BUILDING BLOCKS

 to Colorado's Content StandardsMathematics

Primary Authors
Darcy Allen-Young
Jane L. Amundson
Lori Goodwin Bowers
Jo Koehn
Sharon Triolo-Moloney
Nan Vendegna
For More Information, please contact Katherine Keck at 303.866.6943 or keck_k@cde.state.co.us

ACKNOWLEDGMENTS

We would like to thank the following individuals from throughout the state of Colorado who so graciously gave of their time, energy and expertise throughout the writing and editing of this document.

Special Thanks to These Early Childhood Professionals

Who Worked on the Continuing Development of This Document:
Pamela Hostetler
Joan Martin
Janice McDermott
Sandra Petersen
Liz Templeton

Members of the Original "Building Blocks" Extended Workgroup:

Donna L. Arnold	Margie Marshall
Elena Bdrova	Kathy Miller
Jan Burke	Sylvia Miller
John Crawford	Susan Moore
Carolyn Elverenli	Charlotte Pirnat
Diana Geisler	Stevi Quate
Tami Havener	Frank Rainey
Jacki Howard	Juanita Regehr
Deborah Leong	Lisa Roy
Malinda Jones	Mike Wineland
Sue McCord	

[^0]August 2003
Page 1 of 38

Building Blocks to Colorado's Content Standards

Introduction

We know more now than we have ever known before about the importance of the early years in a child's development. Research on brain development has demonstrated the phenomenal pace at which learning takes place from the moment we are born. We also know that poverty; illness or special learning needs can have a dramatic impact on a young child's ability to learn.

Recent studies like The Carolina Abecedarian Project and the Cost, Quality and Outcomes Study have documented the direct connection between quality early childhood programs and later academic, social and emotional success.

From the executive summary of the Abecedarian study, October 1999:

- The Abecedarian study provides scientific evidence that early childhood education significantly improves the scholastic success and educational attainments of poor children even into early adulthood.
- Reading achievement scores were consistently higher for individuals with early intervention and the effects remained significant from primary school through age 21. Mathematics achievement showed a pattern similar to that for reading.

From the executive summary of the Cost, Quality and Outcomes study, June 1999:

- Child Care quality was related to basic cognitive skills (language and math) and children's behavioral skills in the classroom (thinking/attention skills, sociability, problem behaviors, and peer relations), both of which are important factors in children's ability to take advantage of the opportunities available in school.
- Children who have traditionally been at risk of not doing well in school are affected more by the quality of [early childhood] experiences than other children.

[^1]National and local attention has focused closely on insuring that our school systems provide every child with the opportunity to achieve the highest standards possible. Policy makers and the general public have begun to ask questions about what is happening for children before they enter kindergarten and the first grade. What can be done to increase a child's chances for success? Can early learning experiences affect a child's ability to competently read, write, and do math? Can a child at play really be learning?

This document takes what we know about a child's early years and uses that knowledge to describe the building blocks necessary to give our children the greatest chance of success throughout their lives. If you are a teacher, parent, child care provider, elected official or anyone else concerned with children we hope you will take time to read what is here and let us know what you think.

[^2]
Rationale

The Building Blocks to Colorado's Content Standards were developed for multiple purposes.

- Connection of early childhood education to the K-12 Content Standards: Early activities in which young children engage need to be recognized as part of the kindergarten- $12^{\text {th }}$ grade continuum. Young children are capable learners and adults in their environments should have high expectations for them. The activities referenced in this document are examples of experiences appropriate for young children that will lay the foundation for later accomplishment of content standards.
- Advocacy for appropriate teaching strategies: Young children learn through active exploration. The environment and interactions with peers and adults are important components reflected in this document, which support active learning. Adults who work with young children need to grow in their understanding and knowledge of appropriate early learning which occurs through action and interaction rather than through teaching practices suited for older children. They can then begin to explain this to parents and administrators, which will lead to effective early childhood advocacy in the community as a whole.
- Tool to support awareness and understanding of early childhood foundational skills: parents and teachers in various early childhood settings can use this document. Many of these adults realize the importance of laying the foundation for literacy, numeracy, science, social skills and the arts but are unsure of how to accomplish this. The Building Blocks can provide specific examples of what needs to be achieved and how it might look in an early childhood setting.

How to use the Building Blocks

The Building Blocks address mathematics (numeracy), reading and writing (literacy), science, and the arts. Each section begins with a list of the Colorado Content Standards for the K-12 system, followed by a more detailed description of each standard. This is coupled with an Early Childhood Foundation for each standard--statements that reflect the types of experiences and interactions preschool learners need to develop the foundation for attaining the standards (see shaded box). The term "preschool learner" refers to any young child, ages $21 / 2-5$, regardless of whether the child is in an early childhood setting or at home. The term "adult" refers to any adult who has interactions with the child whether that person is a teacher, child care provider or family member. The term "environment" refers to any place where young children might be--

Each individual standard is broken down into 3 sections: Building Blocks for Learning, Steps for Getting There and Examples.

Building Blocks for Learning: These statements describe skills appropriate for preschool learners. They are the indicators of the early childhood curriculum, which can be used as a guide for the adult in creating learning experiences and individualized plans for young children. Special educators who are required to tie goals and objectives from a child's Individualized Education Plan (IEP) to state content standards can also reference them.

Steps for Getting There: These statements are examples of interactions and experiences necessary for young children in acquiring the Building Blocks. Each section contains statements of the adult's role as a facilitator/teacher of learning. It also contains suggestions for materials to include in the child's environment. These are not all inclusive but rather a guide that will assist the young child in preparation for success with the K-12 Content Standards.

Examples: The scenario listed for each Building Block is intended to provide a description of an activity in which the children are engaged. These activities planned by the child and teacher should reflect the interest and needs of young learners.

[^3]
Developing Mathematical Literacy in the Early Childhood Years

The importance of the early years in a child's development has been well established and is broadly accepted. Most often we hear about the development of skills necessary for a child to learn to read and write. Important mathematical development occurs in young children too. Children of all ages can and do learn mathematics.

You probably have heard the term numeracy used as a partner to literacy. Numeracy is mathematical literacy that is necessary for people to navigate the mathematical situations presented in every day life. In a recent NAEYC publication "Promoting Meaningful Learning, Innovations in Educating Early Childhood Professionals", Nicola J. Yelland, Editor they state, "...we use the term Mathematical literacy rather than numeracy, because conceptualizations of numeracy are often restricted to number knowledge and skills, while mathematical literacy comprises the broad range of knowledge in number, measurement, space, chance and data, and skill needed daily for creative mathematical problem solving." In today's world there is no question that children must become mathematically literate. Basic arithmetic skills are no longer enough. Being able to understand and work with data and supporting technology is essential.

Some support for mathematical learning is intuitive, comes from real life experiences and play, and begins before children enter school. When you go shopping children learn that money has value. They learn through birthdays, holidays and weekends about the passing of time and calendars. They hear stories, songs and rhymes about numbers like the "Three Little Pigs" and "One, two buckle my shoe". From the day they notice their environment children are learning about distance, size, shape and weight.

This section of the Building Blocks is about what can be done intentionally, and proactively, to support the development of mathematical literacy. Consider the following:

- Recognizing and understanding patterns is a building block for algebra.
- Identifying simple shapes and measuring are building blocks for geometry.

[^4]Page 6 of 38

- Hearing and telling stories, sharing, hide and seek, and other games are building blocks for reasoning and problem solving.

Recent work by the National Council of Teachers of Mathematics (NCTM) 2000, "Principles and Standards for School Mathematics" includes information and ideas for children, from preschool through the $12^{\text {th }}$ grade, and the adults that are part of their lives. You can view the results of their work at their web site, http://nctm.org/standards/. They also collaborated with NAEYC in the production of a book, "Mathematics in the Early Years", edited by Juanita V. Copley. Both are excellent resources.

Achieving and maintaining mathematical literacy is truly a lifelong quest in our world of ever advancing technology. This document is a reminder that the journey starts early in life and an attempt to articulate what we know about our youngest learners.

[^5]In order to meet this K-12 standard, students will:
1.1 Construct and interpret number meanings through real-world experiences* and the use of hands-on materials;
1.2 Represent and use numbers in a variety of equivalent forms (for example, fractions, decimals, percents, exponents*, scientific notation*);
1.3 Know the structure and properties of the real number system* (for example, primes*, factors, multiples, relationships among sets of numbers); and
1.4 Use number sense, including estimation and mental arithmetic, to determine the reasonableness of solutions.

Early Childhood Foundation for Standard 1:

In building a foundation for the development of number sense, number relationships in problem-solving situations and communicating their reasoning, young children need interactive experiences with everyday objects, materials, and their environment. They also need opportunities to play, observe and interact with adults and peers in order to discover number relationships and develop problem-solving skills.

Learning the meaning of a number begins with hands on experience with a variety of objects found in the home, classroom and nature, as well as exposure to number vocabulary related to the child's experience. Representing and using numbers begins with exposure to written numbers and other printed symbols. Learning about the structure and properties of the real number system begins with exposure to relationships among and between sets of objects. Learning to use number sense begins with estimating quantities and describing relationships.

Standard \#1

Building Blocks for Learning	Steps for Getting There	Examples
1-A: Preschool learners gain a knowledge of quantity and of comparisons of quantity (all, some, none, fewer, more)	The environment includes different quantities of a variety of materials and math manipulatives. The adult engages in conversations with children about quantity and comparisons as they interact with materials throughout the day.	Betty and Tracy are rolling play dough into large round shapes. Betty says, "Look, I have more than you." Their mother walked by and said, "How do you know you have more?" Together, they count the shapes the girls have made.
1-B: Preschool learners begin to use the names for numbers and associate number words with collections or sets of objects counted including zero.	The environment contains objects with naturally occurring numbers and number words, such as clocks, timers, calendars, thermometers, computers, calculators, measuring cups, etc. The adult uses number words and numerals, including zero, in meaningful everyday activities. The adult uses a variety of strategies (questions, comments, counting) to prompt children to think about quantity and number words.	The children have gone for a walk, collecting items from nature. Andrew says, "I have a million rocks!" Ms. Bowers says, "A million? That IS a lot! I wonder how many Alex has?" Alex, using sign language, says, "I have five rocks!"

[^6]Standard \#1

Building Blocks for Learning	Steps for Getting There	Examples
1-C: Preschool learners develop the concept of one-to-one correspondence first by moving objects (by placing one cup in front of each bear), touching or pointing to objects while using number words, progressing from inventive to accurate counting, and recognizing and matching number symbols with the appropriate amounts.	The environment contains a variety of objects that work together in a one-to-one relationship (markers and caps, cars and garages, containers with lids). The adult provides opportunities for children to pair objects, to count, and to develop and practice numerical vocabulary.	Mr. Ortiz puts placemats around the table. Maria follows, placing one cup and one napkin on each placemat. She counts, "Uno-one, dos-two, quatro no tres-three."
1-D: Preschool learners begin to use numbers to predict and make realistic guesses.	The adult encourages children to make thoughtful guesses and predictions about quantity, size, distance, and time. Opportunities for children to predict can be provided in planned activities (guessing the number of jellybeans in a jar) and in naturally occurring activities (guessing how many days before the garden seeds sprout).	The children at Sunshine Family Child Care Home are playing with the building blocks. Violet says, "Let's make a road that goes all the way to the refrigerator!" Darrell says, "I don't think there are enough blocks. You need at least fifty." They begin building the road, counting as they add each block. "Twelve, thirteen, fourteen. See? I told you there wouldn't be enough! We still have a long way to go."

[^7]
Standard \#1

Building Blocks for Learning	Steps for Getting There	Examples		
1-E: Preschool learners begin to				
understand that numbers always				
represent the same quantity,				
regardless of the order or physical				
arrangement of the objects counted.			\quad	The adult provides many daily
:---				
opportunities to count and recount				
objects in the environment.	\quad	The children have made Ants on a		
:---				
Log for snack (raisins on peanut				
butter and celery). Christian has				
grouped his raisins closely together.				
Sammy spread his out and says, "I				
have more raisins." Christian looks				
upset. Linda helps the children count				
and they discover each has five.				
"When I spread mine out, " Christian				
observes, "I still have five!"				

[^8]> COLORADO STATE STANDARD 2: Students use Algebraic Methods to Explore, Model, and Describe Patterns and Functions Involving Numbers, Shapes, Data, and Graphs in Problem-solving Situations and Communicate the Reasoning Used in Solving These Problems.

In order to meet this K-12 standard, students will:
2.1 Identify, describe, analyze, extend, and create a wide variety of patterns in numbers, shapes, and data;
2.2 Describe patterns using mathematical language;
2.3 Solve problems and model real-world situations using patterns and functions;
2.4 Compare and contrast different types of functions; and
2.5 Describe the connections among representations of patterns and functions, including words, tables, graphs, and symbols.

Early Childhood Foundation for Standard 2:

In building the foundation for algebraic methods to explore, model and describe patterns and functions involving numbers, shapes, data, and graphs in problem-solving situations, young children need to explore an environment rich in shapes, sizes, colors, patterns, textures, sounds, and symbols. In building the foundation for communicating the reasoning used, young children need opportunities to engage regularly in math related conversations with peers and adults.

Learning to identify and describe patterns using mathematical language begins with opportunities to label, classify and sort. Learning to solve problems and model real-world situations using patterns and functions begins with physically and mentally interacting with the environment, materials, and other adults and children. Learning to describe connections between patterns and mathematical relationships (functions), including words, tables, graphs and symbols begins with opportunities for young children to recognize that math is connected to real-world everyday experiences.

Standard \#2

Building Blocks for Learning	Steps for Getting There	Examples		
$\begin{array}{l}\text { 2-A: Preschool learners explore the } \\ \text { attributes of objects and begin to } \\ \text { label, classify, and sort by similar } \\ \text { traits such as shape, color and size. }\end{array}$	$\begin{array}{l}\text { The environment includes a variety } \\ \text { of manipulatives (parquetry blocks, } \\ \text { unit cubes), collections (pebbles, } \\ \text { plastic animals), dramatic play props } \\ \text { (variety of clothing, dishes, dolls), } \\ \text { and art materials (fabric samples, } \\ \text { tongue depressors) in different } \\ \text { colors, shapes and sizes to encourage } \\ \text { classifying and sorting experiences } \\ \text { throughout the day. }\end{array}$	$\begin{array}{l}\text { Stella decided to make a picture of } \\ \text { her family. She gathered paper, } \\ \text { markers, stencils, and collage } \\ \text { materials such as yarn, fabric } \\ \text { squares, and buttons. She used the } \\ \text { stencils to draw the different body } \\ \text { parts of the people (circle for heads, } \\ \text { triangles for torsos) and added lines } \\ \text { for arms and legs. She then } \\ \text { decorated the people commenting as } \\ \text { she did, "Mom has longer hair than }\end{array}$		
The adult encourages children to				
describe and talk about why they				
have sorted, classified and ordered Seth. She is wearing blue.				
objects in a certain way.				
Daddy has yellow and Seth has green				
stripes."			$\}$	The adult models vocabulary when
:---				
talking about attributes and				
characteristics of objects in the				
environment.	\quad			
:---				

[^9]
Standard \#2

Building Blocks for Learning	Steps for Getting There	Examples
2-B: Preschool learners observe and distinguish differences in groups of objects, can recognize objects arranged in a series (seriation), and begin to place objects in order through trial and error.	The environment includes objects in various sizes, color shades, textures, and tonal qualities that can be arranged in order. The adult encourages children to compare the characteristics of materials and arrange them in an order (ie: from smallest to biggest, lightest to heaviest, shortest to longest, least to most, fattest to thinnest, lightest to darkest, etc.). The adult builds on children's understanding of seriation by making changes and additions in materials (ie: varying the number of objects, the types of characteristics, and the degree of variation).	Marta is making ginger snap cookies with her Aunt Cissy. When they have baked, Marta looks at them and says, "Here's the littlest cookie, this one is for my baby sister". Marta chooses two more cookies, saying, "This one is next and it's for me. This is yours, Aunt Cissy, 'cause it's the biggest!" After Marta has arranged several cookies from smallest to largest, Aunt Cissy picks up another cookie and says, "Okay, now where do you think this one goes?"

[^10]
Standard \#2

Building Blocks for Learning	Steps for Getting There	Examples		
$\begin{array}{l}\text { 2-C: Preschool learners begin to } \\ \text { recognize, duplicate and create } \\ \text { patterns and use them to make } \\ \text { predictions. }\end{array}$	$\begin{array}{l}\text { The adult encourages children to } \\ \text { create, identify, match, and describe } \\ \text { patterns in objects, designs, } \\ \text { pictures, movement activities and } \\ \text { recurring events. }\end{array}$	$\begin{array}{l}\text { Nick, Doreen, and Mrs. Koch are in } \\ \text { the yard planting flowers. They have } \\ \text { red and white petunias. Nick and } \\ \text { Doreen dig a patch of dirt and } \\ \text { decide to plant a white petunia. Nick } \\ \text { begins to pick up another white one, }\end{array}$		
when Doreen says, "No! Red goes			$\}$	The adult encourages the children to
:---				
begin to predict what comes next in				
the context of a pattern or sequence				
of events.		next" After planting a red petunia,		
:---				
Nhick smiles and says, "Now we put a in. White, red, white!"				
white one	\left\lvert\,	2-D: Preschool learners use words		
:---				
that describe sequence of events				
and objects as well as their rationale				
for organization.		The environment contains patterns		
:---				
and sequences that are concretely				
and pictorially represented.	\quad	Yanek's teacher has used photos to		
:---				
show the sequence of the daily				
routine. Yanek moves his wheelchair				
closer to "read" the pictures and				
says, "It's lunch time now, then it				
will be nap time."	\right.			

[^11]Standard \#2

Building Blocks for Learning	Steps for Getting There	Examples
2-E: Preschool learners begin to recognize charts and graphs as a way of collecting, organizing, recording, and describing information.	The adult engages children in many opportunities to create and understand graphs.	The Mom and Me playgroup went to the library. After reading, Red Leaf, Yellow Leaf, the children decided to collect leaves on the way home. At home, Eva suggested they look at their leaves and group the ones that look the same. She brings out a large piece of cardboard and draws columns. The children glued the leaves in the columns according to size.
2-F: Preschool learners build a vocabulary to describe attributes, classify, and group things by criteria as they explain "that things go together""	The adult describes and models a variety of ways to classify a group of concrete objects.	Mr. Thompson carried plastic crates in from the discount store. "Let's use these to organize the playhouse! Whe adult frequently uses words things do you think should go in each of these crates?" Patti and that describe attributes/criteria of items in a child's environment ind cowboy boots in another. "How did you decide what to put in here?" Mr. Thompson asked. "These are boy shoes and these are girl shoes." Liz replied.

[^12]COLORADO STATE STANDARD 3: Students Use Data Collection and Analysis, Statistics, and Probability in Problem-solving Situations and Communicate the Reasoning Used in Solving These Problems.

In order to meet this K-12 standard, students will:
3.1 Solve problems by systematically collecting, organizing, describing, and analyzing data using surveys, tables, charts, and graphs;
3.2 Make valid inferences, decisions, and arguments based on data analysis; and
3.3 Use counting techniques, experimental probability, or theoretical probability, as appropriate, to represent and solve problems involving uncertainty.

Early Childhood Foundation for Standard 3:

In building a foundation for using data collection and analysis, statistics, and probability in problem-solving situations, young children need experiences in collecting objects and information, as well as opportunities to organize, describe and graphically represent these collections. In building a foundation for communicating the reasoning and processes used in solving problems, young children need opportunities to hear, use and apply relevant vocabulary while formulating questions and possible solutions with others based on their observations and experiences.

Learning to solve problems by systematically collecting, organizing, describing, and analyzing data using surveys, table, charts, and graphs begins with understanding the purpose of these activities and how to use visual symbols to represent the data. Young children begin to make valid inferences, decisions, and arguments based on data analysis by comparing, reflecting, and discussing their observations. The concept of probability begins with opportunities for young children to make guesses and predictions about naturally occurring and planned experiences in their environment.

[^13]Standard \#3

Building Blocks for Learning	Steps for Getting There	Examples
$\begin{array}{l}\text { 3-A: Preschool learners collect } \\ \text { interesting objects and information } \\ \text { found in their home, classroom, and } \\ \text { nature and label or describe those } \\ \text { collections. }\end{array}$	$\begin{array}{l}\text { The environment contains various } \\ \text { types of collections, which are } \\ \text { attractively displayed. }\end{array}$	$\begin{array}{l}\text { A theme about socks emerged at the } \\ \text { Roan Cliffs preschool one day when } \\ \text { children began to compare their } \\ \text { socks after completing their }\end{array}$
barefoot obstacle course. Their		
The environment contains a variety		
of materials for creating displays		
such as tag board, markers, sticky		
notes, cameras with film, and tape sent a note home asking		
parents to send in a pair of silly		
recorders are accessible to the		
children.		

collection included striped "elf"

socks, Christmas tree socks, and\end{array}\right\}\)

[^14]Standard \#3

Building Blocks for Learning	Steps for Getting There	Examples		
3-C: Preschool learners begin to understand that symbols may be used to represent objects and events.	The environment contains many forms of symbols including pictures, diagrams, models, and words.	Tim and his mom work together to make a chart for chores he can do in the morning. They choose pictures from a magazine to represent feeding the dog, making the bed and picking up toys. Each day when Tim completes one of his chores, he covers the picture with a The adult provides children with opportunities to create and use symbols in planned activities, the environment, and throughout their daily routines.		
3-D: Preschool learners begin to use tables, charts and graphs in a systematic manner to represent meaningful information and relationships.	The adult creates graphs to illustrate comparisons for children.	After a discussion at snack time about how children get to school each day, Mr. Dave made a chart with columns for car, bus, bike, walk, taxi, van, truck, motorcycle, and light rail. The children wrote their names or signs in one of the columns. Later that day, Monica showed the chart		
To her sister and said, "See? The				
children to create their own tables,				
charts and graphs in planned and				
spontaneous activities.			\quad	most kids come to school on the bus!"
:---				

[^15]Standard \#3

Building Blocks for Learning	Steps for Getting There	Examples
3-E: Preschool learners begin to interpret information presented in graph form.	The adult uses graphs and charts to organize and interpret information and to show relationship. The adult provides opportunities for children to create their own graphs using real objects as well as symbols.	Jakota and James have been smelling a variety of spices and herbs at a booth at the children's fair. They place a small cube with their name on it next to the jar they like the best. "Wow! Look at the tower next to the cinnamon! A lot of kids liked it!"
3-F: Preschool learners begin to make guesses or predictions based on their observations and information available to them.	The adult occasionally poses questions, which ask children to makes guesses or predictions. The adult models prediction language such as "likely, not likely, more likely or less likely".	Ms. Nivea notices that the children have built a roadway with cardboard tubes propped on two large blocks and are experimenting with which cars reach the carpet first. They have sorted the cars into two piles, the fast and the slow. Ms. Nivea asks, "Which car do you think will get to the finish line first, the small red one or the big yellow one?"
3-G: Preschool learners begin to develop and use systematic approaches to problem solving as they test out possibilities and find solutions.	The environment includes many materials which children can use to experiment and problem-solve. The adult encourages children to playfully experiment with many different ways to solve problems.	Hong discovers that there are seven different colors of plastic dinosaurs, but only six places in the egg carton he is using for sorting. "I know, I'll get the BIG egg box from the kitchen!"

[^16]> COLORADO STATE STANDARD 4: Students Use Geometric Concepts, Properties, and Relationships in Problemsolving Situations and Communicate the Reasoning Used in Solving These Problems.

In order to meet this K -12 standard, students will:
4.1 Connect various physical objects with their geometric representation;
4.2 Connect mathematical concepts from across the standards with their geometric representations;
4.3 Recognize, draw, describe, and analyze geometric shapes in one, two, and three dimensions;
4.4 Make, investigate, and test conjectures about geometric ideas; and
4.5 Solve problems and model real-world situations using geometric concepts.

Early Childhood Foundation for Standard 4:

In building a foundation for using geometric concepts, properties, and relationships in problem-solving situations, young children need opportunities to actively explore the size, shape, and spatial arrangement of real objects. In communicating the reasoning used in solving these problems, children need to hear and use relevant vocabulary while interacting with adults and peers.

Learning to recognize, identify, draw, and describe shapes begins with opportunities to manipulate, play with, trace, and replicate geometric figures. Spatial reasoning begins as young children become aware of their bodies and personal space during active exploration of their physical environment and continues to develop through the manipulation of objects. Young children need opportunities to purposefully investigate and use shapes in a variety of activities to develop an understanding of geometric relationships.

[^17]
Standard \#4

Building Blocks for Learning	Steps for Getting There	Examples
4-A: Preschool learners explore	The adult encourages children to	
geometric shapes using their bodies,		
explore materials and environment		
their hands, their eyes, and their		
minds.	Two sets of parquetry blocks are on through movement and hands-on table. Travis is using his fingers experiences to follow the shape of each block saying, "Look, this is a triangle". Marisa is carefully matching the	
	The environment has enough space available to allow children to create shapes of the blocks to the design aoard. Niko enthusiastically created a new environment related to their play.	his own design and then uses a pencil to trace the shape. Ariana is quietly building a tower.
	The environment contains materials in a variety of shapes and sizes.	

[^18]Standard \#4

Building Blocks for Learning	Steps for Getting There	Examples
$\begin{array}{l}\text { 4-B: Preschool learners notice } \\ \text { differences and begin to identify, } \\ \text { describe, model, draw and classify } \\ \text { geometric shapes. }\end{array}$	$\begin{array}{l}\text { The adult uses appropriate } \\ \text { vocabulary while supporting and } \\ \text { encouraging children to explore, } \\ \text { manipulate, and represent geometric } \\ \text { shapes. }\end{array}$	$\begin{array}{l}\text { Chris and Aretha are building a } \\ \text { house out of geometric blocks. They } \\ \text { want to draw a picture of their }\end{array}$
"house". Their Dad encourages the		
girls to look at the "house", identify		
the shapes they have used, and then		
recreate them on paper. The next		
day, Chris and Aretha use their		
picture to make another house, using		
play doh.		

[^19]
Standard \#4

Building Blocks for Learning	Steps for Getting There	Examples
4-C: Preschool learners manipulate concrete geometric shapes and materials to create other geometric shapes.	The environment includes a variety of shapes and materials that may be connected and combined to create new shapes.	The neighborhood children love to go to Mr. Urigoto's home where he shows them how to fold paper in a variety of origami shapes. Mr. Urigoto helps Amy, who is blind, use her fingers to feel how the square paper is folded into a triangle to make a little hat.
The adult encourages children to		
experiment with combining and		
arranging shapes in new and more		
complex ways.		
4-D: Preschool learners recognize		
geometric shapes in their		
environment.	The adult names and calls attention to shapes naturally apparent in the environment	Rob takes his sisters on a walk to find circles. Alluradana finds a cup and a paper plate. Payten sees a headlight on a car and a bicycle tire. They stop for an ice cream cone. As they pay, Mckenna looks at the coins and says, "Hey! It's another circle!"

[^20]
Standard \#4

Building Blocks for Learning	Steps for Getting There	Examples
$\begin{array}{l}\text { 4-E: Preschool learners begin to } \\ \text { understand and describe position, } \\ \text { direction, and distance of objects } \\ \text { and themselves using words such as } \\ \text { here, there, in, out, over, under, next } \\ \text { to, near and far. }\end{array}$	$\begin{array}{l}\text { The adult uses, and encourages } \\ \text { children to use, language and physical } \\ \text { gestures to demonstrate directional } \\ \text { words with people and things in the } \\ \text { environment. }\end{array}$	$\begin{array}{l}\text { Sophia Katherine and Jeff are } \\ \text { playing on the jungle gym at the } \\ \text { park. "Look at you! You're going all } \\ \text { the way over the top!" exclaims } \\ \text { Michelle. Sophia Katherine laughs } \\ \text { and says, "We are very far away }\end{array}$
from you, Mama!"		
The adult encourages children to		
explore spatial relationships through		
activities and opportunities to move		
within their environments.		

create representations of space by

constructing models through

drawing, block building or other

mediums.\end{array} \quad \begin{array}{l}Federico is quietly playing in the

sandbox with his friend Tyler. They

are building a steep mountain road,

carefully placing boulders, trees, and

houses along the way. Olivia talks

with them about how their landscape\end{array}\right\}\)| 4-F: Preschool learners begin to |
| :--- |
| build mental and physical maps of |
| their own surroundings. |

[^21]```
COLORADO STATE STANDARD 5: Students Use a Variety of Tools and Techniques to Measure, Apply the Results in Problem-solving Situations, and Communicate the Reasoning Used in Solving These Problems.
```

In order to meet this K-12 standard, students will:
5.1 Understand and apply the attributes of length, capacity*, weight, mass, time, temperature, perimeter, area, volume, and angle measurement in problem-solving situations;
5.2 Make and use direct and indirect measurements to describe and compare real-world phenomena;
5.3 Understand the structure and use of systems of measurement;
5.4 Describe and use rates of change (for example, temperature as it changes throughout the day, or speed as the rate of change of distance over time) and other derived measures; and
5.5 Select appropriate units, including metric, and US customary, and tools (for example, rulers, protractors, compasses, thermometers) to measure to the degree of accuracy required to solve a given problem.

## Early Childhood Foundation for Standard 5:

In building a foundation for using tools and techniques to measure and apply the results in problem solving situations, young children need opportunities to explore and discover measurement relationships in everyday activities and interactions. In communicating the reasoning used in solving these problems, children need to be able to talk about size, distance, and time using conventional terms.

Learning to understand and apply measurement attributes begins with the child actively describing and comparing real world phenomena in his/her own words. As young children begin to understand the structure and use of systems of measurement, they need opportunities to use actual measurement instruments, and to make direct and indirect comparisons. Understanding the concepts of how to measure change begins with observing and recognizing change that occurs in their daily life.

## Standard \#5

| Building Blocks for Learning | Steps for Getting There | Examples |
| :--- | :--- | :--- |
| $\begin{array}{l}\text { 5-A: Preschool learners show an } \\ \text { understanding of the concept of } \\ \text { time, beginning with the recognition } \\ \text { of time as a sequence of events that } \\ \text { relates to their daily lives. }\end{array}$ | $\begin{array}{l}\text { The adult introduces general } \\ \text { concepts of time (wake-up, eat } \\ \text { breakfast, brush teeth, get dressed; } \\ \text { yesterday-today-tomorrow; morning- } \\ \text { afternoon-evening) before discussing } \\ \text { specific concepts (hours \& minutes). }\end{array}$ | $\begin{array}{l}\text { Maureen helps the children make a } \\ \text { large wall chart divided into thirds. } \\ \text { She labels the 3 sections "morning", } \\ \text { "afternoon", and "evening". Together, } \\ \text { Maureen and the children talk about } \\ \text { what happens in each of the time } \\ \text { periods. The next day, Caitlin asks, }\end{array}$ |
| The environment contains a variety |  |  |
| of time-related materials (pictures |  |  |
| of night \& day, clocks, stop watches, |  |  |
| hour/minute glass). The adult |  |  |
| encourages the children to we go outside?" Maureen |  |  |
| informally use and refer to these |  |  |
| materials. |  |  | \(\left.\begin{array}{l}she refers to the chart, talks with <br>

the children, and then suggests they <br>
go to the park, knowing the "puh" p is <br>

one of Caitlin's targeted sounds.\end{array}\right\}\)| Together, they add the word "park" |
| :--- |
| in the "afternoon" section. |

[^22]
## Standard \#5

| Building Blocks for Learning | Steps for Getting There | Examples | | |
|---|---|---|---|---|
| 5-B: Preschool learners begin to use <br> approximate measures of familiar <br> objects (width of your finger, <br> temperature of a room, weight of a <br> gallon of milk) to develop a sense of <br> measurement. | The adult encourages children to <br> practice measuring with non- <br> standard or arbitrary units of <br> measure (feet, hands, paper clips, <br> etc.). | Kajika shows the children how to link <br> ten paper clips together and then <br> use the joined paper clips to measure <br> a wide variety of items. Angela says, <br> "Look my bear is only 4 clips long but |
| Eme adult talks about measurement |  |  |
| Emma's bear is 8 clips long!" Henry |  |  |
| laughs as he uses his paper clip |  |  |
| concepts during everyday activities - |  |  |
| strand to measure the length of the |  |  |
| room. Carlos gets the yardstick, then |  |  |
| runs to Henry and says, "Here, this |  |  |
| -"It's hot in here today". "Your cup |  |  |
| is almost full." "Will this container faster." Kajika talks with the |  |  |
| be big enough for the legos?" |  |  |$\quad$| bhildren about different ways to |
| :--- |
| measure and helps them make a |
| graph describing what they have |
| found. |

[^23]Standard \#5

| Building Blocks for Learning | Steps for Getting There | Examples |
| :---: | :---: | :---: |
| 5-C: Preschool learners show an increasing awareness of conventional measurement tools and methods. | The environment has measurement tools (rulers, measuring tapes, measuring cups \& spoons, clocks, scales) readily available for use by the children. <br> The adult models use of conventional tools and methods in everyday situations. | Elmer is building a tree house for his granddaughter. He asks Abby to bring him the measuring tape, stating "We need to make sure these boards are the correct length". Abby holds one end of the measuring tape while Elmer measures and marks the point where he needs to cut the board. |
| 5-D: Preschool learners become aware of, and use, the conventional language of measurement (inch, mile, hour, degrees, cup, gallon). | The adult uses terms such as inch, foot, minute/hour, cup/quart/gallon, and degrees in informal ways throughout the day. <br> The environment includes many materials with written measurement language-books, charts, posters. | Miss Hou is reading the book Cookadoodle Doo with a small group of children. Together they eagerly discuss the words and measurements used in the book and their different meanings. Miss Hou notices that Simon is having a hard time sitting still. She quickly suggests they make a plan to use the strawberry shortcake recipe from the book to create a dessert for themselves. |

[^24]
## Standard \#5

| Building Blocks for Learning | Steps for Getting There | Examples | | |
|---|---|---|---|---|
| $\begin{array}{l}\text { 5-E: Preschool learners begin to use } \\ \text { estimation skills in solving everyday } \\ \text { problems. }\end{array}$ | $\begin{array}{l}\text { The adult creates opportunities for } \\ \text { children to estimate when measuring, } \\ \text { counting, and sharing materials. }\end{array}$ | $\begin{array}{l}\text { Mrs. Edles is helping Cortez put away } \\ \text { the building blocks. She brings out } \\ \text { several containers of different sizes } \\ \text { and says, "Hmmm, I wonder which of } \\ \text { these will be the right size for the } \\ \text { Legos. What do you think?" }\end{array}$ |
| estimates, such as about, a little |  |  |
| more/less than, near, and between. |  |  |
| Together, she and Cortez look at the |  |  |
| pile of Legos and the containers. |  |  |
| They discuss which container will |  |  |
| work best. |  |  |$\}$| The environment contains concrete, |
| :--- |
| meaningful materials for beginning |
| measuring and estimating activities- |
| measuring spoons \& cups, quart jars, |
| rulers, yardsticks, etc. |$\quad$| The adult builds on daily |
| :--- |
| opportunities and models language to |
| call attention to change (seasonal, |
| growth, temperature) in the |
| environment. |
| 5-F: Preschool learners begin to |
| recognize, identify, and describe |
| changes in their environment. | | Bob and Jane take their |
| :--- |
| grandchildren to the zoo once a |
| month. They always make sure to see |
| the Polar Bears and talk about how |
| they have grown since they were |
| born. Jane takes pictures of the |
| children in front of the polar bear |
| The environment includes people, and labels them by the |
| animals, plants, and materials that |
| change, as well as records of those |
| changes. |
| season. She puts the pictures in a |
| scrapbook and talks with the |
| children about how they have grown |
| just like the polar bears. |

[^25]```
COLORADO STATE STANDARD 6: Students link Concepts and Procedures as They Develop and Use Computational Techniques, Including Estimation, Mental Arithmetic, Paper-and-pencil, Calculators, and Computers, in Problemsolving Situations and Communicate the Reasoning Used in Solving These Problems.
```

In order to meet this K-12 standard, students will:
6.1 Model, explain, and use the four basic operations - addition, subtraction, multiplication, and division - in problemsolving situations;
6.2 Develop, use, and analyze algorithms; and
6.3 Select and apply appropriate computational techniques to solve a variety of problems and determine whether the results are reasonable.

Early Childhood Foundation for Standard 6:

In building a foundation for linking concepts and procedures as they develop and use computational techniques, young children need exposure to a wide variety of tools, manipulatives, and active experiences, which, together, set the stage for basic computational concept development. They also need the opportunity to observe adults and peers applying mathematical concepts and using problem-solving techniques and to include these concepts in their play and in adult supported activities. In building the foundation for communicating the reasoning used in solving problems, children need opportunities to hear others describe their reasoning and to respond to questions about their own thinking.

Learning to model, explain, and use the four basic operations in problem solving situations begins with the opportunity for young children to count, sort, and compare groups of objects, describing their thinking and observations. Learning to develop, use and analyze algorithms (step-by-step procedures) begins with following a sequence of directions for activities, experiments and recipes. Learning to select and apply appropriate computational techniques to solve a variety of problems begins with young children using math problem solving strategies in everyday situations.

Standard \#6

$\left.$| Building Blocks for Learning | Steps for Getting There | Examples |
| :--- | :--- | :--- |
| 6-A: Preschool learners count
 objects, sorting, organizing and
 comparing groups of objects. | The environment includes a variety
 of objects and materials, e.g.: shells,
 buttons, pegs, to provide each child
 many opportunities to count, sort,
 and compare. | Ned is playing with a tin of buttons
 and has divided them into groups.
 Mrs. O' Toole points to one of the
 groups and asks Ned, "How did you
 decide to put these buttons
 together?" He uses his
 communication board to say, |
| The adult asks open-ended questions | | |
| in order to focus children's | | |
| observations. | | |\quad| "Because they are all shiny!" Mrs. |
| :--- |
| O' Toole offers Ned a muffin tray to |
| help him keep his groups separate. | \right\rvert\, | Keith put 8 rubber dinosaurs in a jar |
| :--- |
| and asks the children to estimate |
| how many there were. He records |
| their estimate. The children then |
| check their estimates by counting. |
| The next week, Keith puts 10 more |
| dinosaurs in the jar. As the children |
| bevelop estimation skills related to |
| quantity. |\quad| The adult asks children to estimate |
| :--- |
| number --"How many do you think |
| you have? |\quad| become more skilled at estimating, |
| :--- |
| he varies the number of the objects. |

[^26]Standard \#6

Building Blocks for Learning	Steps for Getting There	Examples
6-C: Preschool learners participate in hands-on experiences with computational tools, such as calculators, abacuses, adding machines, or computers.	The environment includes tools where they would naturally be used, e.g.: calculators near writing materials and blocks, adding machines in the office, etc. The adult uses computational tools and talks with children about how they are useful.	Hadiyah gets an allowance of \$2 a week. She wants to buy a book that costs $\$ 10$. Her Aunt helps her use the calculator to figure out how many weeks she will have to save her allowance in order to buy the book.
6-D: Preschool learners begin to develop step-by-step procedures for solving problems.	The adult describes their own thinking in step-by-step activities. The adult encourages children to take risks and understand that many problems can be solved in more than one way. The environment is set up to motivate children to challenge themselves and independently solve problems by testing a variety of strategies and solutions.	Justin and Mrs. Lee were making cookies. Justin wanted to make purple frosting so Mrs. Lee gave him the box of food coloring. "There's no purple in here!" said Justin. Mrs. Lee said, "Why don't you try making purple? What colors do you need?" After much experimentation, Justin had created the perfect "purple" color. Mrs. Lee asked him, "How did you get that color". "First I put in 2 drops of red. Then I added one drop of blue. I stirred it up and it still looked red. So then I put in two more drops of blue and then I got purple! It took three drops of blue to make it purple."

Building Blocks to Mathematics
August 2003
Page 33 of 38

Standard \#6

Building Blocks for Learning	Steps for Getting There	Examples
6-E: Preschool learners begin to explore the use and meaning of currency and coins.	The adult involves children in using real currency and coins in everyday situations.	Catalina and Amber have been attending the livestock auction with their family. When they return, they get out papers, markers, and an old checkbook. "Who wants to buy a cow?" Catalina asks. "Amber, do you want to buy this cow for $\$ 500$?" "Yes!" says Amber, "Let me write you a check." "No, says Catalina, "I will only take real money." Zack talks with the girls about how adults use checks. they use currency and coins in pretend play.
The environment includes both real and pretend money with props (cash registers, wallets, purses, checkbooks, receipt pads) for their use.		

[^27]Standard \#6

Building Blocks for Learning	Steps for Getting There	Examples
6-F: Preschool learners begin to understand and demonstrate the concepts of adding and subtracting.	The adult encourages children to use objects to model and solve simple addition and subtraction problems in meaningful ways. The environment includes a variety of objects and materials that may be used for adding and subtracting.	Mary Kate and Ashley are counting their Beanie Babies. Mary Kate says, "I have 5 bears and 2 cats, that makes 7 altogether." Ashley frowns as she says, "I had 6 dogs, but then I lost Doby at the park last week. Now I only have 5. I'm going to buy Bones when I get my allowance. Then there will be six in my dog family again!"
6-G: Preschool learners begin to understand the concept of whole, parts, and parts that make a whole (fractions).	The adult encourages children to use objects to explore the idea that you can take a whole and break it into parts.	Noah and Nicholas get out their homemade playdough. Noah says, "We each get half". Just then Meryl walks in and says, "I want to play, too." "You can't because we don't have enough". Demi hears the children arguing and comes into the room. "How can you divide this into three equal pieces? Then you could each have a third."
The adult models correct language when talking with children, e.g.: part, pieces, whole, half, quarter.		
The environment includes materials that can be broken into parts and brought back together again, e.g.: pizza, crackers, unit blocks, puzzles.		

[^28]
Bibliography and Resource List

Many educators have worked diligently to create content standards for Early Childhood. We are grateful we were able to refer to these documents while developing Building Blocks to Colorado's Content Standards. We also utilized many of the following books as references and guides. We hope you will find these resources equally useful in your own work with young children.

Early Childhood Content Standards Documents:

El Paso District 11 Early Childhood Content Standards

Early Learning Task Force Preschool Education/Harrison District \#2-Colorado. (1992)

Jefferson County Early Childhood Content Standards

Michigan State Board of Education Early Childhood Education, Parenting and Comprehensive School Health Unit (1992).
Early Childhood Standards of Quality for Prekindergarten through Second Grade.

References \& Resources:

Allison, L. \& Westin, M. (1993). Eenie Meenie Miney Math: Math Play for You and Your Preschooler. Boston: Little, Brown \& Co.

Bredekamp, S. \& Rosegrant, T., Eds. (1992). Reaching Potentials: Appropriate Curriculum and Assessment for Young Children, Volume 1. Washington, DC: National Association for the Education of Young Children.

Bredekamp, S. \& Rosegrant, T., Eds. (1995). Reaching Potentials: Transforming Early Childhood Curriculum and Assessment, Volume 2. Washington, DC: National Association for the Education of Young Children.

Bulloch, I. (1997). Action Math: Measure. Chicago: World Book, Inc.
Bullock, I. (1997). Action Math: Patterns. Chicago: World Book, Inc.
Core Knowledge Foundation. (1997). Core Knowledge Preschool Sequence: Content and Skill Guidelines for Young Children. Charlottesville, VA: Core Knowledge Foundation.

Cryer, D., Harms, T. \& Bourland, B. (1988). Active Learning for Threes. Menlo Park, CA: Addison-Wesley Publishing.
Dodge, D. T. \& Colker, L. J. (1992). The Creative Curriculum for Early Childhood, Third Ed. Washington, DC: Teaching Strategies, Inc.

Kamii, C. (1982). Number in Preschool and Kindergarten. Washington, DC: National Association for the Education of Young Children.

Kanter, P.F. (1992). Helping Your Child Learn Math. US Dept. of Education.
McGowan, D. \& Schrooten, M. (1997). Math Play. Charlotte, VT: Williamson Publishing.

National Council of Teachers of Mathematics, Inc. (1999). Mathematics in the Early Years. Reston, VA: National Council of Teachers of Mathematics, Inc.

Pluckrose, H. (1995). Math Counts: Sorting. Chicago: Children's Press.
Schiller, P. (1999). Start Smart: Building Brain Power in the Early Years. Beltsville, MD: Gryphon House.

[^29]Schiller, P. \& Peterson, Lynne. (1997). Count on Math: Activities for Small Hands and Lively Minds. Beltsville, MD: Gryphon House.

Stone, J.I. (1990). Hands on Math: Manipulative Math for Young Children. Glenview, IL: Scott Foresman \& Co.
Waite-Stupiansky, S. \& Stupiansky, N.G. (1992). Learning Through Play: Math, A Practical Guide for Teaching Young Children. New York: Scholastic.

Related Children's Literature

Aubinais, M. \& Martin, J.F. (1996). The Farm. New York: Abbeville Publishing. Grossman, V. \& Long, S. (1991). Ten Little Rabbits. San Francisco: Chronicle Books.
Hindley, J. (1996). One by One. Cambridge, MA: Candlewick Press.
Hood, S. (1999). How Many Cupcakes. Pleasantville, NY: Readers Digest Children's Books.
Krudwig, V. L. (1998). Cucumber Soup. Golden, CO: Fulcrum Publishing.
Lee, K. \& Repchuk, C. (1998). Snappy Little Numbers. Brookfield, CT: Millbrook Press.
Martin, B. \& Archambault, J. (1987). New York: Henry Holt \& Co.
McGrath, B.B. (1994). The M \& M's Counting Book. Watertown, MA: Charlesbridge Publishing.
Murphy, S.J. (1997). Every Buddy Counts. New York: Harper Collins Childrens Books.
Pallotta, J. \& Bolster, R. (1999). The Hershey's Milk Chocolate Fractions Book. New York: Scholastic Printing.
Payne, J. N. ed. (1990). Mathematics for the Young Child. Reston, VA: National Council of Teachers of Mathematics, Inc.
Ryan, P. M. (1994). One Hundred is a Family. New York: Hyperion Books Paperbacks for Children.
Sabuda, R. (1997). Cookie Count. New York: Simon \& Schuster Children's Publishing.
Schnetzler, P. (1996). Ten Little Dinosaurs. Denver: Accord Publishing Ltd.
Sturges, P. (1995). Ten Flashing Fireflies. New York: North South Books.
Stutson, C. (1995). Mountain Meadow 12 3. Boulder, CO: Roberts Rinehart Publishers.
Williams, R.L. (1995). The Time Song. Cypress, CA: Creative Teaching Press.
Williams, R.L. (1995). The Crayola Counting Book. Cypress, CA: Creative Teaching Press.

[^30]
[^0]: Building Blocks to Mathematics

[^1]: Building Blocks to Mathematics
 August 2003
 Page 2 of 38

[^2]: Building Blocks to Mathematics
 August 2003
 Page 3 of 38

[^3]: Building Blocks to Mathematics
 August 2003
 Page 5 of 38

[^4]: Building Blocks to Mathematics
 August 2003

[^5]: Building Blocks to Mathematics
 August 2003
 Page 7 of 38

[^6]: Building Blocks to Mathematics
 August 2003
 Page 9 of 38

[^7]: Building Blocks to Mathematics
 August 2003
 Page 10 of 38

[^8]: Building Blocks to Mathematics
 August 2003
 Page 11 of 38

[^9]: Building Blocks to Mathematics
 August 2003
 Page 13 of 38

[^10]: Building Blocks to Mathematics
 August 2003
 Page 14 of 38

[^11]: Building Blocks to Mathematics
 August 2003
 Page 15 of 38

[^12]: Building Blocks to Mathematics
 August 2003
 Page 16 of 38

[^13]: Building Blocks to Mathematics
 August 2003
 Page 17 of 38

[^14]: Building Blocks to Mathematics
 August 2003
 Page 18 of 38

[^15]: Building Blocks to Mathematics
 August 2003
 Page 19 of 38

[^16]: Building Blocks to Mathematics
 August 2003
 Page 20 of 38

[^17]: Building Blocks to Mathematics
 August 2003
 Page 21 of 38

[^18]: Building Blocks to Mathematics
 August 2003
 Page 22 of 38

[^19]: Building Blocks to Mathematics
 August 2003
 Page 23 of 38

[^20]: Building Blocks to Mathematics
 August 2003
 Page 24 of 38

[^21]: Building Blocks to Mathematics
 August 2003
 Page 25 of 38

[^22]: Building Blocks to Mathematics
 August 2003
 Page 27 of 38

[^23]: Building Blocks to Mathematics
 August 2003
 Page 28 of 38

[^24]: Building Blocks to Mathematics
 August 2003
 Page 29 of 38

[^25]: Building Blocks to Mathematics
 August 2003
 Page 30 of 38

[^26]: Building Blocks to Mathematics
 August 2003
 Page 32 of 38

[^27]: Building Blocks to Mathematics
 August 2003
 Page 34 of 38

[^28]: Building Blocks to Mathematics
 August 2003
 Page 35 of 38

[^29]: Building Blocks to Mathematics
 August 2003
 Page 37 of 38

[^30]: Building Blocks to Mathematics
 August 2003
 Page 38 of 38

