance between any two sta­
tions of monthly precipitation series. 

Since Region II is used to demonstrate 
cedures developed, it is not necessary to 
all the details as presented in Chapter III. 

the pro­
reiterate 

4.1. Data Assembly for Region II. Region II 
which has relatively simple variation of the basic 
parameters over the area satisfies the follo~ing three 
criteria: (1) a minimum continuous series of 30 years 
of monthly precipitation; (2) a change in station lo­
cation during the 30-year period of less than· one mile 
in horizontal direction and less than 100 feet in ele­
vation; and (3) no more than three years of missing 
data for any one series estimated by using data from 
adjacent stations. 

Twenty-nine precipitation stations are selected 
for investigation, each with 30 years of monthly val­
ues (N=360 values) for the period 1931-1960. The 
position within the U.S.A. of Region II is shown in 
Fig. 4.1 . The locations for these 29 stations are 
given in Fig. 4. 2., with the coordinates origin at 
99 .50 degrees west longitude and 40.00 degrees north 
latitude . This or~g~n is used for all subsequent 
graphs in the analysis of the regional distribution of 
parameters. Table 3 in the Appendix gives the infor­
mation for Region II similar to that given for Region 
I. The identity number is prefixed with 25 for 
Nebraska. 

Fig . 4.1. Location within U.S .A. of Region II used as 
the second example for the regionaliza­
tion of parameters of monthly precipitation 
series . 
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Fig. 4. 2. Positions of 29 stations, with numbers for 
the Nebraska study Region.II . 

Climatic features are given in Fig. 4.3. in the 
form of the variation of the general monthly mean, Xi, 
for the individual stations (i=l,2, . .. ,M) , with M 
being the tota.l number of stations . The series means 
change over the Region II almost linearly, Fig. 4.3 
upper graph, from the Northwest corner with a value of 
1.8 inches to the Southeast corner having a value of 
2.2 inches, with a southwest-northeast orientation of 
isolines. The series standard deviation, Fig. 4.3 
lower graph, vaxies in a similar manner with values of 
1.8 in the Northwest and 2.0 in the Southeast, again 
-..•ith the isolines oriented approximat ely southwest­
northeast. 
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4.2. Time Variation of Parameters . The stochas­
tic component ~p,r is obtained from the monthly pre­
cipitation series xi,p, t at any station i , 
i=l,2, . .. ,M, with p=l,2, ... ,n, and t=l,2, ... , w , M 
being the number of stations, n the number of years , 
and w the number of intervals within the year. In 
the case of Region I I, M:z29 , n•30 , and w•l2 .. 

The periodicit y in the monthly means are approxi­
mated by the Fourier series of Eq. 2. 3. For the esti­
mated sample monthly means, mt, the fitted Eq. 2.3 is 
then of the form of Eq. 3.1. Similarly,Eq. 2.3 ap­
plies to a1 resulting in a fitted periodic function 
for the estimated monthly standard deviations. Once 
h(v) and h(a) have been inferred, the differences 
Cmr-Vt) and (s,-a,) are considered random sampling 
variations. 

For the mt and s, series first studied, h(v)• 
h(a)=l is hypothesized and tested by statistical anal­
ysis of all M time series. Table 4.1 presents the 
percent of the variance of the monthly mean, m1 , and 
of the monthly standard deviation, s, , explained by 
the fitted 12-month harmonic of v, and Ot for all 
29 stations of Region II. From 87.2 t o 93 .5 percent 
of the variance, or 90.6 percent , on the average, is 
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!so lines of the 30-year general monthly 
mean Xi ' upper graph, and the 30-year 
monthly standard deviation Si, lower graph. 

explained by the single 12-month harmonic in the case 
of mT . From 76 .0 to 97.0 percent of the variance, 
or on the average 90.1 percent, is explained by this 
first harmonic in the case of sT. The second (6-month) 
harmonic explains only an additional 3. 08 percent of 
the variance of mt , and 2.73 percent for st , while 
the third (4-month) harmonic has the corresponding 
figures of 2.44 and 1.70 percent. The average unex­
plained variances of mt and St by the first harmonic 
are 9.4 and 9.9 percent, respectively. This means that 
the remaining five harmonics (second through sixth) 
would allow only 1.8 or 2.0 percent, on the average, 
respectively. The differences in the order of magni­
tude of contributions by the first and all the other 
five harmonics are such that a decision to retain only 
the f irst harmonic in Vt and ot is justified -
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To test for the significance of harmonics in mT 
and sT , the same criteria are used for Region II as 
for Region I; that is at least 90 percent of·the vari­
ance of mt for 80 percent of the station series is 
explained by Vt, and that at least 85 percent of the 
variance of St for 80 percent of the station series 
is explained by oT . If this criteria is met, the mt 
and St parameters for the 29 stations in Region II 
may be adequat-ely approximated using only the 12-month 
harmonic in th-e Vt and ot periodic functions. For 
the first harmonic in Vt • only 17 of the 29 series 
(55 percent) exceed the 90 percent level; however, if 
the level is lowered to 88 percent, 28 of the 29 sta­
t ion series (96 percent) are included . This is con­
sidered sufficient for accepting the hypothesis. For 
the monthly standard deviation, St, 24 of the 29 sta­
tion series (82 percent) exceed the 85 percent cut-off 
level, and the hypothesis is accepted. 

Figure 4.4 . gives the correlogram and the spec­
tral graph for the first of the 29 stations giv.en in 
Table 3 of Appendix. The correlogram closely resembles 
the 12-month cosine function, while the spectrum has a 
significant spike only at the 12-month frequency. Sim­
ilar graphs can be shown for nearly all of the 29 
series. These graph~ also support the conclusion that 
the first harmonic in the mt series, computed from 
the xp,t series, is the most important, and that the 
higher-order harmonics (the second through the sixth) 
can be neglected. 

-0.5 

k 

10 30 

15.0 

10.0 

5.0 

f 

Fig. 4.4. Correlogram (upper graph) and spectrum (lo­
wer graph) of the first precipitation ser­
ies (station 1) of Table 3 in the Appendix. 



Table 4.1 

Percent Variance of Monthly Means, m.• and 
Monthly Standard Deviations, s,., Explained by 

the First Harmonic (12-Month Harmonic) of ~ and 
(Underline denotes extreme values) T 

Station For Monthly For Monthly 
Number Mean m Standard ,. 

Deviation s ,. 
l 90.4 89.1 
2 91.9 93.8 
3 90.7 97.0 
4 92.4 89.0 
5 90.9 93.0 
6 88 .7 83.3 
7 88.9 87.4 
8 92.5 96 . 3 
9 91.5 92.8 

10 93.1 92.2 
11 88.6 96.7 
12 91.0 92 . 9 
13 88.4 76.0 
14 91.9 95 . 5 
lS 89.0 95.4 
16 91.6 89.5 
17 89.7 80. 6 
18 89.6 90.9 
19 89.3 87.3 
20 89.8 81.7 
21 93.1 95.0 
22 88.9 90.3 
23 87 . 2 78 . 3 
24 91.8 89.9 
25 89.8 92.5 
26 90.9 93.2 
27 93.2 93.9 
28 91.8 87.3 
29 93.5 92 . 9 --

Average 90.6 90 . 1 

0 • 
T 

The values of h(~)=h(o)ol satisfy the objective 
of obtaining a minimum number of parameters with a 
necessary mi nimum number of significant harmonics, and 
in all cases the 12-month harmonic is required to ac­
count for the annual cycle in the monthl y means and 
monthly standard deviations. Therefore, only the 
first harmonic is used for both the ~,. and o,. func ­
tions in Region II. 

4.3. Regional Variation in Parameters. Because 
only the 12-month harmonic is selected to account for 
the annual cycle in the basic parameters of Xp,T for 
all stations, attention is focused on how the basic 
parameters, represented by x, C1(~), 81(~). s,., C1(o~ 
and e1(o), vary over the Region II. 

Of major interest is the general sample monthly 
mean, X or m,. . Figure 4.3. shows its overall varia­
tion over Region II using the 30-year observation 
period. Because the marked southeast to northwest de­
crease is normal to the isolines, which are also close 
to being parallel, first the simple linear plane trend 
for x over Region II is investigated following Eq. 
3.3. The coordinate Xi is referenced to 99.50 de­
grees west longitude as the zero abscissa, and the co­
ordinate Yi is referenced to 40.00 degrees north 
latitude as the zero ordinate. Table 4 . 2 presents the 
general statistics for the sample ser i es of 29 sta­
tions. The parameter Xi has the general average 

29 

2.034, variance 0.031, skewness coefficient 0.407, and 
excess coefficient -0.588 . Equation 3.3, by using the 
simple least-square approach of estimating B1 , B2 , 
and a3 , becomes 

1.8055 + 0.2014X. - 0 .1015Y. 
l 1 

4.1 

With the statistically significant regression coeffi­
cients shown in Eq. 4.1, this trend plane gives an 
explained variance which is 88.4 percent of the re­
gional variation of XL_. This high percentage of ex­
plained variance of Xi by such a simple model, E~ 
4.1, is as surprising as being able to explain the 
variation of m,. and o,. by the first harmonic. The 
lower explained variance by Eq. 4.1 in comparison with 
Eq. 3.4 can be explained by the reduced sample size, 
30 years for Region II as compared wit h 40 years for 
Region I. 

Figure 4.5 presents the differences between the 
estimated sample means Xi and the fitted model means 
~i given by Eq. 4.1. The isolines of differences are 
drawn with a stress on the zero isoline. The differ­
ences show that the sample means, Xi, are larger than 
the model means ~i , in the middle, northwestern and 
eastern sectors, with a maximum value of 0.10 inches. 
The negative differences dominate the central sectors, 
with a minimum value of -0.12 inches in the northeast. 

The fit by Eq. 4.1 is made ~ using the least 
square method and giving each xi value the same 
weight. Figure 4.3, lower graph, shows that the stan­
dard deviation si increases as Xi increases. A 
more proper approach in estimating s1, B2, and B3 
is to give weights 1/si to the devia!ions (xi-~i) , 
thus using tho relative deviations (xi-~i)/si which 
have a more homogeneous variance than using only the 
(xi-~i)-deviations in the least square fitting method. 
The weighted d&viations can be an improvement in the 
estimation of models and coefficients of the type con­
tained in Eq. 3.3 . for example, using this weighted 
approach for the case of xi , the new Eq. 4.1 has 

2.0 

Fig. 4.5. 
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Differences and isoli nes of differences of 
the estimated means and the fitt ed mean by 
simple least-square approach. 



Table 4.2 

Average Stati sti cs for Regional Parameters for 
Set of 29 Station Series of Region II 

Regional Standard 
Parameter Avg. Variance Deviation 

-x. 
l 

2.034 .031 .178 

cl . (lJ) 
,l 

1. 618 . Oll . 107 

e 1 . (lJ) 
, l. 

2. 963 .005 . 074 

-s -r,i 1.326 . 016 .127 

c1 . (a) 
,l. 

.824 . 012 .111 

e
1 

. (o) 
, l 

2.784 .005 . 075 

c
1 

. (iJ )/x. 
'l 1. 

.798 . 002 .054 

5 ./x. 
t,l l 

.652 . 0008 . 029 

c
1 

. (o)/x. 
,l l 

.406 . 002 . 050 

61 =1.8060, S2=0.1959, and S3=-0 .0965, with an ex­
plained variance for Xi of 96 . 4 percent instead of 
the 88 .4 percent shown above for the equal -weight 
least-square approach. Figure 4 . 6. shows the (xi-IJi) 
-devia~iops and their iso1ines using the weighted 
least-square approach . 

A clustering of the positive and negative differ­
ences (xi- lJi) into cells, as shown in Figs. 4.5. and 
4 .6, is the result, as postulated earlier , of the 
areal dependence amongst the station series. These 
cells, in contrast to the individual differences, may 
be inferred as being randomly distributed over the 
region, separated by the zero iso1ine. No particular­
ly strong trend seems present in the ar eal distribu­
tion of the cells, at least as inferred by a visual 
inspection. Therefore, it is attractive to conclude 
that the remaining 11 . 2 or 3.6 percent of the varia­
tion in Xi, unaccounted for by Eq . 4.1, is attribut­
able to sampl ing variation, or that the values of the 
mean Xi change in an approximately linear manner 
over Region I I. 

The f ive other r egional parameters, cl i(IJ) ' 
e 1 i (\J), s-r i• C1 i (o), and 61 i (a), ar·e also hypoth­
esized to have a' linear regibnal var iat ion. Their 
genera l statistics are given in Table 4.2. The iso­
lines of the amplitude, C1 i(IJ), of the 12-month 
harmonic in the mean are shown in Fig . 4.1., upper 
graph. These isolines suggest a northw·est to south­
east trend with the lowest values in the northwest 
(1 .5 isoline) and the highest values in the southeast 
(1 . 7 isel in~) . At first glance, t he variation does 
not seem to be linear. The amplitude Cl,i(\J) has a 
regional mean 1.618, variance 0.011 and skewness coef­
ficient 0.742. 

Following the approach used for Region l · the 
hypothesis is advanced, that the ratio Cl,i(\J)/xi is 
a regional constant. The mean for the 29 i ndividual 
values of this ratio is 0.798, the variance is 0.002, 
and the skewness coefficient is 0.273. Because of the 
very small value of the variance of CI,i(w/xi,this 

Coefficient Coefficient Coefficient 
of Variation of Skewness of Excess 

.087 .407 - .588 

.066 .742 - .028 

.025 - .593 - .126 

.096 . 781 - .080 

.134 .875 1. 613 

.027 -.631 1.684 

.068 .273 - .625 

. 045 .ll8 -1.043 

.125 .140 - .730 

ratio may be considered as not being significantly 
different from its mean value . Figure 4.7 , l ower 
graph, shows how this ratio changes over Region II . 
The 0.75, 0 .80, and 0.85 isolines are north-south ori­
ented, with the regional variation highly reduced . The 
variance of Ci, i (\J)/Xi , 0.002, is only 18 percent of 
the variance of C1 i (\J) , 0. Oll, the same percent as 
was found for Region I. 

The upper graph of Fig. 4.8. gives the isolines 
of s . , the mean of the 12 values of standard 

t,l 
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Fig . 4 . 6 . The same points and isolines as in Fig . 
4 .5 . except that the weighted least- s quare 
estimation approach is used for standardi­
zed deviat ions . 
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Fig. 4.7. The isolines of the amplitude Cl,i(V) for 
the mean VT , upper graph; and the iso­
lines for the ratio Cl,i(V)/~i lower 
graph. 

deviations s, for each of the 29 indivi dual Xi,p,• 
series, while the lower graph gives the isolines of 
s T i/Xi . There is a difference between the Si es­
timates sho~~ in Fig. 4.3., lower graph, and the ~t.i 
individual means of St shown in Pig. 4.8., upper 
graph; with the s, i values smaller than the Si 
values. Because of periodicities in the standard de­
viations and the use of Eq. 3.2, the regionalization 
is done for St ,i but not for Si· There is a general 
increase in ~T,i values from the northwest to the 
southeast as for the previously studied parameters . 
The mean for the 29 values of St,i is 1.326, variance 
0.016, and coefficient of skewness 0.781. The uniform 
change from the 1.5 isoline to the 1.2 isoline in Fig. 
4.8. suggests that a trend plane may also well repre­
sent the regional variation of sT,i . 
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The isolines of the parameter St i , the 
mean of 12 values of s, standarJ devia­
tions, upper graph; and the isolines of 
the ratio St ,i/xi , lower graph. 

Considering the ratio St,i/~i as a new regional 
parameter, it has a mean equal to 0.652, with a var­
iance of 0.0008, and a skewness coefficient of 0.118. 
For the set of 29 station series, this reduced var­
iance of 0.0008 when compared with the variance 0.016 
of s . is only about 5 percent. 

<,1 

The ratio St i/~i is selected as a regional 
constant equal t o o:652. The isolines and point values 
for this ratio are also shown in Fig. 4.8., lower 
graph. Its small variation, with the 0 .65 isoline 
winding throughout the area supports the hypothesis 
t~at s, , i and Xi closely approximate the propor­
tlonal parameters. 



The isolines for the ampl itude of the 12-month 
harmonic of the monthly standard deviation are shown 
in the upper graph of Fig . 4 .9. The mean of the 29 
individual values of C1 i C~) is 0.824, wi th variance 
0.012 and skewness coefficient 0.875 . The ratio 
C1 i(a)/xi has a mean of 0 . 406, variance 0.002 and 
skewness coefficient 0.140. The isolines of the ratio 
are given in the lower graph of Fig. 4.9., and show 
that the hypothesis of t .he ratio being a constant is 
well founded. 

The isolines and poi nt values for the phase 
angles, 61 i(~) for the periodic ~ •• and 61 iCc) 
for the periodic a, , are shown in Fig. 4 . 10., the up­
per and lo~er graphs of Fig. 4.10., respectively. For 
el,i(~) the isoline values range from 2.80 to 3 .05 
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Fig. 4 .9. The isolines of the amplitude cl i(a) of 

12-month harmonic of the monthly' standard 
deviation, upper gr_!Ph; and the isolines of 
the ratio Cl, i(a )/Xi , lower graph . 
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and for el ,i(Q) from 2.7 to 2.8, with increases from 
the southeast to northwest corners of Region II. 

The variation in 61 iC~) is considered to result 
only from sampling variat!on. The parameter 61 i(~), 
with mean 2.963 and variance 0.005 , is selected as a 
regional constant equal to 2.963. The r egional varia­
tion in el,i(o) may also be considered the sampling 
variat ion, and the parameter may be considered a re­
gional constan t equal to 2.784. The southeast­
northwest pattern in both el , i(~) and el ,i(a) is 
quite likel y the r esul t of regional dependence i n 
sampling variations rather than a population charac­
teristic. As stated for Region I, there is no physical 
reason why the phases for the periodi c mean and the 
periodic standard deviation should be different . A 

2.0 %
3.05 

• 2 

2.97 
3.o5 1 • 

• 3 .08 / 3.00 

0 2.94 

.95 

• 3.01 

1.0 

o:l05 

• 2 .99 

• 2.96 X· 1 
0.0 

0.0 
Y j 

2.0 

1.0 

1.0 2 .0 3.0 

• 2 93 
• 2 .72 2.80 

2.er: ~'" o 2 

8 

o 2.62 2.80 

279 
• 2 .8 1 • 

2 .75 

.,.o~f'/'7.,·= 
... :_-/ ____.:7.::, 
2.75 2 .69 

O.OL-----L-----~-~·~---_. ____ _. ____ ~~--~ 
0.0 1.0 2 .0 3.0 

Xi 

Fig. 4.10. The isolines and point values of the phase 
angles: the 61 i(~) of the 12-month har­
monic i n periodic m, , upper graph; and 
the 6l , i(O) of t he 12-month harmoni c in 
periodic s, , lower graph . 



f ur ther simplificat i on may be obt ained by putting 
61 i(~)=61 i (cr) . In t hat case either 61=2.963 or 
the average fl•2 .873 is used. Regardless of the ad­
vantages of this unique f1 value , both const ants, 
2.963 and 2.784, will be used in the further analysis 
of monthly precipitation. 

The regional range in the isolines of Xi is 
approximately 0.40 inches , while for c l, i(IJ) it is 
about half thatL or 0. 20 inches . The coeffi cient of 
variation of Xi is 0.087, which is 3. 5 times that 
for Cl , i(ll) , while the mean of Xi is 1. 27 times 
that for C1 i(ll) . The regional variabi l ity is then 
much greater in xi than in c1 i(ll) . The fact that 
the major regional variation exists in the mean Xi 
rather than in the periodic fluctuation about the mean, 
measured by Cl,i(ll) , suggests that_the trend plane 
which accounts for t he var iation in Xi is the most 
i mpor t ant aspect of the regionalization of precipita­
tion parameters. 

Applying a similar analysis t o t he monthly 
standard ~eviation st,i• the range of regional varia­
~io~ in si,~ is about 0.30 inches, while in_ cl,i(cr) 
1t 1s 0.20 1nches . The regional mean of s1 i is 
1.32; this is 1.61 times the mean of Cl,i(cr) , ' which 
is 0. 824 . However , the r egional coefficient of varia­
t ion for St,i is 0.096 which is onl y 71 percent of 
that for cl, i (o) . 

Again the major regional variation is in the mean 
St,i rather than in its periodic fluctuation. This 
suppor ts the conclusion that the parameter of periodic 
variation is more difficult to regionalize. Although 
it has a greater consistency over the region, it also 
a greater regional random sampling variati on . 

With the above regional models 
par amet ers, the second-or der stationary 
nent for any station series is 

for 
E:p,t 

various 
compo-

1.8055+. 20:4x:-0.1015\ - 1 - 0.798 cos (~ +2.963) 

0 .652 + 0. 406 cos(~~ + 2. 784) 
4 . 2 

This was obtained by following Eq. 3.11 with IJ 1 from 
Eq. 4.l replacing _xi , an~ five ot her parameters 
Cl(ll)/x, el(ll) , s1 /x, C1(o)/ x, and 81 (cr) of Region II 
being replaced by their constant values, 0.798, 2.963, 
0.652, 0. 406, and 2.784, respectively. 

4.4 . Test ing Sequential Independence of Stationa­
r y St ochastic Components . To dotormine how closely 
E;i=~p,t approximates an independent st ationary st~ 
chastic process as a result of tho simpl ifying assump­
tions made for the deterministic periodic time and 
regional trend variations in the basic parameters, the 
correlogram of each ~i series from the 29 monthly 
precipitation series of Region II is tested to deter­
mi ne whether it significantly departs, on the 95 per­
cent probability level, from the correlogram of an 
independent series . Onl y t he first 20 lags are used 
i n the correlograms, wi th t he tol erance limits set at 
the 95 percent level as computed by Eq. 3.13. 

Table 4 .3 presents t he number of r k values for 
the l ags 1 through 20 which are outside the tolerance 
limit s. The serial correlation coefficients r k for 
t he l ags 1, 8, and 13 i n Table 4.3 are often outside 
the tolerance limits . 
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Table 4 .3 

Number of Serial Correlation Coefficients 
of ~i Outside t he 95 Percent Tol er ance Limits 

Number of 
Lag Deviations 

1 9 
2 4 
3 0 
4 1 
5 1 
6 0 
7 0 
8 6 
9 2 

10 0 
11 4 
12 0 
13 5 
14 3 
15 4 
16 1 
17 3 
18 1 
19 1 
20 2 

Total rk computed 580 

Deviations 47 

Percent of Deviations 8.10 

Total Deviations less those 
for r 1 an-d r 13 33 

Per cent 5. 69 

The first serial correlation, r 1, is affected in 
Region II, as it was i n Region I, by some physically 
justified dependence in the monthly precipitation, as 
well as by the non-removal of harmonics other than the 
first one in the periodic parameters . By neglect ing 
t he numbers of r 1 and r 13 values outside the tolerance 
l imits, t he new percentages of rk values outside 
these limits ar e also given in Table . 4 . 3. In that 
case, and for the 29 st ation series , only 5.69 percent 
of rk values outside the tolerance limits , instead 
of 8 . 1 percent in the case where r1 and r13 are 
included. 

Using Eq. 3.16, t he e{fective number of stations 

for Region II is 2 . 24 for p; ;.0. 421 . Applying Eq . 
3. 17 for the average correiogram of Fig . 4.11 sup­
ports the premise t hat the ti series may be considered 
a time independent process. 

4 .5. Analysis of Independent Identically Distri­
buted Stochastic Components . In the structural analy­
s is and mathematical description of monthl y precipita ­
tion series it i s useful to determine the form of 
probability dist ribution funct ion of t he ~i series. 
Test s were performed for each E; i t o det ermine whether 
the frequency distribution curve can be well fitted by 
the normal function , the three-parameter lognormal 
function, and the three-parameter gamma function. Be­
cause E(ti)•O and E{vart i)=l , the values of the 
skewness and excess coefficients are crucial. I n fit­
t i ng the bounded t hree-parameter function , either 
lognormal or gamma, t he variation in estimated lower 
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Fig·. 4 .11. The average correlogram of l.;i variables 
(Region II) with corresponding 95 percent 
tolerance limits. 

boundaries is decisive for the identical distributions 
of these 29 station l.;i series. 

The variables l.; i of the 29 stations, with 
i=l ,2, . .. ,N and N=wn=360, were found to follow the 
three-parameter gamma probability function of Eq. 3.18 
well. The chi-square values of the 29 fits were com­
puted using 20 class intervals of equal probability 
resu"Iting in 17 degrees of freedom, and were tested at 
the 95 percent significance level. For the 29 station~ 
9.67 percent were not acceptable as three-parameter 
gamma distributed variables. These three stations, 
nos. 5, 24, and 27 of Table 3 of the Appendix, had 
computed chi-squares of 28 .00, 29 .77 and 28.00, re­
spectively, these are significantly higher than the 
critical chi-square of 27.6 at the 95 percent level; 
however, they are very close to the critical value . 

Table 4.4 shows the basic statistics and the 
computed chi-square values in fitting the three dis­
tribution functions to the 29 series of Region II. In 
the case of the normal function, none of the 29 sta­
tions had computed chi-squares l ess than the critical. 
For t he three-parameter lognormal function, 17 series 
have unacceptable chi-squares. All series are posi­
tively skewed, and the regional average skewness coef­
ficient for the 29 series is 1.173. The mean param­
eters of the maximum likelihood estimates of the three­
parameter gamma distribution function are as follows: 
(1) the lower boundary y=-1.683 , with a variance of 
0.0004; (2) the shape parameter &=2.616 , wi!h a var­
iance of O.Q59; and (3) the scale parameter 6=0.665 , 
with a variance of 0.001. In addition, the average 
mean for the 41 variabl es is 0.022, with a range in 
the means equal to 0.191, from -0.048 to 0.143. The 
average variance is 1.091 with a range in the vari­
ances equal to 1.306, from .336 to 1.306. Although 
the l.;i variables do not have mean zero and variance 
unity exactly, the ensemble of the l.;i variables is 
treated as if it had mean zero and variance unity. 
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Considering the regional variation in the lower 
boundary as a sampling variation, a fit of the normal 
function to this variation, with mean -1.683 and stan­
dard deviation 0.067, has a chi-square of ~.68 using 
five class intervals for the 29 values of y ; this is 
not significant in comparison with the critical chi­
square value of 7.81 at the 95 percent level, with 
three degrees of freedom. The ti series of Region 
II may be also considered as identically distributed 
random variables, as was done for Region I. The 29 
series of ti variables in Region II may then be in­
ferred as independent, standardized , third-order sta­
tionary, identically distributed random variables, 
following the three-parameter gamma probability densi­
ty function. Table 4.5 gives the mean , variance, 
standard deviation, and skewness coefficient for the 
29 individual series' means, variances , standard devi­
ations, skewness coefficients, minimum observed values 
of the t i series ; as well as the lower boundary, 
shape and scale parameters of the 29 fitted •hree­
parameter gamma distribution functions . The average 
of means is 0 .022, with a variance of 0.002, and is 
close to zero, while the average of variances is 1.091, 
with a variance of 0.008, and is close to unity. The 
average of the 29 standard deviations is 1.043, with a 
variance of 0.001, while the average of the skewness 
coefficients is 1.173, with a variance of 0.033. The 
small variations of the ~ . a, and y estimates about 
the average values of 2.616, 0.655, and - 1.683, as 
well as the small variations of the above general pa­
rameters, imply that the l.;i variables computed by 
Eq. 3. 11 are a identically distributed, third-order 
stationary stochastic process. 

Table 4.5 

Average Statistics of the Parameters of the 29 ~i 
Variabl es for Nebraska 

Statistic Average Variance Standard Skewness 
Deviation Coefficient 

Mean 0.022 0.002 0.053 0.411 

Variance 1.091 0.008 0.093 0.972 

Standard 
Deviation 1.043 0.001 0.044 0.575 

Skewness 
Coefficien 1.173 0.033 0.182 0.055 

Minimum 
Observed 

Value -1.631 0.003 0. 057 0 .410 

Shape 
Parameter 2 .616 0.059 0.248 -0.045 

Scale 
Par ameter 0.655 0. 001 0 .043 0.090 

Lower 
Boundary -1.683 0.004 0.067 0.151 

4.6. Regional Correlation Structure for Identi­
cally Distributed Stochastic Components . The linear 
regional dependence between the identically distrib­
uted ensemble of stationary stochastic variables in 
Region II is here investigated for the lag-zero 
cross correlation coefficients as related to the 
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Station 
Number 

l 
2 
3 
4 
s 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

~lean 

. 041 
-.048 
- . 016 

.063 
-.042 

.104 

.030 

.030 

.030 
-.048 
-.035 

.051 

.039 

.058 

.077 

.023 

. 143 
- .041 
-.019 

. 098 

.023 
- .001 
-.005 
- . 019 

.083 
- .040 
-.035 

. 013 

.102 

NORMAL FUNCTION 
Standard 
Deviation 

x2 

1.033 90.22 
1.046 74.88 

. 985 78.22 
1.091 69 .00 

.989 81.77 
1.143 69.66 
1. 021 60 . 00 
1. 017 69 . 22 
1. 032 99.77 
1.016 73 .66 

.990 75 . 66 
1.028 56 .88 
1.109 86.66 
1. 074 76.44 
1. 028 71.22 
1.036 73.22 
1.050 77.00 

.987 71.66 
1.037 99.22 
1.101 77.66 
1 . 009 64 .ss 
1. 086 80.88 
1.090 82.88 
1.014 70 .44 
1.127 73.55 

.997 76.44 

.994 82.00 
1.066 73 .22 
1..072 77.00 

-

Table 4.4 

Fitting Benchmark Probability Distribution Functions to Frequency 
Distributions of ~i Series for Region II 

LOGNORMAL FUNCTION GAMMA FUNCTION 
Lower ~lean Standard Lower 

Boundary Deviation 
x2 Boundary 

alpha beta x2 

-1.588 . 266 .727 ~ -1 . 613 2.404 .688 18.11 
-1.724 . 328 .647 22.77 -1.749 2. 767 .615 13.88 
-1.732 . 369 .626 22.22 -1.761 3.042 .574 16. 00 
-1.671 .342 .718 35 . 55 -I. 786 2.982 .620 14.55 
-1.687 .309 .663 ll..J.l. -1.714 2.787 .599 28.00 
- 1.682 . 373 .701 23.88 -1.711 2. 560 . 709 13. 88 

-1.687 .357 .648 35 . 22 - 1.713 2.839 .614 20.88 
-1.503 . 178 .785 36.44 -1.528 2.192 . 711 16.66 
-1.570 . 241 .744 34.88 -1.595 2.352 .691 15.55 
- 1.7 01 .301 .682 23.22 -1 .727 2.626 .639 12. 88 
-2.237 . 695 .441 26.33 -1.662 2.564 .634 25.33 
-1.682 .365 .655 33.55 -1.709 2.831 .622 25.22 
-1.604 . 274 .710 24.55 -1.626 2.369 . 703 8 .66 
-1.654 . 332 . 706 27.77 -1.682 2. 598 .670 13.11 
-1.607 .299 .755 41.44 -1.739 2.910 .624 15.33 
-1.667 .329 .677 36 .44 -1.693 2.682 .640 20 . 77 
-1.660 .412 .638 36.00 -1.688 2.915 .628 21.88 
·1. 734 .348 . 647 26.11 - 1.762 2.925 .588 15.77 
-1.622 .264 .689 23.22 -1.626 2.465 .651 16.22 
-1.618 .322 .721 35.88 -1.644 2.448 .712 9.11 
-2.275 .742 .432 18.33 - 1.628 2.409 .685 11.00 
-1.676 .284 . 754 34.33 -1.697 2.316 .732 8.44 
-1.670 . 296 . 710 29.66 -1.670 2. 386 .697 18.88 
-1.566 .190 .790 48.00 -1.576 2.151 .724 29. 77 
-2.384 .810 .438 18.22 -1.822 2.902 .657 15.22 
-1.657 . 284 . 670 18.55 -1.682 2. 677 .613 15 . 33 
-1.611 . 244 .697 39 .88 -1.633 2. 504 .638 28.00 
-1.662 . 291 .751 23 . 55 -1 . 764 2.753 . 645 """"""9.22 
-1. 612 .332 .700 43.66 -l. 626 2. 524 .684 26.77 

Mi ninwn Variance Skewness 
Observed 

Excess 

Value Coefficient Coefficient 

-1.579 1. 068 .997 .953 
- 1.716 1.095 1.451 3 . 343 
- 1.724 . 970 .962 . 641 
-1.654 1.190 1. 352 2.832 
- 1.677 . 978 1.111 1.322 
-1.674 1.306 1.473 3.601 
-1.679 1. 044 1.099 1. 537 
-1.493 1. 035 1.103 1.495 
- 1.560 1.066 1.088 1.326 
-1.692 1. 033 1 .011 . 958 
- 1.543 . 981 1.088 1. 571 
- 1.673 1.058 1.180 2.504 
- 1.597 1. 231 1.455 2.818 
-1.642 1 . 153 1.324 2.811 
- 1.597 1. 058 . 747 - .047 
-1.658 1.075 1.291 2.930 
-1.653 1.104 .971 1.011 
- 1.724 . 974 1.016 1.026 
- 1.592 1.076 1.323 2.183 
-1.608 I. 212 1.268 2 . 492 
-1.589 1. 019 .989 1. 026 
- 1.659 1.180 1.115 1. 257 
-1.633 1.188 1.456 2 .868 
-1 . 537 1. 028 1.098 1.460 
-1.674 1.270 1.438 4 . 156 
- 1 . 649 .995 1.135 1. 581 
-1.602 . 989 1.129 1 . 583 
-1 .639 1. 136 1.104 1.490 
-1.588 1. l49 1.252 2 .481 



interstation distance d . This is similar to tha~ 
done for R~gion I, with the simplification that 
~he azimuth, or plane normal angle is not assumed to 
contribute a s i gnificant amount to the explained var­
iance of r for the fitted p=f(d) function . Models 
VI , vn, VIII , and X are sel ected for study utilizing 
the approach of Eq. 3.19 .and the initial values of co­
efficients in the functions, as given in Table 4.6. 
The range of interstation distance for Region II is 
f rom 15 to 192 miles. The findings for t he model, 
!>=f (d), for Region II are simil ar to those for Region 
I . Model VII was found to be somewhat superior to 
Model VI, with the explained variance of 92.1 and 91.0 
percent for the variation in r , respectively. Forcing 
the exponent to 0.50 in place of the 0.571 used in 
~todel VII, R2 is increased by only 0.10 percent, 
showing that the choice of the pmf(d) model is not 
critical. Figure 4.12. shows the fit of Model VII 
with the tolerance limits computed by Eq . 3.24; 12 .9 
percent of the points fall outside these limits in­
stead of the desired five percent. 

0. 20 1----+---+---+----l 

d 
OOL---5~0----10~0---IL50---~200 

miles 

Fig. 4.12 . Model VII for Region II and f;i variables 
with 95 percent tolerance limits. 

Table 4.6 

Fitting Model of p=f(d) to Relationship of r to d . 

~~ d 1 Regression Computer Number of ~lean of Variance Std. Mean c. Sample No. of % of Explained 
' 0 e Equation Series Time sec. Iterations r of r of r Error 1 Size Points Variance R2 

-1 
VI r• (1 +Ad) 

( i A=0 .007 4 . 70 12 .665 .017 .132 . 001 29 435 91.0 

VII r• (l+Ad) - n 
A=O .OlS 

.:;i n=+0 . 571 12.25 10 .665 . 017 .132 . 001 29 435 92.1 

VIII r•exp(Ad) 
f; i A=-0 . 005 4.76 7 .665 . 017 .132 . 002 29 435 85.8 

X r=(l+Ad)-~ 
f;i A=0.018 14.17 9 .665 .017 .132 .001 29 435 92.2 
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CHAPTER V 

COMPARISONS AND CONCLUSIONS 

This chapter contains two sections, the compari­
son of the results of the structural analysis of area­
time hydrologic processes for obtaining independent, 
stationary and identically distributed stochastic 
variables of monthly precipitation for two topographi­
cally homogeneous regions in the central United 
States, and the resulting conclusions. The comparison 
shows that the stochastic f;i variables are the same 
regardless of the region once the basic parameters of 
the monthly precipitation have been regionalized and 
the specific regional characteristics r emoved . For 
the three-parameter gamma probability distribution of 
~i , with the same parameters over all of the regions, 
the cross correlation structure i s a function of posi­
t ion, interstation distance, orientation of station­
connecting lines, and lastly of the time interval of 
the year. 

5.1. Com arisons of Re ionalized Parameters. The 
major parameters, estimate by the sample statistics, 
of the ;i variables, of the 41 stations in Region I 
and of the 29 stations in Region II are compared . For 
each r egion the mean, variance , standard deviation, 
skewness coefficient, the lowest observed value, and 
the shape, scale, and lower boundary parameters of the 
three-parameter gamma probability distribution func ­
tion are either made and/or found to be statistically 
identical for all the ' i variables. Table 5.1 pre­
sents the basic statist ics of these eight parameters , 
namely the average, variance, standard deviat ion and 
skewness coefficient for Region I, Region II, and com­
posite values. 

Because the variables ; i are approximately 
standardized for both regions, and because the lowest 
monthly precipitation values are zero, the mean, vari­
ance, and the lower boundary should be equal for all 
series . Table 5.1 shows that the parameters are ap­
proximately equal for Region I and Region II. The 
parameters are also computed for the composite samples 
of 41 and 29 stations . This total sample has prop­
erties similar to the individual samples , except for 
the skewness coefficients, which vary over a larger 
range. 

The comparison of the ~i variabl es of Region I 
and II is made because this enables ~i to be the 
same variable not only for these two regions but for 
all others, provided that proper inferences are made 
for the time periodicity and areal trends in the basic 
parameters, coefficients and/or their ratios. In other 
words, the f;i variables are time indepe~dent and 
three-parameter gamma distributed with a=2.618 , 
S=0 . 663, and y=l.690, independent of both the region 
and the seasonal variation in t he case of monthly 
precipitation. 

Further improvements in the basic models 
to the ~i variables can be accomplished as 

(a) By including more harmonics in the 
f unctions, and by better discriminating the 
cant amplitudes by advanced test procedures; 

leading 
fol llows: 

periodic 
signifi-

(b) By using more terms, when proven to be signi­
ficant, in the trend surface functions for parameters 

Table 5.1 

Parameter 

Mean 

Variance 

Standard 
Deviation 

Skewness 
Coefficien 

Lowest 
Observed 
Value 

. 
a 

B 

. 
y 

Comparison of Basic Statistics of Parameters 
of ~i Variables for Region I and II. 

Basic Statistics 
Sample average variance standard 

Area Size deviation 

Region I 41 o. 042 0.008 0.092 
Region II 29 0.022 0 . 002 0.053 
Composite 70 0.034 0.006 0.078 

Region I 41 1.135 0.022 0. 150 
Region II 29 1. 091 0.008 0.093 
Composite 70 1.117 0.017 0.131 

Region I 41 1 . 063 0 . 004 0.068 
Region II 29 1.043 0.001 0.044 
Composite 70 1. 055 0.003 0.060 

Region I 41 1.156 0.033 0.181 
Region II 29 1.173 0.033 0.182 
Composite 70 1.163 0.032 0.180 

Region I 41 -1.651 0.003 0.056 
Region II 29 -1.631 0.003 0.057 
Composite 70 -1.642 0.003 0.057 

Region I 41 2.620 0 . 090 0.301 
Region n 29 2. 616 0.059 0. 244 
Composite 70 2.618 0.076 0 . 277 

Region I 41 0.668 0. 004 0.063 
Region I I 29 0.655 0 . 001 0.043 
Composite 70 0.663 0.003 0.056 

Region I 41 - 1.694 0.003 0.056 
0.067 Region II 29 -1.683 0.004 

ComEosite 70 -1.690 0.003 0.060 
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skewness 
coefficient 

0.306 
0 .411 
0.505 

0.972 
0. 636 
1.132 

0.743 
0.575 
0.903 

0.633 
0.055 
0.386 

0.175 
0.410 
0.267 

0.972 
-0 . 045 
0.698 

0.414 
0.090 
0.475 

0.247 
0.151 
0.239 



when expanded in a power series; 

(c) By finding the most appropriate functions for 
relationships between the basic parameters, in order 
to decrease the total number of coefficients to be 
estimated; and 

(d) By assuming that the mean of the first serial 
correlation coefficients, r 1 , of the ~i monthly 
precipitation series, is a positive val ue, and using 
the model ' i=F1 ~i- l+ni, with ni a less time depen­
dent variable than ~i' and consequently studying ni 
as the basic variable for analysis. 

Instead of fitting the three-parameter gamma 
probability function to ;i, ~i may be transformed to 
approximately symmetrical random variables, vi , by 
the cube-root transformation or by a similar approach. 
Then, a fit of the normal function would make vi 
identically distributed normal variables, with mean 
zero and variance unity. 

5.2. Correlation Structure Among ~ i Variables. 
The comparison is made for Region I and II for the 
lag-zero cross correlation functions, p=f(d) , for 
Models VI, VII, VIII, and X, as shown in Table 5. 2. 

Model 
No . 

VI 

VII 

VIII 

X 

Table 5.2 

Comparisons of Correlation Structural Models 
of ~i Variables for Region I and II 

Model 
Equation 
p= (l+Ad) -l 

p=(l+Ad) -n 

p=e -Ad 

p=(l+Ad)~ 

Region 

I 
II 

I 
II 

I 
II 

I 
II 

Coefficients 

A n 

0.006 
0.007 

0.016 
0.015 

0.006 
0.005 
0.018 
0.018 

0.534 
0.571 

Explained 
Variance of r 

R2 

89.8 
91.0 

90.8 
92.1 

78 . 8 
85.8 
91.6 
92 . 2 

This Table 5.2 demonstrates that for all four 
models the difference either in the model coefficients 
(A, or A and n) or in R2 are relatively small for 
these two regions. In Model VII the value of A is 
higher when n is small and vice versa. 

To improve the description of the cross corre­
lation structure, the following steps may be feasible: 

(a) To test models with more coefficients in 
order to increase the explained variance; 

(b) To test whether the other i ndependent varia­
bles, such as X, Y, ~. and T , in the general model 
p=f(d,X,Y,~, T) contribute significantly to the expla­
ined variance in the variation of r , as an estimate 
of p • 

To determine whether the type of the model, as 
well as the number of independent variables can con­
tribute significantly to better mathematically descri­
bing the cross correlation structure for the ; i 
variables, two procedures should be applied: first, 
develop good testing techniques for the inferences of 
both the models and the effects of various i ndependent 
variables; and second, test the models and independent 
variables on a large number of regions, so that the 
models and the order of magnitude of the effects of 
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individual independent variables (d,X,Y,~, T) may be 
well inferred a·nd used to determine the best generally 
applicable approach. This will be similar to studying 
the probability· distribution functions of the best fit 
by testing them in many regions and for a large number 
of variables of the same physical magnitude . 

5.3. Conclusions . The major parameters of the 
line-time, area-time, and space-time hydrologic sto­
chastic processes are periodic in time and have trends 
along the line, across an area, or over a space. The 
basic approach in this study was to investigate a typ­
ical area- time random process as an example for infer­
ring and removing the area-time variations in the 
basic parameters. The coefficients of any of the 
periodic parameters may also vary along a l i ne, across 
an area, or over a space. The random variables ob­
served at the set of points can be utilized to produce 
a set of statio·nary, but cross correlated time series. 
The sets of monthly precipitation series over the two 
regions are used to demonstrate the methodology ap­
plied in the structural analysis, by showing that the 
removal of periodicities and trends in the basic 
parameters produces a cross correlated stationary 
process. 

The results of investigations in previous chap­
ters are summarized as follows: 

A. Periodic Parameters. 

A.l. All basic parameters of an observed line­
time, area-time, or space-time stochastic hydrologic 
process may be periodic. The mean and the variance 
(or the standard deviation) are periodic for all time 
series with an interval of less than a year. The auto­
covariances (or· the autocorrelation coefficients), the 
third-order parameters (skewness coefficients and the 
dimensionless three-terms autoproducts),and the higher­
order parameters may also be peri odic. 

A.2 . For the area-time stochastic monthly preci­
pitation process, the mean and standard deviation are 
always periodic, except in very rare cases of even 
distribution of the mean monthly precipitation over 
the year. 

A.3. The monthly periodic parameters may be de­
scribed by a very small number of harmonics (say the 
12-month, 6-month, and possibly 3-month harmonics). 
Of the two regions studied, the 12-month harmonic ex­
plains a major portion of the periodic variations in 
both the monthly mean and the monthly standard 
deviation. 

A.4. Since the number of coefficients to be esti­
mated in the parameter periodic function is 2j+l , 
with j the number of significant harmonics, (ampli­
tudes are signif icantly greater in these harmonics for 
the periodic parameter than they would be for a non­
periodic parameter). The smaller the number of signi­
ficant harmonics, the smaller is the number of 
coefficients to be estimated. For the monthly mean 
precipitation of the two regions, only three coeffi­
cients were needed: the general mean,and the amplitude 
and phase of the 12-month harmonic for the periodic 
mean. Similarly, only three coefficients were needed 
for the periodic standard deviation. 

A.S. Since the above two parameters and the four 
coefficients of the periodic mean and standard devia­
tion vary across any region, the regional trend sur­
faces are required. In case other harmonics (6-month, 
4-month, ... ) are inferred to be periodic, this in­
creases the n~r of eo&ffiGients to be regionalized 



by four for each additional harmonic in the two basic 
parameters of the mean and the standard deviation. 
Therefore, an economy in the number of periodicity 
coefficients is required both from the computational 
point of view and because of the large sampling varia-
tions in coefficients. · 

A.6. For the two regions studied it was found 
that the 12-month harmonic explains large portions of 
the variations in the periodic mean and periodic stan­
dard deviation. The five rema~n~ng harmonics each 
explain a relatively small portion of the variations. 
Therefore, the five harmonics (other than the 12-
month) are inferred to be non-significant and to be 
the result • only of sampling variation of residuals 
about the 12-month harmonic. For a further refinement 
of the periodic function, the 6-month harmonic may be 
added. However, a very small gain in the explained 
variance in the estimates of the periodic mean and 
standard deviation most likely would not justify the 
additional work required in the regionalization. This 
additional work would entail fitting trend surfaces to 
the four additional coefficients, two amplitudes, and 
two phases. The simple 12-month cosine function for 
the periodic mean and the periodic standard deviation, 
as found for the two regions used here as examples, 
can only be expected in exceptional cases, and may not 
be a general feature for most monthly precipitation 
series. 

A. 7. Since the variance of monthly precipitation 
is a periodic parameter over the year, the estimates 
of the periodicity in monthly means and monthly stan­
dard deviation by the least-square method with equal 
weights for the residuals, or the linear approach in 
estimating the Fourier coefficients Aj and Bj (and 
from them the amplitude Cj and the phase 6j) , does 
not give the most effic~ent estimates. The use of 
weighted residuals in the least-square approach, with 
the appropriate weights as functions of the variance 
of each estimated parameter, may produce estimates of 
Cj and 9j which explain a larger portion of the vari­
ances in the periodic mean and standard deviation. 

A.B. Improvements in the mathematical models for 
periodicity in parameters can only be done by a bett er 
discrimination of significant harmonics using a better 
method of separating them f rom the sampl ing errors of 
residuals around the periodic function . To accomplish 
these improvements, three approaches are feasible: (a) 
make the logarithmic or cubic-root transformation of 
the original monthly precipitation values so that the 
sampling variations of residuals about the parameter 
periodic functions are close to normal; (b) test the 
residuals for time dependence, and if the dependence· 
is inferred, r educe the length of dependent residuals 
to an equivalent length of independent normal resi­
duals; and (c) use the Fisher 's test, based on an un­
derlying normal independent process, to discriminate 
all significant harmonics. 

A.9 The phases of harmonics which describe the 
periodic parameters of monthly precipitation must 
change over the long distances, because the periodici­
ty in parameters of major climatic variables also 
change over these distances. Significant peaks and 
lows of periodic parameters slowly change their posi­
tions inside the year with the distance . This is 
equivalent of changing the phases with the distance. 
By using the appropriate regional models of the change 
with longitude and latitude in phases of harmonics of 
periodic mean and standard deviation, even if their 
rates of change are very small, could further improve 
the reliability in accounting for the regional vari­
ation in coefficients of significant harmonics. 
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B. Regional Trends in Parameters . 

B. l. All basic parameters, and coefficients of 
the periodic parameters, vary according to some con­
tinuous line, area, or space functions. All of them 
can be expanded in a power seri es; thus as many terms 
should be used in fitt ing these functions to the esti­
mated set of parameter or coefficient values as the 
appropriate inference procedures require. It is con­
venient to start with a linear (line, area, space) 
trend and then increase the accuracy of fitting by 
going to second-order or higher-order terms. 

B.2. For the two regions studied, with given sets 
of points of monthly precipitation series, it was 
found that the simple trend planes, with the parame­
ters (general mean and general average monthly stan­
dard deviation) and the coefficients of periodic 
functions of these parameters being linear functions 
of the point coordinates, explain very large portions 
of the variation in these parameters and coefficients 
(the two amplitudes and two phases of the 12-month 
harmonic of these two parameters). The second-order 
terms of coordinates (X2, y2, and XY) explain rela­
tively small portions of the total regional variation 
of these two parameters and four coefficients. This 
leads to the conclusion that the second and higher­
order terms in the regional trend surface are mainly 
the results of the sampling variation of residuals 
about the trend planes. 

B.3. It was also found that the ratio of the 
general average monthly standard deviation to the gen­
eral mean monthly precipitation, or the general coef­
ficient of variation, is not significantly different 
from a constant for the two regions. In addition the 
two other ratios, the amplitude of the 12-month har­
monic in the monthly mean divided by the general mean, 
and the amplitude of the 12-month harmonic of the 
monthly standard deviation divided by the general mea~ 
are also two regional constants. Furthermore, the 
phases of the two 12-month harmonics are inferred to 
be constants. In this approach, the six regional 
trend planes, each requ~r1ng three trend regression 
coefficients, of a total of 18 coefficients to be es­
timated, are reduced to one regional trend plane with 
three regression coefficients, and four or five other 
constants (three ratios, and one or two phases). Al­
together 7 or 8· coefficients are to be estimated . This 
is a significant reduction in the number of required 
estimates. In the case of using all six harmonics 
(j=6) for the periodic mean and periodic standard de­
viation, a total of 2(2j+l )=26 coefficients is re­
quired. Assuming further that each of these 26 coef­
ficients required six regression coefficients of a 
second-order polynomial trend, a total of 156 coef­
ficients must be estimated. The various simplifica­
tions tested for this study have reduced this number 
to only seven or eight coefficients necessary to be 
estimated from all the data available. 

8.4. The average phases of the 12-month harmonic 
in the periodic mean and periodic standard deviation 
were not found to be identical. Because of the ob­
served difference in phases, the pertinent question 
may be asked whether there is actually a shift in the 
phase or whether the observed difference was due to 
sampling variat.ions. It would be difficult to find 
physical reasons why the harmonics in the basic param­
eters of a periodic-stochastic hydrologic process 
would have different phases. One conclusion is that 
the difference between the phase of 12-month harmonic 
in the two basic periodic parameters is the resul t of 
sampling variation rather than the result of some sys­
tematic patterns. Many more regions should be studied 



before convincing evidence can be generated for a pop­
ulation difference in phases. 

B. S. To decrease the adverse boundary effects of 
the end points in a fitted trend, the trend regression 
equation may be estimated by a larger number of points 
and the resulting equation applied only to the in­
terior points of a line, area, or space. For monthly 
precipitation in Region I, 77 points are used for de­
termining the trend plane regression function; then 
this function is used for the 41 points of the in­
terior subregion. 

B.6. Improvements in fitting the trend functions 
can be accomplished in a number of ways; (a) by using 
a larger number of terms in the power series of these 
functions; (b) by weighting the residuals for the 
function of the trend in the variances; (c) by better 
testing the significance of regression coefficients; 
(d) by adding physical aspects to selecting the trend 
functions, namely, studying how the topography and 
other physical factors should affect the shape of the 
trend function; (e) by using a longer line, larger 
area, or greater space in fitting the trend functions, 
and then applying them to an interior shorter line, 
smaller area, or narrower space; and (f) by a more rig­
orous testing of proportionality (or other relation­
ships) between the coefficients or the secondary pa­
rameters and the major parameters, so that either 
ratios and some coefficients may be inferred to be 
constants or to have some simple relationships, with 
the result being a reduced number of coefficients to 
be estimated. 

C. Analysis of Stationary Stochastic Process. 

C.l. When the periodicity in basic parameters 
and the regional trends in parameters and/or coeffi­
cients are inferred and removed by the appropriate 
mathematical models, a second-order or higher-order 
stationary process is obtained. The set of series of 
this process then contains all randomness of this pro­
cess, except the sampling variations in the small 
number of estimated coefficients (7-8 coefficients for 
the area-time stochastic monthly precipitation process 
of the two regions studied). In other words, the 
sampling variation around the functions of periodic 
parameters and around the regional trend functions are 
retained in the stationary stochastic components, in­
stead of being removed as in the case of the non­
parametric approach for removing time periodicity and 
regional (line, space) trends. 

C.2. In tho case of removal of the general mean 
and the general variance from the stochastic compo­
nents by standardization, all the point time ser1es 
have approximately mean zero and variance unity. Then, 
because the basic hydrologic variables have a lower 
boundary of zero, the set of stochastic components are 
nearly identically distributed variables. For the 
case of the monthly precipitation in the two sample 
regions, three-parameter gamma probability distribu­
tion function excellently fits the frequency curves 
derived from the set of stationary stochastic time 
series . As previously shown for each region or for 
their composite, the three parameters are constants. 

C.3. If the periodicity in parameters and the 
trends in coefficients are well approximated, they 
should produce the same, identically distributed sto­
chastic components with the probability function anJ 
its estimated parameters the same for a given type of 
hydrologic stochastic process. For monthly precipita­
tion, this is the three-parameter gamma function, with 
aa2.618, ~-0.663, and y=-1 .690 (shape, scale and 
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lower boundary parameters). These three parameters 
can be improved: (a) by including more regions in the 
study; (b) by better e.stimating the number of harmonics 
and their coefficients for periodic parameters; and 
(c) by better inferring the order of the polynomial 
and its regression coefficients used as trend func­
tions for the hydrologic parameters. 

C.4. The time dependence structure of the sta­
tionary stochastic components require either the de­
termination of the time dependence model , if the 
stationary process is dependent, or proof that it is 
time independent. 

C.S. For the two sample regions the stationary 
stochastic components are approximately time indepen­
dent processes. The first serial correlation coeffi­
cients rarely exceeds 0.10. There must be a small 
time dependence in the stochastic component of monthly 
precipitation, because the stochastic components of 
daily precipitation series usually have the first 
serial correlation coefficient of the order of 0.10-
0.30. However, a sum of 30 values of stochastic com­
ponents of the daily precipitation should exhibit only 
small time dependence. For practical purposes, the 
stationary stochastic components of monthly precipita­
tion series may be considered time independent.. To 
improve this independence, one may use the first auto­
regressive model and the average first serial correla­
tion coefficient of all series in a region to better 
approximate the time independent portion of the sta­
tionary identically distributed stochastic components . 

D. Cross Correlation Structure of Stati onary 
Components . · 

D.l. The basic approach in studying the depen­
dence between the stationary identically distributed 
stochastic components is : (a) by selecting any two 
points (i and j) at a time from a set of points, and 
(b) by using the lag- zero linear cross correlation co­
efficient, p, as a measure of dependence. In defin­
ing the two points in an area-time random process, the 
four coordinates (Xi , Yi, Xj, Yj) are needed. How­
ever, this correlation may also depend on the time 
interval T (say, for precipitation, the correlation 
may be greatbr for winter frontal precipitation than 
for summer thunderstorm precipitation) . The function 
p=f(Xi,Yi,Xj,Yj, T) may be replaced by p=f(d,X,Y,~,T), 
with X,Y determining the location of a point (either 
Xi, Yi , or Xj , Yj, or their mid-points) , d the dis­
tance and ~ the azimuth of the straightline which 
connects the points. 

D.2. For the monthly precipitation stochastic 
components, p seems not to depend on the absolute p~ 
sition (X,Y), azimuth (~)and the time interval (t), 
but only on the distance. Despite these simpl ifying 
assumptions, r=f(d) as a fitted estimate of p=f(d) ex­
plains a largo portion of the variation of r . It 
should be noted that the inclusion of the azimuth adds 
a very small percentage to the explained variance. 

D.3. My rigorous approach to the study of depen­
dence among a set of stationary stochastic components , 
either along a line, across an area, or over a space, 
should be accompanied by the development of reliable 
tests for determining the effects of the position, az­
imuth and the t ime interval on the population varia­
tion in P This may add to the reliability of 
estimates for models of p=f(d,X,Y,~,t) . 

D.4. Because the stochastic components may be 
non-normal, or highly skewed, a transformation to a 
symmetrical or even a normally distributed set of time 
independent stationary variables may better justify 



the linear lag-zero cross correlation approach to the 
study of the dependence among these variabl es. 

0.5. The investigations of the relationship p= 
f(d) and of the residuals (r-o) for the studied 
monthly precipitation series of the two r egions, show 
that these residuals are distributed as would be ex­
pected from sampl ing variation alone; thus the simple 
model o=f(d) is justified for all practical purposes . 

0.6. The selection of the mathematical function 
for p=f(d) is based mainly on a survey of literature 
concerning models previously used or tested on similar 
variables having dependence as a function of distance. 
Basically, the boundary conditions for d=O and d=~ 
are considered, as well as the explained variance of 
r by the model and the model's estimated coefficients 
for the two regions studied. Unfortunately, there is 
no evidence in the literature which can physically 
justify the use of particular mathematical models. 

0 .7. The testing of a large number of pcf(d), or 
P=f(d,X,Y,~,T) types of models over many regions , and 
for interrelated variables (such as solar radiation, 
temperature, humidity, wind velocities, evaporation , 
precipitation, etc . ) may empirical ly lead to the best 
practical models. This study may be a modest contri­
bution toward that goal . 

0.8. The problem of whether p=f(d) is a positive 
function slowly converging to zero as d goes to in­
finity is a controversial subject. Because the sample 
r values can be negative for large d values, and 
even of the order of -0.30 to -0.40, there is an open 
question whether these negative values are the sam­
pling variation about p=O, or the population p values 
are also negative. Powerful statistical inference 
techniques and large quantity of data from all over 
the world are needed to give a r eliable answer to this 
question . 

0.9 . By inferring the type of p- f unction, either 
along a l ine, across an area, or over a space, the 
study of these line-time, area-time, and space-time 
periodic-stochastic hydrologic processes is dissocia­
ted from the set of observed point-time series . 

0 . 10. The curve p=f(d) for the periodic-
stochastic xp, T _discrete series with the interval 
less than a year 1n a region are usually above the 
corresponding p=f(d) curve for the stationary sto­
chastic t i series . The reason is that the periodicity 
in parameters of xp, ; is mostly in-phase over a 
small region. This increases the correl ation coeffi­
cient o for a given distance d . Only in cases 
where the region is sufficiently large that there is 
an out-of-phase periodicity i n parameters between the 
extremes of the region will it be poss~ble for the 
p=f(d) curve to be lower for xp,t than for ~i . 
Since the p=f(d) curves for ti are usual ly below 
the corresponding curves of xp,T• the average cross 
correlation coefficient for a set of points in a re­
gion is smaller for ~i than for Xp,• . 

E. General Conclusions. 

E. l. The results of this study support the basic 
hypothesis, namely that a set of point-time series has 
more information on a ll parameters of a given point 
series than each individual series. 

E.2. The regionalization of basic parameters of 
time series and of coefficients of periodic parameters 
reduces significantly the number of coefficients to be 
estimated . 
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E.3. In the case of monthly precipitation series, 
the area-time process is sufficiently described by 
four types of mathematical models: 

(a) Periodic functions for periodic 
parameters; 

(b) Regional trend planes; 

(c) Three-parameter gamma probability di stri­
bution function of identically distributed, time in­
dependent stationary stochastic components; and 

(d) The regional dependence function for these 
stochastic component s. In the simplest case, there 
were only two periodic functions (for the monthly mean 
and the monthl y standard deviation), one regional 
trend plane (for the general mean), one gamma functio~ 
and the simple relation of the lag-zero cross correla­
tion coefficient to the distance. Only five equations 
and the estimation of 13 or 14 parameter-coefficients 
was necessary. 

E.4. Starting with the simplest four mathematical 
models in the structural analysis of area-time 
periodic-stochastic process of monthl y precipitation, 
with only 13 or 14 estimates, both the number (or also 
the type) of mathematical models and their terms can 
be increased by also continuously increasing t he num­
ber of parameters and/or coefficients to be estimated . 
The procedures used in this paper have shown how to 
make these increases in the number of models, the num­
ber of model terms, and the number of estimates; and 
how to progress from a simple to a very soph]sticated 
approach. The statistical inference and testing pro­
cedures are crucial in determining the cut-off points, 
that is, those points at which one should cease adding 
more models, more terms, and more coefficients. 

E.S. The models and estimates of coefficients 
represent a condensation of all area- time information, 
so that the sol ution of practical problems may be dis-· 
sociated from the set of observed point- time series . 
A systematic grid of points across an area (or along a 
line, or over a space) may facilitate the solution of 
problems related to these processes. If the grid 
points are fixed as to their mutual distances and if 
the probability distribution function of the stochas­
tic components is ahtays the same for all r egions, as 
well as having their dependence f unction p=f(d) the 
same for all regions studied, a set of point-time 
series for this grid may be permanently generated for 
each time sample size, and used for many regions . It 
is then necessary to add only the particular periodic 
and trend functions specific to each indi vidual region. 

E.6 . A reduction of the area-time periodic­
stochastic process to a stationary and ergodic sta­
tionary process greatl y facilitates the solution of 
various practical problems . 

E.7 . In case the stationary stochastic components 
are al so time dependent, a fifth type of mathematical 
model is needed, namely the time dependence model with 
additional coefficients to be estimated. 

E.8 . Because the multivariate normal independent 
processes are easiest to study and use in generating 
new samples, the approach in these investigations per­
mits a reduction of the non-normal multivariate sto­
chastic stationary process to a multivariate normal 
process. Then, principal component analysis enables 
this multivariate dependent normal process along a 
line, across an area, or over a space, to be replaced 
by an equivalent independent uncorrelated multivariate 
normal process. 



Ill 
Index 
Number 

1 21.0112 
2 21 . 0287 
3 21.0541 
4 21.0783 
5 21.1227 
6 21.1245 
7 21.1374 
8 21.1465 
9 21.1630 

10 21.2142 
11 21.2737 
12 21. 2768 
13 21.2916 
14 21.3303 
15 21. 34ll 
16 21.4652 
17 21.4793 
18 21.5012 
19 21.5136 
20 21.5298 
21 21.5392 
22 21.5400 
23 21.5563 
24 21.5615 
25 21.5638 
26 21.5842 
27 21.6360 
28 21.6547 
29 21.6565 
30 21.6612 
31 21.6817 
32 21.7460 
33 21.8323 
34 21.8543 
35 21.8579 
36 21. 8618 
37 21.8692 
38 21.8907 
39 21.9004 
40 21.9046 
41 21.9059 
42 21.9249 
43 32.1360 
44 32.1766 
45 32.2482 
46 32.2605 
47 32.2949 
48 32.3117 
49 32. 3287 
so 32.3908 
51 32.4203 
52 32.4418 
53 32.5660 
54 32.5754 
55 32.6620 
56 32.7047 
57 32.7986 
58 32.8366 
59 32.9100 
60 39.0834 
61 39.1076 
62 39.1739 
63 39.2797 
64 39.3029 
65 39.3217 
66 39.3294 
67 39.3832 
68 39.4037 
69 39.4516 
70 39.4661 
71 39.5536 
72 39.5456 
73 39. 5561 
74 39.6282 
75 39.8652 
76 39.9004 
77 47 0 7226 

Station Name 

Alexandria FAA Airport 
Artichoke Lake 
Beardsley 
Bird Island 
Cambridge St. Hospital 
Campbell 
Cass Lake 
Chaska 
Cloquet For Res Center 
Detroit Lakes 
Farmington 
Fergus Falls 
Fosston Power Plan~ 
Grand Rapids NC School 
Gu 11 Lake Dam 
Leech Lake Dam 
Little Falls 
Manhomen 
Maple Plain 
Meadowlands 
Milaca 
Milan 
Monuvideo 
Mora 
!obrris Ill: School 
New London 
Park Rapids 
Pine River Dam 
Pipestone 
Pokeeama 
Red Wing 
Sandy Lake Dam Libby 
Tracy Power Plant 
Virginia OlMC Lab 
Wadena 
Walker Ah Gwan Ching 
Wcu eca Expo rime!' t Farm 
Wheaton 
Wi llmar State Hospital 
Winnebago 
Winnibigoshish Dam 
Zumbro to 
Carrington 
Cooperstown 
Edgeley Exp Farm 
Ellendale 
Fessenden 
Foreman 
Fullerton 
Hankinson RR Station 
Hillsboro 

APPENDIX 1 

Precipitation Stations Sele~tted 

Region I 

Table 1 
m:77 Stations 

Degrees Degrees 
West North 
L0n2. Lat. 

95.383 45.867 
96.133 45.367 
96.717 45.550 
94.900 44.767 
93.233 45.567 
96.400 46.100 
94 . 633 47.383 
93. 583 44.800 
92.500 46.683 

1NNE 95 . 850 46.833 
3NW 93.183 44.667 

96.067 46. 283 
95.733 47.567 
93. 500 47. 250 
94.350 46.417 
94. 217 47.250 

1N 94.350 45.983 
lW 95.983 47.317 

93.650 45.017 
92.733 47.067 
93.650 45.750 
95.933 45.177 

lSW 95.717 44.933 
93.300 45.883 
95.917 45.583 
94.933 45.300 
95.067 46.917 
94.117 46.667 
96.300 44.000 
93.583 47 .250 
92.550 44.567 
93.317 46.800 
95.617 44.233 
92.533 47.533 
95.133 46.433 
94.583 47.067 
93.517 44.067 
96.483 45.800 
95.017 45.133 
94.167 43.767 
94.050 47.433 
92 . 667 44. 300 
99.133 47.450 
98.ll7 47.433 
98.700 46.333 
98.517 46.000 
99.617 47.650 
97.650 46.100 
98.417 46.167 
96.900 46.067 
97.067 47.400 

Jamestown State Hospital 98.683 46.883 
Mayville 97.317 47.500 
McLood 3E 97 . 233 46.400 
Oakes 98.083 46.133 
Pettibone 99.517 47.117 
Sharon 97.900 47.600 
Steele 99.917 46.850 
~hapton State School 96.600 46.267 
Bowdle 99.650 45.450 
Brookings lNE 96.767 44.333 
Clark 97.733 44.883 
Eureka 99.617 45.767 
Forestburg 3NE 98.067 44.033 
Gannvalley lESE 98. 983 44.033 
Gettysburg 99.950 45.017 
Highmore lW 99.467 44.517 
Howard 97. 517 44.017 
Kennebec 99.867 43.917 
La Delle 7NE 98.000 44.683 
Milbank 96.633 45.217 
Mellett e 98.500 45.150 
Miller 98.983 44.517 
Onaka 99.450 45.183 
Victor SNE 96 0 800 45.900 
Webster 97.533 45.333 
River Falls 92.617 44.867 

4T 

Elev . 12 1:10. 12 mo. 
Above 40 yr. 40 yr. 

MSL (ft.) Mean STD 

1421 1.915 l. 749 
1075 1.871 1 . 738 
1090 l. 815 1.675 
1089 2.253 1.968 
1000 2. 266 1.926 
975 1.872 1.662 

1320 2.040 1.790 
726 2.274 2.052 

1265 2 .440 1. 789 
1375 1.926 1.818 
902 2. 379 2. 030 
1210 1 . 972 1.682 
1289 1.898 l. 748 
1281 2. 148 1.696 
1215 2.209 1. 919 
1301 2.070 1.872 
1120 2.138 1.878 
1203 1.836 1.661 
1030 2.421 1. 975 
1270 2.236 1.880 
1080 2.392 2.043 
1005 2 . 007 1.794 
900 2.138 1.895 

1001 2.351 1.941 
1130 1.923 1. 727 
1215 2.130 1.929 
1434 2.214 1.966 
1251 2.198 1.865 
1735 2.071 1.894 
1280 2.122 1. 754 

680 2.446 1.962 
1234 2.259 1.948 
1403 1.992 1. 769 
1445 2.245 1. 701 
1350 2.175 1.919 
1407 2.129 1.928 
1153 2.403 1.938 
1018 1.876 1. 707 
1133 2.143 1.955 
1110 2.420 2.038 
1315 2.023 1. 723 
985 2.340 1.952 

1586 1.493 1. 522 
1428 1.573 1.557 
1568 1.484 1.550 
1460 1.654 1.607 
1620 1.462 1.377 
1249 1.667 1.659 
1439 1. 725 1.591 
1068 1.647 1.598 
901 1.674 1.701 

1457 1.469 1.489 
975 1.526 1.551 

1075 1.596 1.616 
1320 1.593 1.542 
1855 1.400 1.414 
1516 1.614 1.571 
1857 1.415 1.493 
960 1. 764 1. 704 

1993 1.532 1.583 
1650 1.738 1. 766 
1779 1. 721 1.569 
1884 1.429 1.510 
1231 1. 727 1.596 
1750 1.496 1.580 
2080 1.409 1.416 
1890 1.470 1.482 
1565 l. 780 1.638 
1700 1.405 1.382 
1396 1.602 1. 575 
1145 1.792 1.653 
1290 1. 581 1.483 
1587 1.559 1.553 
1600 1.401 1.471 
1100 1. 788 1.707 
1865 1.762 1. 603 

900 2.495 1.979 



No. Thiessen No. 
of Weight of 
77 in Percent 41 

1 3.07 1 
2 1.13 2 
3 1.34 3 
4 4.43 4 
6 .96 5 
8 2.54 6 

10 3.56 7 
ll 2.00 8 
12 2.16 9 
15 2. 08 10 
16 .96 11 
17 3.39 12 
19 3.07 13 
21 2.53 14 
22 1. 57 15 
23 2.60 16 
25 2.00 17 
26 3.21 18 
27 2.30 19 
28 2. 33 20 
32 3.18 21 
35 2. 90 22 
36 1.40 23 
38 1. 07 24 
39 1.59 25 
45 3.27 26 
46 3.17 27 
48 2 . 28 28 
49 .72 29 
so 1.08 30 
52 4.00 31 
54 4. 24 32 
55 1. 92 33 
59 1.8C 34 
62 2. 79 35 
70 2.88 36 
71 2. 95 37 
72 3.87 38 
73 2.86 39 
75 1.10 40 
76 3.68 41 

APPENDIX 2 

Precipitation Stations Selected 

Region I 

Table 2 
m• 41 Stations 

Index Station Name Number 

21.0112 Alexandria FAA Airport 
21.0287 Artichoke Lake 
21.0541 Beardsley 
21.0783 Bird I sland 
21.1245 Campbel l 
21. 1465 Chaska 
21.2142 Detroit Lakes lNNE 
21 . 2737 Farmington 3NW 
21 . 2768 Fergus Falls 
21 . 3441 Gull Lake Dam 
21. 4652 Leech Lake Dam 
21.4793 Little Falls lN 
21.5136 Maple Plai n 
21 . 5392 Milaca 
21.5400 Milan 
21 . 5563 Montevideo 
21.5638 Morris WC School 1SW 
21.5842 New London 
21.6360 Park Rapids 
21.6547 Pine River Dam 
21.7460 Sandy Lake Dam Libby 
21.8579 Wadena 
21 .8618 Walker Ah Gwan Ching 
21.8907 Wheaton 
21.9004 Willmar State Hosp 
32 . 2482 Edgeley Exp Farm 
32.2605 Ellendale 
32.3117 Foreman 
32.3287 Fullerton 
32.3908 Hankinson RR Station 
32 .4418 Jamestown State Hosp 
32.5754 McLeod 3E 
32.6620 Oakes 
32.9100 Whapton State School 
39 .1739 Clark 
39.4661 La Delle 7NE 
39 . 5536 Milbank 
39.5456 Mellette 
39.5561 Miller 
39 . 8652 Victor 5NE 
39 .9004 Webster 
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Degrees Degrees Elcv . 

West North Above 

Long. Lat. MSL 
(ft) 

95.383 45 .867 1421 
96.133 45.367 1075 
96 . 717 45 . 550 1090 
94.900 44.767 1089 
96.400 46. 100 975 
93.583 44. 800 726 
95.850 46.833 1375 
93.183 44.667 902 
96.067 46.283 1210 
94.350 46.417 1215 
94.217 47.250 1301 
94.350 45 .983 1120 
93.650 45. 017 1030 
93.650 45.750 1080 
95.933 45 .ll7 1005 
95.717 44.933 900 
95.917 45.583 1130 
94.933 45.300 1215 
95.067 46.917 14 34 
94.117 46.667 1251 
93.317 46.800 1234 
95.133 46. 433 1350 
94.583 47.067 1407 
96.483 45.800 1018 
95.017 45.133 1133 
98.700 46.333 1568 
98.517 46.000 1460 
97.650 46.100 1249 
98.417 46.167 1439 
96.900 46.067 1068 
98.683 46.883 1457 
97.233 46.400 1075 
98.083 46.133 1320 
96.600 46.267 960 
97.733 44.883 1779 
98.000 44.683 1396 
96.633 45.217 1145 
98.500 45.150 1290 
98.983 44. 517 1587 
96.800 45.900 1100 
97.533 45.333 1865 



Index m Number 

1 25.0070 
2· 25.0320 
3 25.0445 
4 25 . 0620 
5 25.1680 
6 25 . 2020 
7 25.2770 
8 25.2805 
9 25 . 2840 

10 25 . 3035 
11 25.3185 
12 25 . 3660 
13 25.4335 
14 25.4790 
15 25 .6135 
16 25.6375 
17 25.6395 
18 25 .7040 
19 25 . 7515 
20 25.7640 
21 25 . 8110 
22 25.8320 
23 25 .8735 
24 25 .8745 
25 25.8905 
26 25 .8915 
27 25 . 8935 
28 25 . 9150 
29 25.9200 

APPENDIX 3 

Precipitation Stations Selected 

Region II 

Table 3 
m• 29 Stations 

Degrees uegrees 
West North 

t:lev. 
Above 

Long. Lat. MSL {ft.) 

Albion 98.00 41.68 1760 
Arca.dia 99 .13 41.42 2186 
Aurora 98.02 40.87 1792 
Beatrice 1 96.75 40.27 1235 
Clay Center 98.05 40.53 1778 
Crete 96 .95 40.62 1360 
Ericson 6WNW 98 .78 41.80 2095 
Ewing 98.35 42.25 1888 
Fairmont 97.58 40.63 1641 
Franklin 98.95 40 . 10 1883 
Genoa 2W 97.73 41.45 1590 
Hastings 98.38 40 . 58 1932 
Kearney 99.08 40.70 2146 
Lincoln Agro Farm 96.62 40.85 U95 
Oakdale 97.97 42.07 1705 
Osceola 97 . 55 41.18 1645 
Osmond 97.60 42.35 1650 
Ravenna 98.92 41.03 1995 
Saint Paul 98.45 41 . 20 1796 
Schuyler 97.07 41.43 1750 
Stanton 97.23 41.95 1472 
Superior 98.07 40.02 1578 
Upland 98.90 40.32 2158 
Utica 97.35 40.90 1582 
Wahoo 96.63 41.20 1221 
Wakefield 96.87 42.27 1413 
Walthill 96.50 42.15 1207 
Western 97.20 40.40 1460 
West Point 96.72 41.83 1310 
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30 yr. .su yr. 
~lonthly Monthly 

Mean STD 

1 . 932 1. 718 
1.711 1. 721 
1. 982 1.856 
2.405 2.287 
1.940 1.795 
2.355 2.164 
1 . 792 1.675 
1.872 1.797 
2.171 1.972 
1.844 1. 777 
1. 949 1.818 
2. 005 1. 779 
1 . 884 1.840 
2.290 1.996 
1.941 1. 738 
2. 032 1. 784 
2.047 1. 722 
1.818 1. 728 
1.901 1.899 
2.236 2.080 
2.036 1.809 
2. 061 1.986 
1.876 1.863 
2.11 2 2. 016 
2. 286 2.029 
1.987 1. 751 
2.070 1.816 
2. 227 2. 074 
2.226 1.886 
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process of monthly precipitation specifies the deterministic 
components in form of periodic parameters and a stationary 
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the structural composition . Region I of Nort h Dakota , South 
Dakota , and Minnesota with 41 monthl y precipitation stations 
and Region II, of Nebraska with 29 stations are used as ex­
amples. 

Mathematical models for periodicity and trends in pa­
rameters are developed with five regional constants and 
three regression coefficients. With periodicity and region­
al trends in parameters removed, the stationary stochastic 
components of monthly precipitation series are found to be 
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approximately time independent processes, with the identi­
cal three-parameter gamma probability distribution. These 
independent stochastic components are highly cross correla­
ted. The lag-zero cross correlation coefficient is found 
to be primarily a function of the interstation distance. 
The developed methodology permits the generation of new 
samples consisting of a set of time series for a region, 
either at the observed station points or at any new grid 
of points. 
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