Colorado Department of Public Health and Environment

2009 Newborn Screening Program Report
Introduction

According to the American Academy of Pediatrics, “Newborn screening is one of the nation’s most successful public health programs.”¹ Newborn screening programs test babies for disorders that often have no immediate visible effects on a baby; however, unless detected and treated early, these disorders can cause physical problems, mental retardation and, in some cases, death. “More than 4 million newborns are screened annually in the United States, and thousands of infants are rescued from disability and death,” per the Centers for Disease Control and Prevention.²

When a disorder is identified, appropriate medical specialists are consulted for their expertise in metabolic diseases, cystic fibrosis, endocrinology or hematology, depending on the condition and family needs. The March of Dimes stated, “Since most of the conditions included in the newborn screening panel are caused by genetic mutations, families need to be referred for genetic education and counseling to best understand the particular condition, its impact on the child's health and future and the risks in future pregnancies.”³

History of Newborn Screening

Before testing was developed, phenylketonuria (PKU), a metabolic disease that can be addressed by diet, resulted in retardation and often institutionalization for victims. In the 1930s, George Jervis at Letchworth Village State School in Thiells, N.Y., identified 50 clients whose mental retardation was attributed to phenylketonuria (PKU).⁴ Pursuing the study in four state institutions, he identified a total of 185 PKU cases among 15,000 patients.

While adults could not be helped, the work of Horst Bickel suggested that early diet therapy could prevent development of the mental retardation usually seen in PKU.⁵ Effective treatment depended on early therapy, which required early detection of the affected child before symptoms appeared.

Robert Guthrie, a microbiologist and pediatrician at State University of New York at Buffalo, created a simple, inexpensive PKU screening lab test, to be performed on newborns soon after birth.⁶ Following a successful pilot study by Guthrie in the 1960s, which encompassed 29 states and 400,000 newborns, many U.S. states implemented newborn (PKU) screening programs. All 50 states currently provide newborn screening for PKU.⁷

According to the March of Dimes, as of Feb. 18, 2009, "All 50 states and the District of Columbia now require that every baby be screened for 21 or more of the 29 serious or functional disorders on the uniform panel recommended by the American College of Medical Genetics (ACMG) and endorsed by the March of Dimes."⁸

Currently there is no federal law regulating newborn screening programs. Each state, under its own laws, operates its own newborn screening program and establishes its own policies and procedures.

State programs vary widely in the number and types of conditions for which they test. Some states test for as few as 10 disorders, while others test for 50 or more.⁸
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>Screening for Phenylketonuria (PKU) began in Colorado.</td>
</tr>
<tr>
<td>1979</td>
<td>With the aid of a three-year federal grant from the Office of Maternal and Child Health, testing for five other conditions was added: congenital hypothyroidism (CH), homocystinuria (HCY), maple syrup urine disease (MSUD), hemoglobin disease and galactosemia (GALT). The grant funded the establishment of a regional laboratory within the department’s Division of Laboratories. Arizona, Wyoming and New Mexico joined Colorado in establishing the Denver-based operation. Over the years, Arizona and New Mexico have established their own state screening programs; Wyoming continues to use the Colorado lab for its newborn screening program. Participation in the first few years of the program was voluntary, and testing was paid for by the grant.</td>
</tr>
<tr>
<td>1981</td>
<td>Recognizing the benefit of the screening program to the citizens of the state, the Colorado Legislature passed the "Newborn Screening and Genetic Counseling and Education Act" requiring all infants born in Colorado to be tested for six conditions: phenylketonuria, congenital hypothyroidism, homocystinuria, hemoglobin disease, galactosemia, and MSUD. This law also allowed for cash funding of the Newborn Screening Program, and a fee-for-service program of laboratory testing was instituted in July 1981.</td>
</tr>
<tr>
<td>1983</td>
<td>In May 1983, the newborn screening testing fee was increased to cover genetic counseling and education.</td>
</tr>
<tr>
<td>1987</td>
<td>On July 1, 1987, a screening test for cystic fibrosis was added to the newborn screening test panel.</td>
</tr>
<tr>
<td>1989</td>
<td>On April 1, 1989, a screening test for biotinidase deficiency was added to the panel of tests.</td>
</tr>
<tr>
<td>1996</td>
<td>In 1996, the Board of Health discontinued screening for MSUD and HCY. HCY was discontinued because changes in the medical care and feeding of neonates had rendered the existing available testing methodology unreliable. MSUD was discontinued because its incidence in Colorado was not high enough to warrant screening. These criteria and others used to determine the inclusion of tests in Colorado’s screening program are defined in the screening statute. Legislation was passed requiring a second specimen (8-14 days of age) to be collected on all babies, which is tested for specific disorders. There was sufficient evidence in the screening literature to justify a second screen on all babies. The concern was that early discharge of infants from the hospital put affected infants at risk to be missed because the screening specimen was collected at too early an age.</td>
</tr>
<tr>
<td>1997</td>
<td>Screening of newborns was added to diagnose infants for hearing acuity and to provide prompt and effective early interventions for those infants who are hard of hearing or deaf. Passage of House Bill 97-1095 required the Colorado Infant Hearing Advisory Committee to develop guidelines for reporting and for ensuring that identified children receive referral for appropriate follow-up.</td>
</tr>
<tr>
<td>2000</td>
<td>Screening for congenital adrenal hyperplasia (CAH) was added to the newborn screening panel of tests.</td>
</tr>
<tr>
<td>2006</td>
<td>On July 1, expanded newborn screening was added via Tandem Mass Spectrometry (MS/MS) technology, adding testing for 23 additional disorders to include: fatty acid oxidation disorders, aminoacidopathies and organic acidemias. With the introduction of MS/MS screening, MSUD and HCY were reintroduced to the testing panel.</td>
</tr>
</tbody>
</table>
Newborn Screening Statute: Criteria for Addition of Disorders

The Board of Health uses the following criteria to determine whether or not to test infants for conditions:

1. The condition for which the test is designed presents a significant danger to the health of the infant or his/her family and is amenable to treatment.

2. The incidence of the condition is sufficiently high to warrant screening.

3. The test to detect the condition meets commonly accepted standards of reliability as demonstrated through research or use in another state or jurisdiction.

4. The cost-benefit consequences of screening are acceptable within the context of the total newborn screening program.

Colorado Newborn Screening Quick Facts

Approximate number of births per year: 68,500

Section 25-4-1004.5(3) C.R.S. - addresses addition of CAH, and testing responsibilities.

Screening Requirements: Initial and second test required by law on all newborns.

NBS Fee: $85 covers first and second screen and follow-up.

Aidan is 6 years old and has a metabolic condition known as phenylketonuria, or PKU. If left untreated, PKU usually leads to mental retardation, stunted physical development and emotional problems.

Aidan, however, is the tallest kid in his class, has an IQ well above normal and enjoys a wide variety of healthy activities. This is possible only because Aidan's metabolic condition was detected shortly after birth, and he has been on a specialized diet ever since.

The newborn screening test administered to Aidan within hours of his birth detected this inherited metabolic disease at such an early stage that we were able to implement a customized diet and completely avoid any of the negative developmental consequences traditionally associated with PKU. Our gratitude to the CDPHE Newborn Screening Program and the staff at Denver Children's Hospital cannot be measured.

As an employee of the Colorado Department of Public Health and Environment, I am aware of many of the preventative programs that are implemented at the state level. My son's tremendous vitality reminds me about the far-reaching impact that these programs have.

Korey Bell
Emergency Preparedness Trainer & Strategic National Stockpile training coordinator
Colorado Department of Public Health and Environment
Emergency Preparedness and Response Division
Current Disorders Tested for at the State Laboratory

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>DISORDERS</th>
</tr>
</thead>
</table>
| **AMINO ACID DISORDERS** | Some babies lack enzymes that are needed to break down the building blocks (amino acids) of protein, while others have deficiencies in enzymes that help the body rid itself of the nitrogen incorporated in amino acid molecules. Toxic levels of amino acids or ammonia build up in the body causing a variety of signs and symptoms, or death. | Arginase deficiency
Argininosuccinic acidemia
Citrullinemia
Homocystinuria
Hypermethioninemia
Maple syrup urine disease
Phenylketonuria (PKU) |
| **ENDOCRINE DISORDERS** | CAH is a group of disorders in which there is a deficiency of certain hormones, sometimes affecting genital development. In severe cases, CAH also can cause life-threatening salt loss from the body. Lifelong treatment with the missing hormones suppresses this disease. | Congenital adrenal hyperplasia |
| **Fatty acid oxidation disorders** | This group of disorders is characterized by inherited defects of enzymes needed to convert fat into energy. When the body runs out of glucose (sugar), it normally breaks down fat to support production of alternate fuels (ketones) in the liver. Because individuals with these disorders have a block in this pathway, their cells suffer an energy crisis when they run out of glucose. This most often occurs when an individual is ill or skips meals. Without treatment, the brain and many organs can be affected, sometimes progressing to coma and death. | Carnitine acylcarnitine translocase deficiency
Carnitine palmityltransferase II deficiency
Carnitine palmityltransferase deficiency 1a
Carnitine uptake defect
Long-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency
Medium-chain acyl-CoA dehydrogenase deficiency
Short-chain acyl-CoA dehydrogenase deficiency
Trifunctional protein deficiency
Very long-chain acyl-CoA dehydrogenase deficiency |
| **Hemoglobinopathies** | These inherited diseases of the red blood cells result in varying degrees of anemia (shortage of red blood cells) and other health problems. The severity of these disorders varies greatly from one person to the next. Babies have an increased risk of infections, stroke and even death. | Beta-thalassemia
Sickle cell anemia
Hemoglobin SC disease |
| **Organic acid disorders** | Organic acid disorders are a group of inherited metabolic conditions. Each disorder is associated with a specific enzyme deficiency that causes the accumulation of organic acids or their metabolites in the blood and urine, resulting in the clinical features of these disorders. Typically, newborns appear normal for the first days of life, but then may develop vomiting, poor feeding, failure to thrive, hypoglycemia, hyperammonemia, seizures, hypotonia and lethargy, progressing to coma. Common findings include ketosis, metabolic acidosis and, in some cases, an unusual odor. Many individuals affected with organic acid disorders have a significant risk of death during infancy. | 3-Hydroxy-3-Methylglutaryl-CoA Lyase deficiency
3-Methylcrotonyl-CoA carboxylase deficiency
3-Methylglutaconic aciduria (3-MGA)
Beta-ketothiolase deficiency
Biotinidase deficiency
Glutaric acidemia type I
Glutaric acidemia type II
Isovaleric acidemia
Malonic acidemia
Methylmalonic acidemia
Multiple carboxylase deficiency
Propionic acidemia |
| **Cystic fibrosis** | CF is an inherited disease that affects the normal movement of salt (sodium chloride) and water into and out of certain cells, including those that line the lungs and pancreas. This results in thick, sticky mucus and other secretions, which can clog and damage lungs, cause lung infections and lead to early death. Thick, digestive fluids also prevent digestive enzymes from reaching the small intestine, causing digestive problems, slow growth and malnutrition. | |
| **Galactosemia** | Galactosemia is a rare hereditary condition caused by the body’s inability to breakdown galactose (a sugar found in milk and milk products). The high levels of galactose poison the body causing serious damage such as a swollen and inflamed liver, kidney failure, stunted physical and mental growth, and cataracts in the eyes. | |
Specimen Collection

Testing is performed on capillary blood collected by a heel stick from newborns before they leave the hospital or other birthing facility. The timing of collection and specimen quality are important factors. The receipt of a good quality specimen in the laboratory in a timely fashion permits early identification of infants at risk for one of these diseases. Since symptoms are nonspecific or absent in the newborn, irreversible damage to the infant may occur if laboratory diagnosis is delayed.

For healthy, full term infants, the specimen should be collected as late as possible before discharge, but no later than 72 hours. For sick or premature infants, the specimen should be collected no later than 72 hours of age unless one of the diseases is suspected. The blood is applied to a special filter paper and sent within 24 hours, by first class mail or other expedient means, to the laboratory. The newborn screening laboratory supplies the collection forms for newborn screens, pre-addressed envelopes for mailing and informational brochures explaining the program to parents.

Approximately 1.5% of all specimens (over 2,000 per year) are rejected because they are unsatisfactory for testing.

Reasons for specimen rejection include:

1. Damage of the blotter and/or uneven application of the blood by the use of capillary tubes, especially micro hematocrit tubes
2. Contamination of the blotter or blood spots with alcohol, urine, powder from gloves or other substances
3. Improper drying of the specimen
4. Over-application or layering of the blood
5. Quantity of blood insufficient to perform tests
6. Serum or tissue fluids evident in sample
7. Specimens too old (>14 days after collection)
8. Application of blood to both sides of filter paper
9. Use of cord blood to saturate the blotter

Specimens are not rejected when the infant has been transfused or has undergone dialysis. However, a transfusion may interfere with the results of the testing, especially for galactosemia and hemoglobin screening, where the possibility of a false negative may result. The screening specimen should be drawn before a transfusion or dialysis if the condition of the infant permits.

When an unsatisfactory specimen is received, the submitting health care provider is notified by telephone immediately. This procedure allows for collection of a new specimen from the infant as soon as possible. The rapid progression of some of the diseases, such as, galactosemia and congenital adrenal hyperplasia, makes it critical that a repeat specimen can be submitted to the lab quickly. Training on the proper collection of specimens occurs via on-site demonstrations, and online classes will be available in late 2009.
Testing Detection Methods used by the Newborn Screening Lab

<table>
<thead>
<tr>
<th>Disease category</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid disorders</td>
<td>Tandem Mass Spectrometry (MS/MS)</td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td>Perkin-Elmer Auto-DELFIA® (time resolve fluoro-immuno assay)</td>
</tr>
<tr>
<td>Fatty acid oxidation disorders</td>
<td>Tandem Mass Spectrometry</td>
</tr>
<tr>
<td>Hemoglobinopathies</td>
<td>Isoelectric focusing</td>
</tr>
<tr>
<td>Organic acid disorders</td>
<td>Tandem Mass Spectrometry (Except biotinidase deficiency which is a colorimetric assay)</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>Perkin-Elmer Auto-DELFIA® (time resolved fluoro-immuno assay)</td>
</tr>
<tr>
<td>Galactosemia</td>
<td>Fluorometric assay</td>
</tr>
</tbody>
</table>

(Above) Scientist, Mark Dymerski, performs newborn screening testing using the MS/MS instrument.

(Above) Lab technician, Kay Reilly, uses Perkin-Elmer dried blood spot multi-puncher to distribute 3 millimeter blood disks, which are used for newborn screening testing.
Reporting and Follow-Up

All positive screening results requiring immediate follow-up are telephoned to the physician of record and/or appropriate specialist. This telephone report is followed by a written report, sent by certified mail, containing information about the results and recommending procedures for follow-up. There are agencies available in each state that provide consultation, clinical evaluation, follow-up laboratory testing and genetic counseling.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Condition name*</th>
<th>July 2006 through December 2006 (½ year only)</th>
<th>2007</th>
<th>2008</th>
<th>January 2009 through June 2009 (½ year only)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAH</td>
<td>Congenital adrenal hyperplasia</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>CH</td>
<td>Congenital hypothyroidism</td>
<td>10</td>
<td>26</td>
<td>29</td>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic fibrosis</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>BIOT</td>
<td>Biotinidase deficiency (all “partial” except for one “profound” case in 2009 so far)</td>
<td>2</td>
<td>1 before MS/MS</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3-MCC</td>
<td>3-methylcrotonyl-CoA carboxylase deficiency</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CACT</td>
<td>Carnitine-acyl-carnitine translocase deficiency</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Citrullinemia</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CPT1</td>
<td>Carnitine palmitoyltransferase deficiency</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GA1</td>
<td>Glutaric acidemia type 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Galactosemia</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IVA</td>
<td>Isovaleric acidemia</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MCADD</td>
<td>Medium chain acyl-CoA dehydrogenase deficiency</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>MGA</td>
<td>3-methylglutaconic aciduria</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Methylmalonic acidemia</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple carboxylase deficiency</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKU</td>
<td>Phenylketonuria</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>VLCADD</td>
<td>Very long chain acyl-CoA dehydrogenase deficiency</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>28</td>
<td>61</td>
<td>67</td>
<td>27</td>
<td>183</td>
</tr>
</tbody>
</table>

* Sixty-five of the 183 cases are inborn errors of metabolism (the conditions below the double line in the table above), all but two of which are screened by tandem mass spectrometry (MS/MS).

Not provided in the table above:

During the same three-year period, July 1, 2006, through June 30, 2009, the Sickle Cell Treatment and Research Center at University of Colorado-Denver and The Children’s Hospital diagnosed the following disorders through newborn screening (right):
Incidence of Disease

The following data represent occurrent births, or babies born in Colorado hospitals that are screened at the Colorado Department of Public Health and Environment's Newborn Screening laboratory during the period of July 1, 2007, through June 30, 2009. The incidence rates below do not reflect the out-of-state residents delivering babies in Colorado.

Out-of-state residents delivering babies in Colorado are primarily from Wyoming, which has a very low birthrate.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Number of cases</th>
<th>Incidence Rate**</th>
</tr>
</thead>
<tbody>
<tr>
<td>All inborn errors of metabolism*</td>
<td>65</td>
<td>1:3,256</td>
</tr>
<tr>
<td>Congenital hypothyroidism</td>
<td>72</td>
<td>1:2,939</td>
</tr>
<tr>
<td>Congenital adrenal hyperplasia (classic only)</td>
<td>7</td>
<td>1:30,233</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>39</td>
<td>1:5,426</td>
</tr>
<tr>
<td>Sickle cell anemia</td>
<td>18</td>
<td>1:11,757</td>
</tr>
<tr>
<td>All hemoglobinopathies (including sickle cell anemia)</td>
<td>27</td>
<td>1:7,838</td>
</tr>
</tbody>
</table>

*All but biotinidase and galactosemia are tested using MS/MS.
**Number of births (3-year period 2006-2008): 211,630.

(Above) Nursing professional collects a newborn screening specimen from an infant’s heel.
False Positives and False Negatives

A test result reported erroneously as positive in the absence of true disease is designated as a false positive and a test result reported as negative, failing to reveal a disease, is designated as a false negative. Both false positive and false negative test results are a consequence of a test's sensitivity, specificity and normal range values, which are established based on test methods used.

The reported missed-case rate for cystic fibrosis in Colorado is 5.4 percent, 95 percent confidence interval, 3.8-10.0, due to infants with normal levels of immunoreactive trypsinogen, the target analyte of the cystic fibrosis newborn screening. To improve the detection rate of infants with cystic fibrosis, the algorithm was changed on June 1, 2008, with an expected missed case rate of <1 percent. All other newborn screening tests have a sensitivity of greater than 99 percent and false negatives are rare.

<table>
<thead>
<tr>
<th>Date Range</th>
<th>7/1/06—12/31/06</th>
<th>1/1/07—6/30/07</th>
<th>7/1/07—12/31/07</th>
<th>1/1/08—6/30/08</th>
<th>7/1/08—12/31/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number screened by MS/MS Colorado & Wyoming first screens only</td>
<td>38,450</td>
<td>35,134</td>
<td>41,103</td>
<td>39,353</td>
<td>39,018</td>
</tr>
<tr>
<td>Organic acidemias</td>
<td>82</td>
<td>113</td>
<td>82</td>
<td>35</td>
<td>81</td>
</tr>
<tr>
<td>Fatty acid oxidation disorders</td>
<td>48</td>
<td>83</td>
<td>48</td>
<td>44</td>
<td>69</td>
</tr>
<tr>
<td>Amino acidemias</td>
<td>72</td>
<td>93</td>
<td>72</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Total positive screens reported</td>
<td>202</td>
<td>289</td>
<td>202</td>
<td>139</td>
<td>220</td>
</tr>
<tr>
<td>Positives that were in neonatal ICU</td>
<td>90</td>
<td>104</td>
<td>106</td>
<td>80</td>
<td>108</td>
</tr>
<tr>
<td>True positives</td>
<td>8</td>
<td>14</td>
<td>0</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Carriers identified</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missed cases</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The Colorado Department of Public Health and Environment’s Newborn Screening Laboratory continues to effectively identify newborns at risk for more than thirty disorders. The early identification and intervention for infants have prevented or reduced the morbidity and mortality associated with these disorders. The test protocols used in the laboratory are in common use in all newborn screening laboratories throughout the country. They exhibit an appropriate level of sensitivity and specificity for screening large numbers of newborns. Recognizing the rare instance of any screening test giving a false negative, it is important to keep in mind that a “normal” newborn screening result alone cannot be used to rule out one of these diseases in a symptomatic child.

POST LABORATORY FOLLOW-UP

Newborn screening does not end with laboratory testing and the reporting of results. Follow-up steps subsequent to testing are crucial to a healthy infant outcome. The Colorado Department of Public Health and Environment’s Newborn Screening Follow-up Program, which is housed in another division of the health department (Prevention Services Division-Maternal and Child Health Programs) tracks children with abnormal newborn screening results, whose true disease risk is unknown until the potential diagnosis is confirmed or ruled out through subsequent diagnostic testing not performed at the state lab.

Staff employed by, or under contract to, the state health department follows up on different categories of abnormal screening results. Follow up activities include contacting primary care providers, medical specialists, families and others to confirm test results and clinical findings and verify initiation of treatment when applicable.
References

3-6 March of Dimes (http://www.marchofdimes.com/professionals/24279_9606.asp)

9 Illinois Department of Health - Genetics and Newborn Screening, http://www.idph.state.il.us/HealthWellness/fs/organic.htm

10 Whatman Neonatal Screening: Blood Specimen Collection and Handling Procedure
DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT

Laboratory Services Division

5 CCR 1005-4

NEWBORN SCREENING REGULATIONS
(Promulgated by the State Board of Health)

Last amended 11/28/07, effective 01/30/08
(Section 1.6, List of Conditions for Newborn Screening)

REGULATIONS PERTAINING TO IMPLEMENTATION OF
SECOND NEWBORN SCREENING
(Promulgated by the Executive Director of the
Colorado Department of Public Health and Environment)

Last amended 11/28/07, effective 04/01/08
(Section 1.6 List of Conditions for Second Newborn Screening – footnotes)
NEWBORN SCREENING REGULATIONS

1.1 Under the authority contained in Sections 25-4-801 through 25-4-804 and 25-4-1001 through 25-4-1006 (not including Section 25-4-1004.7) C.R.S. (1998), the following rules and regulations are established.

1.2 Definitions: The following terms, whenever used in or referred to in these regulations, shall have the following respective meanings, unless a different meaning clearly appears from the context:

"Department" shall mean the Colorado Department of Public Health and Environment.

"Laboratory" shall mean the Colorado Department of Public Health and Environment Laboratory.

"Initial Newborn Screening Specimen" shall mean specimen collected from a newborn prior to discharge, but in all cases within seven days after birth for the purpose of conducting screening tests.

1.3 Procedures

1.3.1 Births in Institutions: The blood specimens of newborns born in institutions and all other specimens taken in conformity with the law and these regulations will be sent to the Laboratory for testing. Follow up specimens from newborns with positive screening tests will be obtained and tested as necessary for proper diagnosis.

1.3.1.1 The hospital or institution or the chief medical staff officer or other person in charge thereof will cause an initial newborn screening specimen to be obtained from every newborn born therein as late as possible before discharge, but no later than 72 hours of age.

1.3.1.2 The specimen shall consist of capillary blood collected by heel puncture or alternate method authorized by the Laboratory, directly upon special blotter paper furnished by the Laboratory. All circles shall be saturated with blood from one side of the blotter only. The specimen collector will provide, on the provided form, all information requested by the Laboratory. The specimens, after air drying, will be forwarded to the Laboratory within 24 hours of collection, or at the earliest opportunity, by first class mail or other appropriate means.

1.3.1.3 If the newborn is to receive a blood transfusion, then the specimen for newborn screening is to be obtained prior to this procedure.

1.3.2 Births Outside Institutions: The physician, nurse midwife, or other health professional attending a birth outside a hospital, shall be responsible for the collections and forwarding of the specimen described in 1.3.1.2 above. In the absence of a health professional, any other person attending the birth, or in the absence of any person so attending, the father or mother, or in the absence of the father and the inability of the mother, the person in charge of the premises where the birth occurred shall be responsible.
1.4 **Testing and Reporting:** The prescribed tests will be initiated by the Laboratory within 24 hours of receipt of the specimen, weekends and holidays excepted. The Laboratory shall report as follows:

1.4.1 Reports of normal test results will be sent to the submitting agency within seven working days.

1.4.2 Abnormal test results will be reported immediately by telephone to the physician of record and to designated consultants. In case of inability to identify or locate a physician of record, the abnormal test result will be reported to the hospital or submitting agency which originated the specimen, or, if the birth did not occur in a health facility, to the father or mother.

1.4.3 Unsatisfactory specimens or specimens with equivocal results will be reported immediately to the submitting agency which originated the specimen with an explanation of the results. The submitting agency responsible for the newborn’s care at the time of the report will cause another specimen to be forwarded at the appropriate time.

1.4.4 The submitting agency that originated the specimen shall forward the Newborn Screening results to the health care provider responsible for the newborn’s care within the time frame of 1.4.1 and 1.4.3 above.

1.5 **Quality Control and Education**

1.5.1 The Laboratory shall have available for review a written quality assurance program plan covering all aspects of laboratory activity.

1.5.2 The Laboratory shall make available educational materials and training concerning specimen collection to all submitting agencies.

1.6 **List of Conditions for Newborn Screening**

1.6.1 The Laboratory shall conduct screening tests for the following conditions:

1.6.1.1 Phenylketonuria
1.6.1.2 Congenital Hypothyroidism
1.6.1.3 Hemoglobinopathies
1.6.1.4 Galactosemia
1.6.1.5 Cystic Fibrosis
1.6.1.6 Biotinidase Deficiency
1.6.1.7 Congenital Adrenal Hyperplasia
1.6.1.8 Medium Chain Acyl-CoA dehydrogenase deficiency
1.6.1.9 Very Long Chain Acyl-CoA dehydrogenase deficiency
1.6.1.10 Long-Chain L-3-Hydroxy Acyl-CoA dehydrogenase deficiency
1.6.1.11 Trifunctional protein deficiency
1.6.1.12 Carnitine Acyl-carnitine translocase deficiency
1.6.1.13 Short Chain Acyl-CoA dehydrogenase deficiency
1.6.1.14 Carnitine palmitoyltransferase II deficiency
1.6.1.15 Glutaric acidemia Type 2
1.6.1.16 Arginosuccinic acidemia
1.6.1.17 Citrullinemia
1.6.1.18 Tyrosinemia
1.6.1.19 Hypermethionemia
1.6.1.20 Maple Syrup urine disease
1.6.1.21 Homocystinuria
1.6.1.22 Isovaleric acidemia
1.6.1.23 Glutaric acidemia Type 1
1.6.1.24 3-hydroxy-3-methylglutaryl-CoA Lyase deficiency
1.6.1.25 Multiple Carboxylase deficiency
1.6.1.26 3-methylcrotonyl-CoA carboxylase deficiency
1.6.1.27 3-methylglutaconic aciduria
1.6.1.28 Methylmalonic acidemias
1.6.1.29 Propionic acidemia
1.6.1.30 beta-Ketothiolase deficiency
1.6.1.31 Carnitine uptake defect
1.6.1.32 Arginase deficiency
1.6.1.33 Malonic acidemia
1.6.1.34 Carnitine palmitoyltransferase deficiency 1A
RULES AND REGULATIONS OF THE EXECUTIVE DIRECTOR COLORADO
DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT

IMPLEMENTATION OF SECOND NEWBORN SCREENING

1.1 Under the authority contained in Section 25-4-1004.5(3) C.R.S., the following Rules and Regulations are established.

1.2 Definitions

“Department” shall mean the Colorado Department of Public Health and Environment.

“Executive Director” shall mean the executive director of the Colorado Department of Public Health and Environment.

“Laboratory” shall mean the Colorado Department of Public Health and Environment Laboratory.

“Initial newborn screening specimen” shall mean specimen collected from a newborn prior to discharge, but in all cases within seven days after birth for the purpose of conducting screening tests.

“Second newborn screening specimen” shall mean a specimen collected from a newborn between eight and 14 days after birth, but in no case less than 72 hours or greater than 30 days after birth, for the purpose of conducting screening tests.

1.3 Procedures

1.3.1 The parent(s) or other legal guardian(s) of the newborn shall be advised of the necessity of the second newborn screening test.

1.3.1.1 Births in Institutions: It shall be the responsibility of the hospital or institution or the chief medical staff officer or other person in charge thereof to advise, verbally and in writing, such as by written information made available from the Department, the parent(s) or other legal guardian(s) of the newborn that it is necessary to have a second newborn screening test performed.

1.3.1.2 Births outside Institutions: It shall be the responsibility of the physician, nurse midwife, lay midwife, or other health professional attending a birth outside a hospital to advise, verbally and in writing, such as by written information made available from the Department, the parent(s) or other legal guardian(s) of the newborn, of the necessity of the second newborn screening.

1.3.2 The attending health care provider shall collect or require the specimen be collected from all newborns at the first post partum appointment, but in no case less than 72 hours or greater than 30 days after birth. The specimen shall consist of capillary blood collected by heel puncture or alternate method authorized by the Laboratory, directly upon special blotter paper furnished by the Laboratory. All circles shall be saturated with blood from one side of the blotter only. The specimen collector will provide, on the provided form, all information requested by the Laboratory. The specimens, after air drying, shall be forwarded to the Laboratory within 24 hours of collection, or at the earliest opportunity, by first class mail or other appropriate means.
1.4 Testing and Reporting: The prescribed tests will be initiated by the Laboratory within 24 hours of receipt of the specimen, weekends and holidays excepted. The Laboratory shall report as follows:

1.4.1 Reports of normal test results will be sent to the submitting agency within seven working days.

1.4.2 Abnormal test results will be reported immediately by telephone to the physician of record and to designated consultants. In case of inability to identify or locate a physician of record, the abnormal test result will be reported to the submitting agency which originated the specimen, or, if the birth did not occur in a health facility, to the father or mother.

1.4.3 Unsatisfactory specimens or specimens with equivocal results will be reported immediately to the submitting agency which originated the specimen with an explanation of the results. The health care provider responsible for the newborn’s care at the time of the report will cause another specimen to be forwarded at the appropriate time.

1.4.4 The submitting agency that originated the specimen shall forward the newborn screening results to the health care provider responsible for the newborn’s care.

1.5 Quality Control and Education

1.5.1 The Laboratory shall have available for review a written quality assurance program plan covering all aspects of testing and reporting second specimens.

1.5.2 The Laboratory shall make available educational materials and training concerning specimen collection to submitting agencies.

1.6 List of Conditions for Second Newborn Screening effective date of footnotes 04/01/08

1.6.1 The Laboratory shall conduct screening tests for the following conditions:

1.6.1.1 Phenylketonuria
1.6.1.2 Congenital Hypothyroidism
1.6.1.3 Hemoglobinopathies
1.6.1.4 Galactosemia
1.6.1.5 Cystic Fibrosis
1.6.1.6 Biotinidase Deficiency
1.6.1.7 Congenital Adrenal Hyperplasia

1 These disorders need not be tested again unless:
 a) an unsatisfactory specimen was submitted for first screen testing, or
 b) an abnormal result was obtained on first screen testing, or
 c) no record of a satisfactory first screen specimen submission can be ascertained.