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EXECUTIVE SUMMARY 
 
 Fiber-reinforced polymer composites (FRP) are an attractive repair option for reinforced concrete 

structures, however their long-term performance in field environments is not well understood.  Laboratory 

durability tests have indicated that FRP generally performs quite well, but these laboratory tests cannot 

model the synergistic effects that occur when the FRP is in-service on a bridge (or other structure), and 

agents of interest to CDOT have not been fully considered.  This research project was initiated to gain 

better information about the field performance of FRP. 

 The project consisted of five research tasks, plus an additional reporting task. Tasks 1-3 were 

devoted to assessing the present condition of the FRP used to repair the Castlewood Canyon Bridge on 

State Highway 83 in 2003.  Task 4 was a literature review task to determine additional information about 

questions and concerns related to FRP application posed by CDOT engineers.  Task 5 was a laboratory 

durability study to consider the effects of deicing agents on FRP.  Task 6 is the reporting task.  This final 

report has been prepared to satisfy the requirements of this task. 

 Task 1 required the collection of data about the bridge and its repair and planning for the field 

assessment.  Although many people were contacted, and the project team was able to look through the 

project box at stored at Region 1, only limited amounts of initial data about the bridge and its repair were 

collected.  A tentative plan for site assessment activities was prepared, including testing locations at the 

base and crest of the arch. 

 Task 2 was the field assessment task.  This task was completed at the bridge location during July, 

2011.  The complete extrados of the east arch was inspected for voids between the concrete and FRP 

using acoustic sounding. Voids that were previously identified during a routine bridge inspection in 2007 

had grown significantly larger by the 2011 assessment.  Pull-off tests were used to test the bond strength 

at the base and top of the arch. Pull-off strengths were on average lower and represented different failure 

modes from pull-off tests conducted at the time of repair.  Large debonded regions of FRP were cut from 

the structure to use in laboratory testing for Task 3. Damaged regions were repaired with new FRP.   
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 In Task 3, materials brought back from the bridge were used for tensile and Differential Scanning 

Calorimetry (DSC) testing.  The tensile tests showed that the FRP strength was well below the specified 

design strength, but the lack of initial data makes it difficult to tell if the material has deteriorated over 

time, or if the material started off with lower strengths due to field manufacture techniques.  The DSC 

tests showed that the glass transition temperature of the composites was near the value suggested by the 

manufacturer. 

 Task 4 required literature review of topics including fatigue, environmental and chemical 

exposure, bond behavior, and existing design details and guidance.  Literature on topics directly related to 

Task 1-3 and Task 5 – bond behavior and environmental and chemical exposure – are discussed with the 

related task.  This section of report focuses on fatigue performance of RC members with externally 

bonded FRP strengthening and existing design guidance. 

 Task 5 involved laboratory durability testing to determine the effect of deicing agents on FRP.  A 

magnesium chloride based deicer and an alternative deicer were obtained from Envirotech Services.  Two 

types of concrete specimens with bonded FRP were prepared, blocks for pull-off testing and small beams 

for flexural testing.  The specimens were placed in several different exposure environments starting in 

June 2011.  Testing with six months of exposure was conducted in December 2011, and one year tests 

were conducted in June 2012.  Following completion of the durability study, a new section (Section 7.0) 

was included in this report which discusses the direct tension pull-off test method. After conducting pull-

off tests in the field and the laboratory, examination of the results raised questions as far as reliability of 

this method, and interpretation of results. Therefore, additional research was conducted on this method. 

Past laboratory and field studies are summarized in Section 7.0, and their results were analyzed. 

Implementation  
 
 The conclusions drawn from the field assessment of the FRP on the Castlewood Canyon Bridge 

are limited by the lack of initial data, and the fact that no intermediate testing was conducted between the 

repair in 2003 and this research project in 2011.  The FRP seems to be holding up reasonably well, but the 
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performance is difficult to quantify.  It is recommended that CDOT monitor the durability of future FRP 

applications through a more systematic process in which baseline data is collected and maintained and 

inspections including material testing are conducted at shorter intervals, perhaps every two to three years.   

The results of the laboratory durability study are not conclusive, as the direct tension pull-off test 

was found to be subject to high degrees of variability.  This type of testing is currently used as a required 

quality control procedure on FRP repair projects.  However, the results of this testing are often difficult to 

interpret and may be more indicative of the quality of the existing concrete than the FRP repair.  For this 

reason it is also recommended that CDOT consider other forms of quality control such as acoustic 

sounding for evaluating FRP repairs. 
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1.0 INTRODUCTION 
 

Fiber-reinforced polymer composites (FRP) have been proven effective at restoring or increasing 

the capacity of existing reinforced and prestressed concrete elements and structures.   These materials 

possess several properties that make them an attractive repair option including their light weight, small 

profile, ability to conform to existing geometries, and durability.   Although the materials themselves can 

be expensive when compared to the materials used in conventional repairs, the overall repair operation 

can be cost-effective. 

Currently, a primary issue limiting the application of FRP to repair transportation structures in 

Colorado is concern about the long-term performance of FRP repairs.  Although FRP has been the subject 

of numerous durability studies, these studies have generally been conducted through accelerated testing in 

the lab and there is relatively little information available regarding long-term field performance.   In 

particular, questions exist about the performance of FRP and its bond to concrete in environmental 

conditions representative of Colorado. 

This project was created to study the long-term performance of FRP in field conditions though 1) 

a field investigation of the FRP used to repair the Castlewood Canyon Bridge in 2003 and 2) a laboratory 

durability study to consider the effect of deicing agents on FRP.  The project also includes a literature 

review to consider other FRP related questions of CDOT engineers.   

The specific tasks included in this project are: 

1. Collect Information and Develop Data Collection and Testing Plans for Field Assessment 

2. Conduct Testing/Observations on Site and Collect Samples for the Laboratory 

3. Laboratory Testing of FRP Samples and Analysis of Data 

4. Literature Review  on Additional FRP Topics 

5. Establish Long-term Testing Program to Consider the Effect of Deicers on FRP 

6. Reporting 
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The arches and struts were then painted with an exterior acrylic paint to prevent and/or reduce 

degradation to the resin caused by moisture and UV and to restore the original appearance matching the 

concrete color.  

2.2.3 Initial Values and Quality Control of the Renovation in 2003  

As a measure of quality assurance, the contractor of the renovation, Restruction Corporation, was 

responsible to “obtain suitable documentation from the manufacturer showing results from an 

independent agency that all materials used in this system meet or exceed the requirements” (CDOT’s 

construction specifications (Revision of Section 602)). The following are some of the codes and reference 

standards used to define the requirements in CDOT’s construction specifications: ACI 440R-96, ACI 

318-99, ACI 515R, ACI 546R-96, ASTM D3039, ASTM D4541, ICRI Guideline No. 03730, ICRI 

Guideline No. 3732, and ICRI Guideline No. 03733. 

2.2.3.1 Tensile Properties of CFRP 

From CDOT’s construction specifications (Revision of Section 602), the number of layers of 

CFRP necessary was calculated by Fyfe and was to meet the following performance criteria: 

 Minimum ultimate rupture strain = 0.006 cm/cm (0.006 inch/inch) 

 Resist a force of no less than 320.9 KN per linear meter (22 KIPS per linear ft.), this strength 

shall be determined at a strain no greater than a usable strain of 0.0043 cm/cm (0.0043 inch/inch).   

 The ultimate tensile strength shall be the mean tensile strength of a sample of test specimens (a 

minimum of 20 replicate test specimens) minus three times the standard deviation.  

 The ultimate rupture strain shall be the mean rupture strain of a sample of test specimens (a 

minimum of 20 replicate test specimens) minus three times the standard deviation. 

Restruction was to obtain “suitable documentation” from Fyfe showing results from an 

independent agency that all materials used in this system met or exceeded these requirements and 

Restruction was to submit this documentation a minimum of two weeks prior to start of work. Fyfe 
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published a guarantee of the mechanical tensile properties but, the “suitable documentation” was not 

recovered but was assumed to exist due to the completion of the project. 

Restruction was also required to provide two 30.5 cm x 30.5 cm (12” x 12”) sample panels for 

every 92.9 m2 (1000 ft2) of FRP installed to be tested by an independent testing laboratory in accordance 

with ASTM D3039. The independent testing laboratory was to use one of the two panels to conduct 

tensile tests and prepare a summary report of all test results. Two panels were initially prepared with one 

panel held in reserve in case test results on the first panel did not meet specified performance criteria. No 

documentation of these tests was recovered. 

Tensile tests were not conducted in the 2003 study conducted by CU, but values provided by the 

manufacturer of material properties were included in the CDOT report. These values are tabulated in a 

table below in Section 4.1. 

2.2.3.2 Bond Strength of CFRP 

The contractor was to provide a qualified representative on-site to ensure the proper installation 

of the CFRP. The representative was required to inspect each completed phase of the installation and 

advise the project engineer regarding repairs and replacements. No documentation of advice or notes was 

found in regard to this process. 

The contractor was required to conduct a minimum of one direct pull-off test per 46.45 m2 (500 

ft2) of surface of installed FRP to ensure the required minimum tensile strength of 1.38 MPa (200 psi) was 

satisfied. No documentation of these tests was recovered. 

In addition, the contractor accompanied by the engineer and manufacturer’s representative, was 

required to examine all surfaces 24 hours after application of FRP sheets and initial resin cure to check for 

voids, delaminations and air bubbles. The inspection was accomplished by visual observation and 

acoustic tapping tests to locate voids or defects. Areas of voids or delaminations can be detected due to 

the different sound emitted when tapped or when a solid object is slid over the area. Minor areas of voids 

of less than 38.7 cm2 (6 in2) were injected with resin to fill the void and provide a bond between the FRP 

and the substrate. Voids larger than 38.7 cm2 (6 in2) were repaired by removing and re-applying the 
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Table 2.2. Failure Modes of the pull-off tests conducted in 2003 

42 Tests 
Failure Modes of 2003 Pull-off tests 

A B C D E F G NA 

Quantity 9 0 0 0 2 3 25 3 

Percentage 21.4 0 0 0 4.8 7.1 59.5 7.1 
 

After having a number of pull-off tests with a failure Mode A, the pull-off technique was altered 

to prevent the premature failure of subsequent tests. The tests with failure modes E and F failed at 

strength values higher than the minimum 1.38 MPa (200 psi) and, therefore it can be deduced that the 

tensile strength of the substrate also exceeded 1.38 MPa (200 psi). Further discussion of the results and 

subsequent pull-off tests resumes in Section 3.3. 

2.3 Biannual Bridge Inspections 

 Biannual bridge inspections were conducted on the Castlewood Canyon Bridge following the 

renovation in 2005, 2007, and 2009. The 2011 bridge inspection had not yet occurred at the time of the 

field assessment in July 2011. The conditions of the CFRP material and its bond were evaluated as a 

component of these bridge inspections. These evaluations consisted of visual inspections and acoustic 

tapping tests of areas easily accessible which included the extrados and bases of the arches. The boundary 

of defects in the CFRP were outlined and dated with a “permanent” marker.  

In discussing defects or voids in the CFRP composite system, it is necessary to further 

differentiate between the type of defect and the time of occurrence. The term “void” will be used to 

denote an area lacking a bond at some interface between the surface of the CFRP and the substrate, but 

with no distinction of when it developed. The term “unbonded” will refer to areas in which the FRP failed 

to bond to the substrate at the time of repair. The term “debonded” will be used to denote that at some 

point following the repair the FRP lost the bond to the substrate that it once had, and “delamination” will 

refer to a loss of bond between layers of CFRP. Voids found during the bridge inspections were denoted 

using familiar terminology of bridge inspectors as “DELAM” should be considered as voids and not 

delaminations. Bond loss between reinforcing steel and the concrete cover is often referred to as a 
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2.4 Planning Tests and Locations 

 Planning for a field assessment to evaluate the durability of the CFRP application on the bridge 

began in the fall of 2010. Following literature review, evaluation techniques suitable for the Castlewood 

Canyon Bridge project were chosen to evaluate the durability of the FRP system. Pull-off tests, tensile 

tests, and differential scanning calorimetry (DSC) were chosen as the primary methods to evaluate the 

durability of the FRP application. The pull-off tests indicate values of bond strength which is essential to 

the performance of FRP composites. Tensile tests provide mechanical properties of the composite 

material. DSC tests evaluate the glass transition temperature of the composite which can significantly 

vary depending on the wet lay-up process and the exposure to moisture. Visual inspection, acoustic 

tapping tests, and thermal imaging were selected as identification methods to identify areas of voids and 

visible defects. 

  Two general locations, the crest and base of the arches, were locations of interest prior to the field 

assessment. The two locations have different exposures and stresses that could potentially affect the 

durability of the FRP application. The crest of the arch has less exposure than the base of the arch to 

moisture from precipitation such as driving rains and drifting snow due to the protection of the 

overhanging deck. However, because the crest of the arch is located closer to the bridge deck it is also 

more susceptible to moisture draining from the deck as well as deicing agents. The crest of the arch is also 

more protected from the sun and consequentially experiences lower thermal stresses than the base of the 

arch. As a typical arch structure, the base of the arch, in general, has larger stresses due to the self-weight 

of the arch as well as those generated from service loads. The differences between these two locations 

provide a variety of conditions that are known to have an impact on the durability of FRP composites. 

 In addition to conducting the tests described above at these two different locations, the effect of 

the two different substrates - concrete and shotcrete - on the bond and material properties was also an area 

of interest. However, it was not possible to identify whether the substrate was concrete or shotcrete at a 

particular location because the areas where shotcrete was applied during the repair in 2003 were not 
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documented other than in coincidental photographs documenting the progress of the project. Therefore, 

the effect of the different substrates was not determined in this assessment. 

Conduct of the identification and testing methods was planned for the extrados of the arch for two 

reasons. The extradoses of the arches were easily accessed and navigated. Secondly, from the modeling in 

the CU study, this is an area that could potentially experience high stresses due to concentrated truck 

loads over the second spandrel column. Due to limited time and safety equipment the east arch was 

arbitrarily chosen as the primary arch of focus for the field assessment.  

Due to conditions at the bridge site, the north end of the arches was chosen for access and as the 

location to conduct pull-off tests at the base of the arch. Particular locations to conduct pull-off tests were 

established in areas where there were no voids found using the thermal imaging infrared camera or tap 

tests. 

Different techniques for pull-off tests were explored in the laboratory to ensure testing procedures 

accurately represented bridge conditions. Experiments with wet core drilling, dry core drilling, cleaning, 

sanding, epoxying, and cure times helped improve the pull-off test methods used in the field. Dry drilling 

caused too much heat and presumably exceeded the glass transition temperature of the epoxy between the 

FRP and the substrate and caused the FRP bond to prematurely fail. Drilling after the pucks were adhered 

to the FRP benefitted the starting of the coring, but presented difficulties due to the heat generated from 

friction whether the core drilling was wet or dry. The core drilling was more successful using a jig that 

provided the guidance to start the coring rather than the adhered puck. Wet core drilling introduced 

moisture and created problems in the adhesion of the pucks to the FRP. Drying and cleaning the adhesion 

surface with compressed air and alcohol provided the best method for adhesion after wet core drilling. 

Sanding the pucks with 40 grit sandpaper and a similar cleaning technique provided the preparation for 

sufficient bonds. Thorough mixing of the two-part epoxy and a minimum cure time of 1 hour were also 

critical to a successful pull-off test. 

Tensile and DSC tests require equipment in the laboratory; therefore samples had to be collected 

from the bridge to be brought back to the lab for testing. Specimen sizes of CFRP strips approximately 
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2.5 cm (1”) wide and 20.3 cm (8”) long were required for the tensile test while samples for the DSC tests 

are 15 mg of finely ground particles or powder. The strips were planned to be collected from the outside 

corner of the arches in the locations of interest with the use of an abrasive cut-off wheel mounted on a 

right angle grinder and masonry chisel, and the DSC samples could easily be provided from material from 

the other tests or samples collected.  

Experiments in the laboratory prior to the site visit with the infrared camera proved to be 

beneficial in learning the capabilities and ranges of thermal detection of the camera. Information in regard 

to surfaces could be received when a temperature differential existed. Because of the delicate nature of 

the information held in the transient state, it was anticipated that using the camera at different times of 

day would have significant benefits and drawbacks that would be difficult to predict. It was determined 

that it would be beneficial to have a preliminary site visit to establish the most effective thermal camera 

techniques. 

A preliminary site visit would also provide an opportunity to establish transportation, parking, 

arch access, and safety procedures, as well as general familiarity with the project. Necessary equipment to 

conduct the field assessment included the following:  gas-powered generator, air-compressor, hoses, 

extension cords, drill, grinder, ice, safety equipment, repair CFRP materials, and paint. Planning for the 

setup of this necessary equipment could also be accomplished by a preliminary site visit. 
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3.0 TASK 2: CONDUCT TESTING/OBSERVATIONS ON SITE AND 
COLLECT SAMPLES FOR THE LABORATORY 

3.1 Preliminary Site Visit 

Prior to the site visit, a Special Use Permit was acquired from the Colorado Department of 

Transportation (CDOT) to inform the necessary parties of the planned activities and to outline procedures 

and liability. On the 6th of July 2011, the field assessment of the durability of the FRP repair began with 

an orientation visit to the bridge. CDOT personnel present at the preliminary site visit included Thomas 

Moss, a bridge inspector for CDOT, and CDOT Research Staff, David Weld. Mr. Weld provided high-

visibility safety vests, parking recommendations, assistance in maintaining proper procedure for roadside 

activity, and supervision. The north side of the bridge was used for parking and access to the arches. 

Parking off the shoulder was recommended to eliminate the need for lane-closures. 

Mr. Weld was present for the duration of the field assessment as per CDOT policy. Mr. Moss 

provided guidance to the access of the arches, safety equipment (e.g. safety harnesses, lanyards, and 

safety ropes), and installation of the safety apparatus on the eastern arch. Mr. Moss demonstrated the 

proper technique to use the safety equipment. In addition Mr. Moss recounted previous bridge inspections 

and assisted in locating the previously identified areas of flaws in the FRP repair.  

Once the safety rope system was installed on the east arch, a thermal imaging infrared camera, 

FLIR ThermaCAM™ E4,  coupled with the use of a tap test were used to identify areas of voids between 

the CFRP and the substrate (either concrete or shotcrete) of the arch. Heating, cooling, and the effects of 

solar radiation on the surface of the arches were also explored in order to optimize the use of the thermal 

camera in detecting voids. Both thermal imaging and tap tests were used to confirm the existence of voids 

while the acoustic tapping test was more precise in determining the size and shape of the voids.  

The thermal camera was used to identify areas where there was a significant temperature 

differential. In theory, the concrete or substrate acts as a “thermal sink” pulling heat applied to the surface 

through the CFRP in areas that are well bonded. Voids between the CFRP and the substrate would not 

allow the heat to conduct as quickly resulting in a “hot pocket” in the void. Cooling the surface would 
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also work in a similar manner. Multiple external sources of heat and cold were considered prior to the site 

visit: liquid nitrogen, liquid carbon dioxide, heat blankets, electric iron, heat gun etc. For various reasons 

these candidates were deemed unfit for the project. Liquid nitrogen and liquid carbon dioxide would 

provide temperatures of 78 K (-319˚ F) and 195 K (-109 ˚F) respectively. Because the coefficient of 

thermal expansion of CFRP and concrete differ of up to an order of magnitude, externally applying 

extreme temperatures would introduce thermal stresses possibly compromising the bond between the two 

materials. Therefore, it was reasoned that any heating or cooling to create a temperature differential 

should be limited to a moderate change relative to the ambient temperature. The electric iron and heat gun 

would both require electricity, and would not have significant advantages compared to a handheld 

propane heater. The use of heat blankets would have provided a more controllable uniformly heated area, 

but blankets large enough to justify their use would have been too heavy and cumbersome to handle in 

traversing the arches. 

A handheld propane heater was used to supply an external heat source. Initially, the surface of the 

CFRP registered a constant temperature in the thermal camera due to the heating, followed by a transient 

state in which the substrate would pull the applied heat at well bonded areas but not in areas of voids. 

This method proved to be fairly time intensive including applying the heat and waiting for the transient 

state to occur.  A 929 cm2 (1 ft2) section required approximately 3 minutes and the area of the extrados of 

only one arch exceeded 148.6 m2 (1600 ft2). In addition, it was difficult to apply the heat uniformly, 

resulting in thermal images containing transient temperature differentials due to the application of the heat 

not necessarily due to the area of voids.  

Following the same philosophy as the externally applied heat an alternative technique of 

externally applying ice water to create a temperature differential was also tested. Using this technique the 

voids appear to the thermal camera as pockets of cold regions because the substrate conducts heat back to 

the CFRP in areas that are well bonded. This method was not effective either. Applying the ice water was 

easier than applying heat when considering large areas, but the transient state was delayed longer until the 

water on the surface was totally removed. In addition, the uniform contact time and contact area of the ice 
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water to the surface of the arch was difficult to control causing temperature differentials during the 

transient state that were due to the external application rather than areas of voids. 

After trying the propane heater and ice water during the preliminary site visit, it was determined 

that solar radiation and no other externally applied sources of heat or cold other than that of the sun would 

be used for the final assessment. The effectiveness of using solar radiation proved to be highly sensitive to 

the intensity and duration of the exposure to sun or lack thereof.  Thermal images from areas of the arch 

that had been shaded from the sun for long periods of time were more effective at locating areas of voids 

than areas that were transitioning in or out of direct sunlight.  

Detection of areas of voids was much quicker with the thermal camera than the tap test technique, 

but the tap test technique was unmistakable in detecting voids. Depending on the recent thermal history, 

the thermal camera would produce images that would suggest areas of voids that may or may not actually 

represent areas of voids. The tap test not only was used to find areas of voids and confirm areas of voids 

found by the infrared camera, but also to identify the size and shapes of the voids.  

The preliminary site visit provided the following conclusions: 
  
 Parking and access would be at the north end of the arches 

 Thomas Moss would set-up a similar safety system extending the entire length of the arch 

for the field assessment on July 11th 2011 

 The extradoses and east arch would be accessible and the primary focus of the field 

assessment 

 Quantity, size, and shape of voids would be detected by the coupled use of the thermal 

camera and acoustic tapping tests 

  The thermal camera would rely solely on solar radiation for void detection 

 The bridge deck replaced in 2003 was continuous and waterproof with no expansion joints 

or areas of leakage. The bridge deck appeared to be protecting the arches from any exposure 

to deicing agents 
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3.3 Pull-off Tests 

Multiple sources for pull-off test recommendations or standards have been published including 

the International Concrete Repair Institute (ICRI) Guideline No. 03739 (2004), the Army Corps of 

Engineers Technical Report REMR-CS-61 (1999), ACI 503R (1993), and ASTM D7522 (2009). 

Unfortunately some of these reports can be inconsistent.  For instance, the Army Corps of Engineers 

states in their technical report “The important issue associated with pull-off tests is the depth of the core 

drilling into the existing concrete” adding, “ignoring the effect of drilling depth may be one of the main 

causes of difficulties in reproducing and comparing test results.” Unfortunately, the other three sources 

have differing recommendations in regard to the core drilling depth into the substrate. ICRI recommends 

core drilling a minimum depth of 25 mm (1”) into the existing substrate, while ASTM D7522 requires 

core drilling between 6 mm (0.25”) and 12 mm (0.5”) into the substrate. ACI 503R recommends “core 

drill through the coating and down barely into the subsurface.” 

Previous pull-off tests described above in Section 2.2.3.2 were conducted by CTC-Geotek 

directly following the repair in 2003 and for the sake of comparing test results, the testing procedure used 

by CTC-Geotek was replicated as closely as possible. The testing procedure was also intended to be 

consistent with the majority of the guidelines and recommendations made by the sources above where 

possible. While each of these guidelines is respected, the default testing technique was that of ASTM 

D7522.  

As previously discussed, it is essential that the CFRP is well bonded to the arches in order to 

transfer stresses. To test the bond strength a pull-off tester, Proceq Dyna Z 16, was attached to a 50 mm 

(2”) diameter aluminum puck which was adhered with a 5-minute, 2500 psi, two-part epoxy, Devcon S-

210, to the surface of CFRP. The pull-off tester output the force applied to the puck via digital 

manometer. The digital manometer was also capable of outputting the stress that was applied by the puck 

to the bond, based on the area of the 50 mm (2”) diameter puck.  

Three separate sets of nine pull-off tests were performed during the field assessment in 2011. The 

first set of nine were located on the extrados of the base of the east arch at the north end, the second set 
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Table 3.1. Summary of Failure Modes for the Pull-off Tests 

42 Tests 
Failure Modes of 2003 Pull-off tests 

A B C D E F G NA 

Quantity 9 0 0 0 2 3 25 3 

Percentage 21.4 0.0 0.0 0.0 4.8 7.1 59.5 7.1 

27 Tests 
Failure Modes of 2011 Pull-off tests 

A B C D E F G NA 

Quantity 2 2 0 0 7 8 8 2 

Percentage 7.4 7.4 0.0 0.0 25.9 29.6 29.6 7.4 
 

 

Figure 3.16. Failure modes of pull-off tests from 2003 and 2011 

 The number of failure Modes E, F, and G are roughly equal in number with only approximately 

7% of the specimens failing in each of the A, B, and NA Modes for the tests conducted in 2011. From 

Figure 3.16 it is apparent that the high percentage of failure Mode G from 2003, significantly decreased to 

the evenly distributed Modes E, F, and G of the 2011 test results. Mode B was a failure mode that did not 

occur in 2003, but did in 2011 twice out of 27 tests. An increase in percentage of failure Modes B, E, and 

F indicates that other interfaces other than within the substrate are weaker and controlling. Failure Mode 

B is, according to ASTM D7522, “an indication of poor through-thickness properties of the FRP. Such 

failures may be due to incomplete wet-out of the fibers or plies comprising the laminate. Such failures 

may also result from environmental degradation of the FRP material itself.” The term “wet-out” is 
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referring to the quality of the CFRP composite material and whether the fibers were fully saturated in 

epoxy during the wet lay-up process. Failure Mode E is an indication of poor adhesion properties and 

Mode F is a commonly observed mixed failure mode that is believed to initially fail in the cohesion in the 

substrate, followed by propagation to the adhesive interface. Different substrates at the location of the 

pull-off tests of 2003 and 2011 could have influenced both the failure mode and results of the pull-off 

tests. It is reasonable to consider that the tensile strength of concrete could have improved marginally 

since 2003 due to continued curing especially if the substrate was shotcrete rather than the original 

concrete. However, even in the case of shotcrete as the substrate this improvement or increase in strength 

would be fairly marginal. Comparing bond strengths of the 2003 and 2011 tests of only failure Mode G 

tests would be a reasonable evaluation of this possible strength gain of the substrate if the testing 

processes and substrates were identical or had very little variation. Below is a table with strengths of 

failure Mode G for comparison. 

Table 3.2. Pull-off Test Results of Failure Mode G Tests 

  
Average Maximum Minimum Sample 

Size MPa psi MPa psi MPa psi 

2003 2.92 423 4.12 597 1.50 217 25 

2011 2.07 300 3.81 553 0.13 19 8 
 

 According to the values in Table 3.2, the tensile strength of the substrate decreased or became 

weaker over time which makes little physical sense. Average, maximum, and minimum strength values 

all decreased from 2003 to 2011. The minimum test value of 2011 may have been so low due to 

imperfections during the core drilling process that completely failed one specimen with a failure Mode E. 

The two low values could have also been due to areas of poorly mixed concrete. The average value of the 

2011 tests was significantly influenced by the one low value because of the small sample size. The 

difference in values of tensile strength of the substrate is likely due to the imperfections of the testing 

process and local characteristics of the substrate rather than an accurate representation of the changes in 

material properties of the substrate globally. 
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 Of the 27 pull-off tests conducted in 2011, nine tests, two of which were failure Mode G, failed to 

meet the 200 psi minimum requirement of CDOT’s construction specifications (Revision of Section 602). 

Six of the nine tests that had strengths less than 200 psi had failure Mode E. This failure mode is a failure 

at the interface between the CFRP and the substrate. A relatively thick layer of resin was used to smooth 

the surface of the substrate at the time of the CFRP repair. The thick “filler” resin varied in thickness and 

in color. These pull-off tests with low values all appeared to have very similar failure modes and strengths 

as well as appearance of the failure plane. Only one of the 42 tests conducted in 2003 failed to exceed 200 

psi. Below are two figures displaying the distribution of pull-off strengths and probability density 

functions based on a normal distribution of pull-off strengths. 

 

Figure 3.17. Histogram of pull-off test strength 
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Figure 3.18. PDF of pull-off test results 

 The lower, wider, curve of the 2011 PDF in Figure 3.18 gives evidence that the standard 

deviation increased from 2003 to 2011. The data was fit with a normal distribution for the creation of the 

PDF and statistical analysis. In addition from 2003 to 2011 the mean lowered, shifting to the left. If the 

influence of the testing procedure could be disregarded, the larger variance of the 2011 results would 

likely represent the varying conditions in which the CFRP was exposed. The decrease in the mean from 

2.98 to 1.93 from 2003 to 2011 gives indication of an overall decrease in the bond strength of the CFRP 

to the concrete. This indicates a possible durability concern for long-term applications.  

The detection of voids, void sizes, and the bond strength evaluation provide several different 

types of evidence that consistently showed there are some issues in regard to the durability of the CFRP. 

The increase in number of voids, increase in size of existing voids, change in distribution of failure 

modes, decrease in average bond strength with more inadequate strength values, and increase in variance 

of bond strengths all indicate deterioration of the CFRP composite. It would be prudent to monitor the 

durability and performance of the CFRP composite closely and consistently to try and accurately quantify 

the development of the degradation. 

3.4 Collecting Specimens for Laboratory Testing 

The original plan was to remove strips of CFRP from the exterior corner of the extrados of the 

arch to provide the specimens for the tensile testing and DSC testing in the laboratory. After detecting 
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The tensile strength and modulus should be dominated by the fibers, and thus the built up 

addition of filler resin was not considered as the thickness, but rather the manufacturer’s data of 1.02 mm 

(0.04”) for the thickness per layer was used to calculate the area of the specimens. Before the testing 

began, an extensometer was placed in the mid-section of the specimen and was removed during the 

testing when the load reached 8896 N (2000 lb.) for most specimens.  

Three letter failure codes were used in accordance to ASTM D3039. The first letter signifies 

failure type, the second identifies failure area, and the third refers to the location of failure. A summary of 

the codes and their respective failure modes are tabulated in Table 4.1.  

Table 4.1. ASTM D3039 Letter Codes for Failure Modes 

First Character Second Character Third Character 

Failure Type Code Failure Area Code Failure Location Code 

Angled A Inside grip/tab I Bottom B 

edge Delamination D At grip/tab A Top  T 

Grip/tab G <1W from grip/tab W Left L 

Lateral L Gage G Right R 

Multi-mode M Multiple areas M Middle M 

long Splitting S Various V Various V 

explosive X Unknown U Unknown U 

Other O         

 
Ideally, the specimens would fail in the area of the extensometer away from the grips. 

Photographs of the failed tensile test specimens displaying varying combination of failure modes are 

shown in Figures 4.2 and 4.3. Note the striking difference in appearance of the underside of the CFRP 

sections removed. 
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Figure 4.4. Distribution of tensile strength results 

 

Figure 4.5. Distribution of modulus of elasticity results 

Material properties of the CFRP used in 2003 are tabulated below for comparison purposes. 

These values are considered the initial values before any degradation has occurred. 
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Table 4.2. Material Properties of 2003 CFRP 

Material Properties of Uniaxial Carbon Fabric 

Date of 
Information 

Manufacturer Product 

Tensile Strength MPa 
(ksi) 

Modulus of Elasticity GPa 
(ksi) 

Typical 
Values 

Design 
Values 

Typical 
Values 

Design 
Values 

2003 Fyfe 
Tyfo® 

SCH-41 
876 (127) 745 (108) 72.4 (10500) 61.5 (8900) 

 
A graphical representation of the test values relative to the manufacturer’s values reported in the 

CDOT report are the probability density functions shown in Figures 4.6, 4.7, 4.8, and 4.9. The typical 

values and design values given by the manufacturer are represented as dashed lines in the plots below. 

The design tensile strengths are typically some percentile of a distribution while the modulus of elasticity 

is usually the mean. For instance, from the CDOT specification, “the ultimate tensile strength shall be the 

mean tensile strength of a sample of test specimens minus three times the standard deviation.” 

Statistically, this would correspond to a percentile of 0.14 which is very restrictive. This CDOT 

specification also required a minimum of 20 specimens to determine material properties. This would 

result in combining the samples from the small and large patch totaling 24 specimens, resulting in a 

usable ultimate tensile strength of 288.2 MPa (41.8 ksi). These values referred to as “CDOT design 

values” are in the table below and represented as solid vertical lines in the plots below for each set of 

samples as well as all the tests combined. A common statistical reference used in other guidelines is the 

5th percentile which is also depicted as a solid vertical line in Figure 4.7 below. To determine the 5th 

percentile, 1.645 times the standard deviation was subtracted from the mean. 

The probability density functions assuming normal distributions were generated using the 

statistics in Table 4.3 below. The vertical axis for the probability density functions is relative to the 

horizontal axis; the area under the curve equals unity. 
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Table 4.3. Statistics from the Tensile Samples 

 
Modulus of Elasticity 

(GPa) 
Ultimate Tensile Strength 

(MPa) 
1NE 3NE Total 1NE 3NE Total 

Mean 81.1 74.0 77.3 820.5 688.2 754.4 
Standard Deviation 10.7 16.3 14.1 79.3 186.2 155.4 

CDOT Design Tensile 
Strength    

582.5 129.6 288.2 

5th Percentile 690.0 381.9 498.8 
 

 

 Figure 4.6. Probability density function of the two samples, tensile strengths 
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Figure 4.7. Probability density function of all tensile tests 

 

Figure 4.8. Probability density function of the two samples, modulus of elasticity 
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Figure 4.9. Probability density function of all modulus of elasticity samples 

Looking at the location of these values in Figure 4.7 above, there is a very concerning 

discrepancy between the values of tensile strength provided by the manufacturer and the values generated 

from the tensile tests. The values of modulus of elasticity are fairly representative of the values provided 

by the manufacturer. 

By assuming the stress versus strain response of the CFRP was linear until failure, the rupture 

strain was found by dividing the ultimate tensile strength by the modulus of elasticity, which was the 

chord modulus of 0.0043 strain or less. CDOT’s construction specifications (Revision of Section 602) 

required a minimum rupture strain of 0.006 cm/cm. The rupture strain of the material at the time of repair 

was identified in the CDOT report as being 0.012 cm/cm for both the typical and design value. 
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Table 4.4. Tyfo SCH-41 Rupture Strain Values 

Date of Information 
Rupture Strain 

Typical Values Design Values 

2003 (CDOT Report) 0.012 0.012 
2011 Testing (Revision 

of Section 602) 
0.0098 0.00308 

  
 Similar to the tensile strengths, CDOT’s construction specifications (Revision of Section 602) 

required “the ultimate rupture strain shall be the mean rupture strain of a sample of tests specimens minus 

three times the standard deviation.” A table of these values is below. 

Table 4.5. Rupture Strain Values from the 2011 Tensile Tests 

Rupture Strain 
Mean 0.00981

Standard Deviation 0.00224
CDOT Design Rupture Strain 0.00308

5th Percentile 0.00612
 

 The 5th percentile value in the table above would satisfy the minimum rupture strain requirement 

of CDOT’s construction specifications (Revision of Section 602), but the “CDOT Design rupture strain” 

calculated per CDOT’s construction specifications (Revision of Section 602) is not adequate. A visual 

representation of this can be found in the probability density function in the figure below. 

 

Figure 4.10. Probability density function of the rupture strain of all tensile tests 
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 In summary, the tensile strengths were significantly lower than the values reported by the 

manufacturer, Fyfe and required by CDOT. It is difficult to determine whether these values are due to 

poor workmanship during the 2003 repair or degradation. Initial values at the time of repair would help 

make this differentiation if the samples tested in 2003 were representative of the material on the bridge. 

No results from such tension tests were recovered for comparison. The modulus of elasticity values were 

reasonably close to reported values considering the sample size. The rupture strain, similar to the tensile 

strength, had values lower than acceptable design values according to CDOT’s construction specifications 

(Revision of Section 602). 

4.2 Differential Scanning Calorimetry (DSC) 

Dr. Radford at the Motorsport Engineering Research Center on the Foothills campus of Colorado 

State University provided the guidance and equipment to conduct the DSC analysis. After material was 

allocated for tensile tests from the patches removed from the bays 1NE and 3NE, the remaining material 

was used for DSC. Samples of CFRP and the filler resin were tested using a Seiko SSC/5200 DSC testing 

machine. Testing specimens consisted of 15 mg of small particles. Specimens consisting of smaller 

particles are more desirable because there will be better contact between the specimen and the aluminum 

pan containing the specimen resulting in better accuracy and fewer resulting artifacts.  

Available water acts as a plasticizer to the resin and can cause the glass transition temperature to 

decrease. By the time the specimens were removed from the bridge and then transported to and tested in 

the lab, the moisture content of the specimens was likely more representative of the relative humidity of 

the lab environment than their condition during service. Therefore, the lowering of the glass transition 

temperature due to higher water content was not detected, but likely existed on-site especially in the case 

of the section removed from bay 1NE where water drained from the area in which the patch was removed. 

The specimens of the CFRP material were prepared in two ways. The first of method was by 

grinding the material and collecting the debris from this process. The advantage of this procedure was that 

very small particles could be created quickly which resulted in better contact to the aluminum pan. The 

disadvantage was heat was introduced to the sample which may have exceeded the thermal history of the 
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Figure 4.13. Temperature vs. time of the DSC analysis for the round CFRP1 specimen 

The first specimen tested was of the ground CFRP material. The DSC curve is in the plot below. 

The glass transition temperatures are two points identified in the plot.  

 

Figure 4.14. Ground CFRP specimen 

During heating the glass transition temperature, Tg, was 67.95˚C, while during the cooling 

process the Tg was 73.19˚C. This increase in Tg is due to the curing process caused by the heating up to 

130˚C. The glass transition temperature of the CFRP composite was expected to be between 60˚C and 

82˚C as quoted by the manufacturer as being the design value and typical test value respectively. The 

highest temperature of the composites thermal history was probably not much greater than 40˚C, which 

explains the additional curing and the upwards shift in the Tg during the heating process up to 130˚C. 

 The same testing procedure was conducted for a second time on the same specimen because 

“differences between the first and second heating curves can be very informative” (Mettler Toledo, 2000). 
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Two reasons in particular justified this decision. Firstly, it was of interest to explore the influence the 

heating process has on the specimen and its glass transition temperature due to post-curing. Secondly, if 

the erratic behavior disappears it would be considered an artifact and less significant in the first test as 

opposed to a descriptor of a material property such as Tg. This specimen was referred to as Ground 

CFRP1A and its plot is below. 

 

Figure 4.15. Ground CFRP1A 

The erratic or irreversible behavior does not exist in the classic behavior of the DSC curve in the 

plot above. The behavior during heating and cooling are reversible and look identical. Subtracting the 

Ground CFRP1A curve from the Ground CFRP1 curve would yield an area that represents irreversible 

behavior.  

The two glass transition temperatures were found to be 77.38˚C and 78.02˚C for the heating and 

cooling processes respectively. The second time the specimen was heated to 130˚C the Tg increased by a 

much smaller amount due to the post-curing that occurred during the first test. The closer a specimen gets 

to being fully cured, the smaller the influence additional heat will have on Tg. Additionally, there is a 

relatively small shift in the Tg that is due to the different processes of heating and cooling that should be 

considered when comparing the Tgs found during the heating and cooling processes. During the heating 

the Tg is shifted to the right and during the cooling the Tg is shifted to the left; the glass transition 

temperature should be taken as the average of the two values found during the heating and cooling 
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processes if no significant curing occurred during the heating process. A plot of the heat-cool-reheat-cool 

process is in the figure below. 

 

Figure 4.16. Heat-cool-reheat-cool of the same specimen 

DSC is not usually approached as though the data or results are random variables with 

corresponding distributions and therefore multiple tests are not usually conducted. However, a second test 

of ground CFRP was conducted to compare the Tgs and the presence of erratic or irreversible behavior. 

This specimen was Ground CFRP2 and its plots are below. 

 

Figure 4.17. Ground CFRP2 

The Tgs were very close to that of Ground CFRP1, 68.13˚C and 73.56˚C respectively, as was the 

general response and presence of the irreversible behavior. Diced CFRP was also analyzed as opposed to 

the ground CFRP. The diced CFRP had slightly lower values of Tg, possibly due to the heat added to the 

ground specimens but the difference was fairly marginal. All three plots are combined in the figure below. 
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To reduce the test time and conserve liquid nitrogen, the start temperature was changed to from -30˚C to -

10˚C for the Ground CFRP2 test. 

 

Figure 4.18. Ground and diced CFRP DSC results 

 The vertical shift in the DSC curves is due to the amount of reactive material within each 

specimen. The percentage of reactive material was likely very similar among the CFRP specimens but the 

different specimen sizes resulted in this vertical shift. 

 Two different types of filler resin were used in the DSC analysis. The specimens labeled “Filler 

Resin1” and “Filler Resin2” were made from the thick white filler resin found on the patch removed from 

bay 1NE. The specimen labeled “Bonded Filler Resin” was created from diced filler resin that was more 

translucent and less thick and white which came from a section of CFRP that was well-bonded to the 

substrate.  

The first filler resin tested was Filler Resin1, which resulted in a DSC curve that had erratic 

behavior early in the test that was presumed to be irreversible behavior. The plot of this curve is in the 

figure below.  
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Figure 4.19. Filler resin1 DSC curve 

 Due to the erratic behavior near 30˚C during heating, it was decided to re-run this analysis with a 

new specimen, but to heat the specimen up to 40˚C then return the specimen to -10˚C and restart the DSC 

test. This would hopefully remove any irreversible behaviors without post-curing the specimen and 

consequently increasing the Tg. The erratic behavior was not however present in the second sample 

labeled Filler Resin2. The start temperature was moved back to -30˚C for the analysis of Filler Resin2 and 

Bonded Filler Resin. The plot is below. 

 

Figure 4.20. Filler resin2 

‐4000

‐3000

‐2000

‐1000

0

1000

2000

3000

4000

‐10 10 30 50 70 90 110 130

H
e
at
 F
lo
w
 (
M
ic
o
rw

at
t)

Temperature (Celsius)

Filler1

TgF1

TgF1 After
Cure, During
Cooling

‐4000

‐3000

‐2000

‐1000

0

1000

2000

3000

4000

‐30 ‐10 10 30 50 70 90 110 130

H
e
at
 F
lo
w
 (
M
ic
o
rw

at
t)

Temperature (Celsius)

Filler2

TgF2

TgF2 After
Cure, During
Cooling



61 
 

 The Bonded Filler Resin specimen was prepared similar to the other Filler Resin Specimens, but 

resulted in significantly different behavior and a higher Tg value. The Tg values are tabulated below the 

plots of the Bonded Filler Resin and the plot of all three Filler Resins. 

 

Figure 4.21. Bonded filler resin DSC curve 

 

Figure 4.22. Filler resin DSC results 
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Table 4.6. Glass Transition Temperatures of CFRP and Filler Resins 

  Tg Tg, After Cure During Cooling 

Ground CFRP1 67.95 73.19 

Ground CFRP1A 77.38 78.02 

Ground CFRP2 68.13 73.56 

Diced CFRP 65.43 72.33 

Filler Resin1 69.14 76.51 

Filler Resin2 72.08 80.27 

Bonded Filler Resin 105.83 96.15 

 
 The response of the Bonded Filler Resin is somewhat peculiar. It is possible that the milky white 

filler resin had higher water content, acting as a plasticizer reducing the Tg of the Filler Resin1 and Filler 

Resin2 specimens. As previously mentioned, even though there was water in direct contact to the CFRP 

patch of Filler Resin1 and Filler Resin2, by the time the material was tested, the moisture content was 

likely the same for all the specimens and very similar to that of the environment. All filler resins likely 

had similar if not the same curing conditions also making the higher Tg of the Bonded Filler Resin 

somewhat surprising. 

 All specimens had Tg values over the manufacturer’s value of 60˚C which is well above any 

temperatures that the material could reach during service. The results other than the Bonded Filler Resin 

seemed reasonable and similar materials produced similar results. The Tg values measured at the 

laboratory were probably higher than the actual values of the material in contact with moisture on the 

arches of the bridge. 

4.3 Summary of Field Assessment and Laboratory Testing 

 To summarize the test results and findings from the field assessment and laboratory testing, voids, 

pull-off tests, physical characteristics of the specimens collected, tensile tests, and DSC all contribute to 

the evaluation of the durability of the CFRP. All of these findings represent the extrados of the east arch 

and bay 1NW.  

 The number of voids identified increased from 3 to 28 
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 Previous voids found (3) had an average increase in size by approximately 400% 

 Filler Resin appeared thick, white, and smooth for some pull-off tests (6 of the 9 that were 

inadequate strength and failure Mode E) and the 1NE patch removed 

 Pull-off test failure modes were distributed differently than 2003 results with more failure Modes 

B, E, and F 

 Pull-off tests results of 2011 had a lower mean and higher standard deviation than the 2003 

results 

 33% (9 of 27) of pull-off tests in 2011 were below the minimum 1.38 MPa (200 psi) compared to 

2.4% (1 of 42) in 2003 

 Ultimate tensile strengths were significantly lower than manufacturer’s data, mean value of 754.4 

MPa was above manufacturer’s design value of 745 MPa, but CDOT construction specifications 

required the mean minus 3 standard deviations resulting in ultimate tensile strength of 288.2 MPa, 

and 5th percentile was 498.8 MPa  

 Rupture strains were significantly lower than specified minimum, specified minimum rupture 

strain was 0.006, mean was sufficient at 0.00981 but CDOT construction specifications required 

the mean minus 3 standard deviations resulting in 0.00308, 5th percentile was adequate at 

0.00612. 

 Modulus of Elasticity values were representative of the manufacturer’s data, mean of 77.3 GPa 

met the manufacturer’s design value of 61.5 GPa 

 Glass transition temperatures of both the CFRP and Filler Resins exceeded the manufacturer’s 

value of 60°C. 

 Physical phenomena causing irreversible behavior of DSC was not fully understood 

 More data points for all tests (initial values and additional points upon every evaluation) would 

provide more insight into trends, durability thresholds,  and performance 
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 Initial values of tensile tests, Tg, and bond strengths coupled with thorough void identification 

could help identify poor workmanship or quality  

The increase in number and size of voids may be due to poor documentation of the past or there 

may be definite cause for concern. The pull-off test may have provided more of an insight into testing 

technique than bond strength. The unsatisfactory results of ultimate tensile strength and rupture strain are 

due in part to the stringent demands of the CDOT specifications. The modulus of elasticity, 5th percentile 

of rupture strain, mean of ultimate tensile strength, and glass transition temperatures were all satisfactory. 

Based on these results there appears to be some deterioration, but a more detailed test program would be 

needed to thoroughly characterize the deterioration. 
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5.0 TASK 4: LITERATURE REVIEW ON ADDITIONAL FRP TOPICS 
 

        Topics requested by CDOT included: fatigue, durability under environmental and chemical 

exposure, bond behavior, and existing design details and guidance.   Bond behavior and testing is 

addressed in Section 6.0. 

5.1 Fatigue of Concrete Beams with Externally Bonded FRP Strengthening 

The effect of fatigue loading on FRP repair was identified as a topic of interest to CDOT 

engineers because transportation structures such as bridges will generally be subject to fatigue loads.  A 

thorough review of existing work studying the fatigue performance of concrete beams strengthened with 

externally bonded fiber-reinforced polymer composites was published by Kim and Heffernan in 2008. 

This review provides a valuable introduction to the topic.  Both reinforced and prestressed concrete beams 

of various sizes were considered.  For some studies considered by this review the test beams were taken 

from decommissioned bridges (Rosenboom and Rizkalla, 2006) or constructed based on scaling a full-

scale bridge elements (Aidoo, Haries and Petrou, 2004). 

Concrete beams with externally bonded FRP subject to fatigue loads will most often fail due to 

fracture of the steel reinforcing bars followed quickly by debonding of the FRP from the concrete (Kim 

and Heffernan, 2008).  Thus, although the fatigue performance of FRPs (especially carbon) is often 

described as one of their advantages, when it is used as external reinforcement fatigue performance may 

be limited by the properties of the existing structure, the reinforcing steel in particular.   When FRP is 

applied as an external strengthening mechanism, tensile loads are shared between the steel and FRP, and 

the stresses in the steel are lower for a beam with externally bonded FRP than one without.  Thus the 

application of FRP would be expected to extend the fatigue life of the strengthened structure by reducing 

the level of stress in the reinforcing steel.  In their analysis of existing work Kim and Heffernan found that 

most studies reached this conclusion (2008).  The amount of increase can vary widely depending on the 

specific loading conditions and quantities such as the amount of steel and FRP.  In the work surveyed 

fatigue lives for strengthened beams ranged from 2.1-95 times the fatigue life of unstrengthened control 



66 
 

beams (Kim and Heffernan, 2008).   For load ranges between 30 and 50 percent of the yield strength of 

the reinforcement, fatigue damage did not seem to be accumulating.  Beams strengthened with FRP also 

showed higher flexural stiffness and reduced crack widths, which may further benefit the fatigue 

performance of the steel reinforcement (Kim and Heffernan, 2008).  

With respect to design of external FRP strengthening for fatigue, the review by Kim and 

Heffernan (2008) considered existing design guidance and identified issues that merit designer 

consideration.   Fatigue is generally addressed only in a limited way in existing guidelines for the design 

of externally bonded FRP.   Recognizing that the fatigue life is generally controlled by the reinforcing 

steel documents such as the ISIS Canada and fib guidelines recommend limitations on the stress range in 

the steel.  ACI-440.2R-02 limits the stress in the FRP in order to prevent both creep and fatigue failure, 

but several studies pointed out that this limit did not correspond to the actual failure mode of beams 

failing due to fatigue and Kim and Heffernan (2008) suggested that the ACI 440 provisions be revised.  A 

revised version of ACI 440.2R was released in 2008 without changes to way fatigue is considered.  

Design of FRP strengthening for a structure subject to fatigue loading should consider: 1) limiting the 

stress range in the reinforcing steel (existing limits from ACI 215 and  the AASHTO LRFD manual 

should be applicable);  2)making the bonded area between the concrete and FRP as large as possible by 

selecting wider and longer  dimensions for the FRP as opposed to shorter and thicker dimensions; 3) the 

effect of sustained load levels and the load level for which the structure was originally designed. 

Kim and Heffernan (2008) conclude their review by identifying a list of seven areas meriting further 

research: 

1. Detailed explanation of the progressive debonding at the concrete/FRP interface; 

2. A method to predict the redistribution of stress in a strengthened cross-section is needed to better 

predict the fatigue life assuming fracture of the reinforcing steel as the controlling limit state; 

3. Development of better anchorage systems to prevent debonding failure of the FRP; 

4. Detailed design guidelines are still needed, especially considering the effect of the existing 

condition of a structure before the application of FRP strengthening; 
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5. Consideration of slabs – i.e. bridge decks; 

6. More experimental work considering different load ranges and frequencies and more realistically 

representing actual bridge loading; 

7. Investigation of applications of FRP in the field using. 

In the years since this review was published, research on the fatigue performance of externally 

bonded FRP strengthening and repair schemes has continued.  In most of the studies considered by Kim 

and Heffernan (2008), the beams were undamaged before the FRP was applied, but there were individual 

examples of corrosion, pre-cracking of the concrete, and cyclic loading before the FRP was applied.  

More recent research has continued to investigate these types specimens which are more representative of 

field conditions.  Al-Hammoud, Soudki and Topper (2011) tested a series of 30 beams where corrosion 

was induced in the reinforcing steel and the beams were then repaired with CFRP.  The combination of 

corrosion and fatigue is an important case to consider because 1) this combination is a common 

occurrence on structures such as bridges which are subject to cyclic loading and winter application of 

deicing chemicals, and 2) corrosion hurts fatigue performance by creating pits in the rebar, reducing the 

cross-sectional area of the rebar, and causing cracking of the concrete.  This study considered three 

different load ranges : 47, 57, and 72% of the static load capacity of the beams, as well as the amount of 

corrosion and the amount of FRP used for repair.  They found that a single sheet of FRP applied to a 

beam with medium corrosion levels (7.05-9.05% mass loss) was able to extend the fatigue life to that of 

an uncorroded beam without FRP.  The FRP was also beneficial to the fatigue life of highly corroded 

beams (10-14.3% mass loss), although these beams still had a shorter fatigue life than the undamaged, 

unrepaired control beam. 

Davalos et.al. (2010) also induced corrosion in a series of beams and tested the beams under static 

and cyclic loads.  However, this series of tests was intended to evaluate the effectiveness of different 

anchorage schemes.  Three different types of strengthening configurations were tested.  The first 

configuration only had the FRP sheet in the tension zone, the second configuration used two U-shaped 
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stirrups of FRP applied close to the outer quarter points of the span, and the third configuration used eight 

evenly spaced U-wraps.  The beams were not tested to failure, but the deflection and stiffness were 

monitored at increments of 250,000 cycles up to two million cycles.  All of the strengthening 

configurations showed a significant loss in stiffness during the first 250,000 cycles.  Although there was 

some variation between duplicate specimens which complicated interpretation of results, the beams with 

some anchorage (either two or eight U-wraps) had lower deflections when loaded in the serviceability 

range and there appeared to be some advantage with respect to permanent deflections. 

While most existing work considers fatigue performance of beams with FRP applied for flexural 

strengthening.  Dong, Wang and Guan (2012) looked at the fatigue performance with FRP applied as 

shear reinforcement.  Performance of beams with strips of CFRP and GFRP applied vertically on the 

sides of the beam in the shear span were compared.  Vertically arranged GFRP was also compared to 

diagonal GFRP strips.  Both types of FRP were found to offer significant enhancement of load capacity 

and lower deflections.   The FRP strengthened beams also showed fewer cracks with a wider crack 

spacing.  After one million fatigue cycles the stiffness of the CFRP showed a greater degree of 

degradation than the GFRP. 

Ongoing work has also been aimed at developing or evaluating models for the prediction of 

fatigue life. Meneghetti et. al. (2011) used fatigue testing results available in the literature as well as the 

author’s own work to fit regression models relating the variation in stress in the reinforcing steel to the 

Log of the number of cycles.   Two models were created, one for FRP strengthened beams and one for un-

strengthened beams.  Although the models reasonably fit the data upon which they were based, the 

authors note that in real beams which might have significant deterioration before the FRP is applied the 

existing condition of the rebar will be unknown and the FRP reinforcement may not be as effective at 

extending the fatigue life. Gordon and Cheng (2011) collected several existing models relating the stress 

range to fatigue life (S-N curves) presented in the literature and fit additional S-N models to results of 

fatigue tests by other researchers.  In some cases, due to the available published data, they developed P-N 

curves relating the applied load to the fatigue life.  They then evaluated the predictive ability of these 
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different models, and concluded that none of the models were particularly accurate and emphasized the 

need for further research including parametric studies to evaluate how different variables in terms of the 

specimen and the loading conditions affect fatigue life.   

The importance of fatigue performance for RC beams strengthened with externally bonded FRP has 

clearly been acknowledged, and through numerous studies progress has been made in understanding the 

behavior of these beams.  However, there is still a significant amount of work to be done.  The research 

conducted since the literature review of Kim and Heffernan (2008) has yet to fully address the areas they 

identified for further research.  Of particular importance is the need for better models for predicting 

fatigue life and design guidance.  In most practical applications FRP will be applied to a structure that has 

already been subject to a significant amount of cyclic loading and which is likely showing signs of 

deterioration such as cracking, or perhaps corrosion.  Designers need guidance allowing them to predict 

the effect of an FRP strengthening application on extending the fatigue life of an existing structure and 

indicating how different design choices such as amount of FRP, will affect that prediction. 

5.2 FRP Durability under Environmental and Chemical Exposure 

Tan et al. (2011) explains that “though the main factors affecting durability and failure 

mechanism of concrete have been fully investigated, few studies on the durability of FRP reinforced 

structures have been taken” and “factors affecting the durability of FRP reinforced structures should be 

analyzed.” Tan et al. (2011) defines the term “durability” as:  

“the given structure under conditions of normal designing, constructing, serving and maintaining 
can continue to perform its intended functions during the specified or traditionally expected 
service life, in spite of structural performance deteriorating with time.” 
 
Similarly, the Civil Engineering Research Foundation (CERF) and the Market Development 

Alliance (MDA) of the FRP Composites Industry in collaboration with Karbhari et al. (2000) defined the 

term “durability” with respect to fiber-reinforced polymer composites as “the ability to resist cracking, 

oxidation, chemical degradation, delamination, wear, and/or, the effects of foreign object damage for a 

specified period of time, under the appropriate load conditions, under specified environmental conditions” 

in their study of “Critical Gaps in Durability Data for FRP Composites in Civil Infrastructure.” The term 
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“durability” used throughout this thesis will be inclusive of both definitions provided above by Tan et al. 

(2011) and Karbhari et al. (2000). 

FRP materials have potentially high overall durability, however, Karbhari et al. (2000) notes that 

“there is evidence of rapid degradation of specific types of FRP composites when exposed to certain 

environments” and  “actual data on durability is sparse, not well documented, and in cases where 

available – not easily accessible to the civil engineer.” Karbhari et al. (2000) continues that there is a 

“wealth of contradictory data published in a variety of venues” resulting from the “reporting of data 

without sufficient detail of the actual materials used, use of different forms of materials and processing 

techniques, and even changes in the materials systems with time” (Karbhari et al. 2000). Seven years 

later, Chen et al. (2007) agrees “although a number of durability studies on FRP have been reported by 

various researchers, no general conclusions are possible as researchers used different testing procedures 

and conditions. In some cases, even conflicting results have been reported.”  

The durability of an FRP composite is compromised if the material properties of the FRP 

appreciably change or if the bond between layers of FRP or between the FRP and its substrate becomes 

weak or is lost altogether. Karbhari and Ghosh (2009) identify the critical components of the performance 

of externally applied FRP, stating “since the composite element is bonded onto the concrete substrate the 

efficacy of the rehabilitation scheme depends on the combined action of the entire system with emphasis 

on the integrity and durability of the bond between the FRP and concrete.” Karbhari and Ghosh (2009) 

add “the performance characteristics of the substrate, FRP, adhesive/resin forming the bond and the 

interfaces can all be deteriorated by environmental exposure and hence there is a need to assess its effect 

on these materials and on the bond itself.” Byars et al. (2003) agrees contributing “changes in mechanical 

properties such as Young’s modulus, tensile and interlaminar shear strengths and bond strength are the 

best indicators of changes in the performance of FRP.” 

Manufacturing, material components (fiber and resin types), environmental conditions, and the 

quality of the application process all contribute to the durability of an FRP composite. Prefabrication and 

wet layup are the two primary manufacturing processes for strengthening applications of FRP. The wet 
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layup process utilizes an “ambient temperature cure resin system” (Karbhari and Ghosh, 2009) which has 

the advantage of conforming to irregular shapes or areas of uneven geometry reducing unbonded areas, 

but it may deteriorate faster than prefabricated bars or strips. As described by Karbhari and Ghosh (2009) 

these prefabricated materials are based on “well characterized high-temperature and controlled condition 

cure resin/adhesive systems used for long–term durable bonds in the aerospace industry.” Durability of 

FRP depends intrinsically on the choice of constituent materials, methods and conditions of processing, 

and surrounding environmental conditions through their service lives (Karbhari, 2003).  

Karbhari et al. (2000) and Karbhari et al. (2003) identify identical environmental conditions of 

primary importance pertaining to the durability of internal and external applications of FRP: 

“moisture/solution, alkali, thermal (including temperature cycling and freeze-thaw), creep and relaxation, 

fatigue, ultraviolet, and fire.” Coinciding with Karbhari et al., Byars et al. (2003) considered similar 

environmental conditions that may affect the durability of FRP: “moisture, chlorides, alkali, stress, 

temperature, UV actions, carbonation and acid attack.” Numerous laboratory tests of the durability of 

FRP have been conducted.  

 Previous laboratory studies have investigated the durability of both glass fiber-reinforced 

polymers (GFRP) and carbon fiber-reinforced polymers (CFRP). From these studies, it has been 

identified that different fiber types are susceptible or vulnerable to different conditions. Karbhari and 

Ghosh (2009) found that “glass fiber-reinforced system undergoes slightly greater moisture initiated 

deterioration than the carbon fiber-reinforced system.” Fiber types can be optimized depending on the 

requirements of the FRP application such as in Stallings (2000) study where GFRP was used for shear 

strengthening and CFRP was used for flexural strengthening of bridge girders in Alabama.  The stronger, 

more expensive CFRP was used where durability was more critical because the flexural strength was 

controlling, while the weaker, less expensive GFRP plates were used to confine the flexural cracks and to 

add stiffness, reducing deflections.  

 The durability of fiber types alone is unfortunately not a comprehensive study of the durability of 

FRP. Karbhari (2003) addresses this complexity stating “Although carbon fibers are generally considered 
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to be inert to most environmental influences likely to be faced in civil infrastructure applications the 

inertness does not apply to the fibre-matrix bond and the matrix itself, both of which can in fact be 

significantly deteriorated by environmental exposure.”  

5.2.1 Accelerated Aging 

Through rigorous durability studies Karbhari (2000) anticipates “appropriately designed and 

fabricated, these systems can provide longer lifetimes and lower maintenance than equivalent structures 

fabricated from conventional materials.” To further understand the development of degradation, multiple 

lab tests have been conducted to determine the effects of various conditions on the durability of GFRP 

and CFRP composites. Externally bonded FRP applications are typically subject to certain environmental 

exposures in which CFRP has proven to be much more durable than GFRP. A multitude of lab tests have 

been conducted in which the normal ageing process is sped up called accelerated ageing. The following 

are a few examples. 

Typical accelerated aging techniques include exposing specimens, sometimes alternating 

exposures, to varying solutions and temperatures. As an example, Chen et al. (2007) conducted 

accelerated aging tests by elevating the temperatures of specimens while cycling wet and dry (WD) and 

freezing and thawing (FT) in solutions representative of expected environments. Chen et al. (2007) used 5 

different solutions in their study consisting of: tap water “to simulate high humidity and used as a 

reference environment,” solutions with varying amounts of sodium hydroxide, potassium hydroxide, and 

calcium hydroxide with pH values of 13.6 and 12.7, a simulation of ocean water consisting of sodium 

chloride and sodium sulfate, and finally a solution emulating concrete pore water contaminated with 

deicing agents containing sodium chloride and potassium hydroxide with a pH of 13. “Elevated 

temperatures of 40 ˚C and 60 ˚C were used to accelerate the attack of simulated environments on FRP 

bars, since the degradation rate mainly depends on diffusion rate and chemical reaction rate, both of 

which can be accelerated by elevated temperatures” (Chen et al., 2007). The first four solutions were 

subject to nine WD cycles which “consisted of four days of immersion at 60 ˚C followed by four days of 

drying at 20 ˚C” (Chen et al., 2007). All five solutions were subject to FT cycles which “consisted of 30 
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min of soaking at 20 ˚C, 90 min of ramping from 20 to -20 ˚C, 30 min of soaking at -20 ˚C, and finally 90 

min of ramping from -20 to 20 ˚C” (Chen et al., 2007). Durability performance was measured by the 

change in tensile and interlaminar shear strengths after exposures. Bond strengths were also evaluated 

through use of pullout tests. Chen (2007) concluded “strength loss resulted from the accelerated exposure 

of both bare and embedded GFRP bars, including bond strength, especially for solutions at 60˚C. In 

contrast CFRP bars displayed excellent durability performance.” 

 Hu et al. (2007) conducted a study exposing specimens to the aggressive environmental 

conditions of: fast freeze-thaw cycling, alkaline immersion, water immersion, and wet-thermal exposure. 

This study also concluded: “CFRP specimens subjected to aggressive environments showed good 

durability with no significant degradation in tensile strength and modulus, however, GFRP specimens 

exhibited a little decrease in mechanical property after aggressive environments exposure.”  

Ghosh et al. (2005) also used 5 different exposures in the evaluation of bond strength durability 

by the use of pull-off tests. “Eleven different composite systems, six carbon fabric systems, one glass 

fabric system and four pultruded carbon strip systems, were bonded to the surface of concrete blocks 

using epoxy resin systems” (Ghosh, 2005). Five different exposure conditions in addition to a set of 

specimens kept at room temperature were evaluated at 6, 12, and 18 months. Ghosh (2005) concluded 

“only two systems showed susceptibility to these exposure conditions. In terms of overall performance, 

two carbon fabric/epoxy resin composite systems showed good bond strength retentions under all the 

exposure conditions studied.” Confirming what Karbhari (2000) ascertained Ghosh (2005) advised “a 

judicious selection of the composite system based on its performance specific to its application condition 

will be necessary for optimization and long-term integrity of such strengthening/rehabilitation.”  

Durability tests conducted in laboratories using accelerated aging techniques and extreme 

exposures to determine the long-term durability of FRP composites have often shown promising results. 

Though useful, these efforts have not satisfied the concern about the long-term performance, or durability, 

of FRP strengthened reinforced concrete structures in the field. This difference was explained by Karbhari 

(2003) as an “apparent dichotomy between ‘real-world’ applications and laboratory data” that is currently 
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accounted for through the use of safety factors in design. Moreover, perhaps providing some of the 

reasoning why this dichotomy exists Karbhari et al. (2003) states “synergistic effects (i.e., effects 

resulting from the combination of multiple environmental conditions, both in the absence and presence of 

load) are known to exacerbate individual effects.” 

Reay et al. (2006) pointed out “Studies on field applications of FRP materials have been limited, 

and many of those that have been performed have not provided the type of real-time, long-term durability 

data needed to better understand the effects of environmental conditions on FRP materials.” 

5.2.2 Field Evaluations 

 A review of literature was conducted to identify existing examples of field evaluation.  There 

were not that many examples identified. Nineteen highway bridges were repaired with 11,000 meters of 

bonded FRP plates in the Republic of Macedonia in 2001 and 2002 (Crawford 2008). American Concrete 

Institute (ACI) 440.2R (2000) was used for the design of the FRP repair. Evaluation of these bridges was 

conducted to establish a baseline for investigation of durability.  Load tests were conducted on 3 of the 

bridges prior to and following the repair. These load tests were considered “trial testing” and were done to 

confirm and verify mathematical models, the FRP repair, and to provide data for comparison with future 

tests. The trial test consisted of static and dynamic load of a 102 ton, 9 axle heavy commercial vehicle. 

Strain gauges on reinforcing steel prior to the repair were replaced with strain gauges on the FRP in 

similar locations following the repair. The trial test was a success and “strongly supported the provisions 

of ACI 440 (2000),” and “fully justified the suitability of FRP system for strengthening of bridges” 

(Crawford, 2008). The study developed a valuable model for FRP system inspection which is outlined 

below: 

 Define bridge performance standards and criteria 
o Establish base-line condition for the bridges, i.e. at completion of FRP application 
o Define bridge performance (loading) standard 

 Inspection 
o Establish inspection criteria, procedures, protocols 
o Set inspection frequency, measuring points, data collection requirements 

 Data Collection and Analysis 
o Collect inspection data, record in national data base 
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o Perform data analysis to identify types of deterioration and rate of deterioration 
 FRP-System Bridge Maintenance 

o Set maintenance criteria and standards for bridges and FRP systems 
o Prescribe FRP-maintenance protocols and procedures 

 Load Testing and Certification 
o Perform bridge load testing, up to 100 tons, every 8-10 years 
o Certify bridge load capacity for national authorities 

 
Crawford (2008) did an excellent job describing durability, environments that threaten durability, 

debonding mechanisms, and design, but this study provided no data other than the initial values from the 

load tests prior to and following the repair. This study does not provide any inspection criteria, procedure, 

or protocol nor does it recommend inspection frequency, measuring points, or data collection methods. In 

addition, this paper has failed to describe how to set maintenance criteria or maintenance protocols and 

procedures. This study has presented a large group of bridges with known baseline values of load tests, 

and have set the stage for a durability study, but neglected to give any specific guidance as to how or what 

future durability studies should consist of other than load tests “up to 100 tons, every 8-10 years.”    

 Barlow (2005) outlines the history of the use of FRP with five case studies in the northwest 

region of the United States. In 1993, “the northwestern United States spearheaded the bold use of these 

materials” despite the fact that “initial research was done in other states and parts of the world” (Barlow, 

2005). The case studies included 2 bridges, a library, a courthouse, and a treatment plant. Quality control 

of the FRP applications on the bridges as well as the courthouse and library were monitored by tension 

test panels that were made simultaneous to the installation. In the cases of the bridges, the test panels were 

retained by their respective agencies, WSDOT and ODOT. Independent testing prior to the repair 

provided the quality assurance of the projects. The owner of the courthouse retained the test panels and an 

independent testing laboratory performed “periodic special inspection.” The application on the courthouse 

also included pull-off tests in accordance with ASTM D4541 to verify the bond strength of the FRP to the 

substrate. 

 The anticipation of test panels with these projects was innovative and much needed. From this 

study, no information in regard to degradation over time or durability was provided. It is unknown as to 

whether or not subsequent pull-off tests were conducted or if the test panels were used. It was also unclear 
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as to what conditions or environments the test panels were stored. Perhaps the test panels are intended to 

be tested in the future, but without utilizing these samples with premeditated frequency it is uncertain as 

to how helpful, if at all, the resulting data will be to understanding the durability of FRP. To fully 

understand the development of degradation it is necessary to collect more data points over time with 

additional samples and their respective environments.  

Hag-Elsafi et al. (2004) conducted an “in-service evaluation” of an FRP repaired bridge in New 

York. In November, 1999, a T-beam bridge, Wynantskill Creek Bridge was strengthened to increase the 

shear and flexural capacities using the FRP wet layup process. The FRP repair was also intended to 

contain freeze-thaw cracking. Prior to and directly following the FRP repair, instrumentation was 

installed and load tests were conducted to find the change in stiffness or performance of the repaired 

bridge. The bridge was in service for approximately 2 years before an additional load test was conducted 

in November, 2001. There was no detection of deterioration of the strengthened bridge in the 2 years of 

service through measures of strain caused from the load test or from infrared thermography. Figures were 

included of the repaired T-beam bridge as well as a figure of an infrared Thermographic image of the 

repaired bridge (Hag-Elsafi et al., 2004). 

 “The changes in beam stiffness during the three tests are very small,” however smaller strains 

were consistently recorded for the 2001 test, “although some of the strains were within the variations 

normally associated with instrumentation” (Hag-Elsafi et al., 2004). Hag-Elsafi et al. (2004) concluded 

that from the data collected and subsequent analysis considering transverse load distribution, effective 

flange width and neutral axis locations established from strain gauge measures and thermographic 

imaging that there was “absence of any signs of deterioration in the retrofit system after two years in 

service.”  

It is reasonable to believe that the repaired T-beam bridge could be in service until 2030 or 

longer. This study confirms that the FRP repaired bridge proved to be durable and resilient to the 

conditions between November, 1999 and November, 2001. It did not however, anticipate any follow up 

evaluations in which further valuable data and information of performance could be gathered. It is 
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unreasonable to forecast 30 years of durability based on two years of exposure, especially considering the 

variance of conditions the bridge can be exposed from year to year.  

 Saenz et al. (2004) conducted a durability study of FRP composites exposed to “single, dual and 

multi-variable environmental exposures.” The study combined GFRP and CFRP with epoxy-resin and 

urethane-resin matrices for a total of 4 combinations of FRP composites. The single exposure specimens 

were isolated in a dry dark environment to undergo “natural aging” or non-accelerated exposure evaluated 

at 450 and 900 days. The dual exposures were subject to the combination of “accelerated freeze-thaw 

cycling in salt water” for 112 and 162 cycles of exposure. The multi-variable environmental exposure, 

also considered “naturally exposed” consisted of aging the specimens at the State Street Bridge location 

on I-80 in Salt Lake City, Utah and evaluated at 365 and 730 days of exposure. The purpose of the single 

and dual environmental exposures was to decouple the degradation due to natural aging with the 

degradation due to the accelerated freeze-thaw cycles in the saline solution. The purpose of the specimens 

“naturally exposed” was to identify degradation due to typical environmental exposures at bridge 

locations.   

Zhang (2002) also contributed a durability study of FRP aged in a natural setting. Tensile, ring, 

and lap slice tests were conducted and it was determined that the “naturally exposed” units showed no 

degradation after the 365 days of exposure. The specimens with urethane-resin matrix showed 

“significant loss in interlaminar shear strength after freezing and thawing exposure” while specimens with 

epoxy-resin matrix “showed a significant increase after freezing and thawing exposure.”   

 Reay and Pantelides (2006) conducted a similar durability study in regard to the State Street 

Bridge and considered the CFRP retrofit “effective after 3 years of service.” Following three years of 

exposure, “nondestructive evaluation was conducted through strain gauges, tiltmeters, thermocouples, and 

humidity sensors installed on the bridge bents for real-time health monitoring.” “Destructive tests were 

performed to determine the ultimate tensile strength, hoop strength, concrete confinement enhancement, 

and bond-to-concrete capacity of the CFRP.”  In addition, thermography was used to detect voids, or 

unbonded areas, between the FRP and the concrete substrate. 
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 During the repairs (east bents in August of 2000 and west bents in June of 2001), three types of 

tests were conducted as quality assurance measures: tensile tests, fiber volume tests, and glass transition 

temperature tests. Specimens were also created at the time of the FRP repair for future tests consisting of 

tensile tests, composite rings, confined concrete cylinders, and pull-off tests. The specimens were stored 

in 3 different locations: “on top of the cap beam at the State Street Bridge, inside a cage located at ground 

level between two columns of the State Street Bridge, and in an isolated area of the Structures Laboratory 

at the University of Utah” (Reay and Pantelides, 2003). The specimens were tested at approximately six 

month intervals of 18, 24, and 30 months. In addition to the specimens created at the time of repair a 

section of the side of the cap beam was prepared with a patch for future tensile tests. Half of the patch was 

covered with an “ultraviolet protective coating” (Reay and Pantelides, 2003) and the other half 

unprotected. Some degradation of the FRP due to the environment was found through the destructive 

tests. Reay and Pantelides (2003) concluded “Destructive tests of CFRP composite tensile coupons, rings, 

and CFRP composite-to-concrete bond specimens have shown that specimens stored in the laboratory, 

generally give higher ultimate strength capacity than those stored at the bridge.”  

 Both of these studies were innovative in sample selection and storage, but it is unclear as to why 

the Saenz et al. (2004) study evaluated specimens at differing times. It makes the comparison more 

difficult when the “single exposure” specimens were evaluated at 450 and 900 days, while the other 

specimens were evaluated at 365 and 730 days. It is also difficult to compare the exposures when the 

environment at the bridge was not quantified in ways such as number of freeze/thaw cycles, precipitation, 

applications of deicing agents etc. 

In addition to the destructive and non-destructive tests, in June of 2003, multiple voids of varying 

shapes and sizes were located on the southeast bent of the State Street Bridge using thermographic 

imaging. Because no thermographic images were taken directly after the retrofit, it was not possible to 

determine whether the voids or bond flaws existed at the time of the repair or if they developed during 

service. Six months later in December, 2003 thermographic images were taken and compared with the 

images collected in June, 2003 and no significant changes in size or shape were found. Reay and 
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Pantelides (2003) concluded “More sophisticated methods are required to determine quantitatively the 

size and any enlargements of the voids.” 

 Thermographic imaging at the time of the repair or retrofit would have been an excellent means 

to provide quality control of the installation of FRP and it would have helped to quantify the degradation 

of the bond during service. Additionally it would be beneficial to have an object of known size that 

appears distinctly such as a hot or cold coin to reference for size.  

5.3 Existing Design Guidance  
 
5.3.1 National Cooperative Highway Research Program 
 
Several reports prepared by NCHRP studies are particularly relevant as they focus on design for bridges.  

The first two reports include a discussion of design considerations, sample design provisions, and design 

examples.  The examples are listed below.   The third report may be helpful in writing CDOT 

construction specifications. These reports can be obtained as PDFs free from the NCHRP website, 

http://www.trb.org/NCHRP/NCHRP.aspx 

NCHRP Report 655 Recommended Guide Specification for the Design of Bonded FRP Systems for 
Repair and Strengthening of Concrete Bridge Elements 
6 Examples: 

 Calculation of the characteristic value of the strength of an FRP reinforcement system 

 Flexural strengthening of a T-beam in an unstressed condition 

 Flexural strengthening of a T-beam in a stressed condition 

 Shear strengthening of a T-beam using U-jacket FRP reinforcement 

 Shear strengthening of a rectangular beam using complete wrapping FRP reinforcing system 

 Strengthening of an axially loaded circular column 

NCHRP Report 678 Design of FRP Systems for Strengthening Concrete Girders in Shear 

6 Examples: 

 RC T-beam without internal transverse steel reinforcement strengthened with FRP in U-wrap 

configuration without anchorage systems 
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 RC T-beam without internal transverse steel reinforcement strengthened with FRP in U-wrap 

configuration with an anchorage system 

 RC T-beam with internal transverse steel reinforcement strengthened with FRP in U-wrap 

configuration without anchorage systems 

 RC T-beam with internal transverse steel reinforcement strengthened with FRP in U-wrap 

configuration with an anchorage system 

 PC I-beam with internal transverse steel reinforcement strengthened with FRP in U-wrap 

configuration without anchorage systems 

 PC I-beam with internal transverse steel reinforcement strengthened with FRP in U-wrap 

configuration with an anchorage system 

NCHRP 514: Bonded Repair and Retrofit of Concrete Structures Using FRP Composites -- 
Recommended Construction Specifications and Process Control Manual 
 

5.3.2 American Concrete Institute 

The ACI guideline is not specific to bridges, but still provides a number of valuable examples. 
 
ACI 440.2R-08 Guide for the Design and Construction of Externally Bonded FRP Systems for 

Strengthening Concrete Structures 

Part 5  Design Examples 

9 Examples: 

 Calculation of FRP system tensile properties 

 Comparison of FRP systems’ tensile properties 

 Flexural strengthening of an interior reinforced concrete beam with FRP laminates 

 Flexural strengthening of an interior reinforced concrete beam with NSM FRP bars 

 Flexural strengthening of an interior prestressed concrete beam with FRP laminates 

 Shear strengthening of an interior T-beam 

 Shear strengthening of an exterior column 
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 Strengthening of a noncircular concrete column for axial load increase 

 Strengthening of a noncircular concrete column for increase in axial and bending forces 

5.3.3 Concrete Society Committee (UK) 

Although this is a slightly older guideline the design flow charts may be helpful to designers working 

with FRP for the first time. 

Technical Report 55. Design guidance for strengthening concrete structures using fibre composite 
materials 
Design Flow Charts  

 Flow chart of assessment process (pg. 4) 

 Flow chart of strengthening members in flexure (Chapter 6) 

 Flow chart of shear strengthening (Chapter 7) 

 Flow chart of strengthening axially loaded members (Chapter 8) 

 

 

 

 

 

 

 

 

 

 

 

  



 

82 
 

6.0 TASK 5: ESTABLISH LONG-TERM TESTING PLAN  

6.1 Importance of FRP – Concrete Bond Durability 

The use of carbon fiber-reinforced Polymers (CFRP) has progressively gained popularity in the 

reinforcement of aging and deteriorating concrete structures. Other than cost, the reason why this repair 

method has not yet been more widely used in the field is due to the lack of knowledge about the long-term 

behavior of the CFRP material itself and of the bond between the CFRP and concrete. A strong bond is 

vital for proper transfer of stresses between the concrete and the reinforcement. If a structural element is 

poorly reinforced with CFRP, premature debonding is likely to occur, leading to failure of the structure at 

load capacities much lower than what the reinforcement was designed to provide (Karbhari & Ghosh, 

2009). In addition, environmental exposure may significantly affect the bond performance over time. 

Natural conditions such as rapid temperature changes, fires, snow and rain, as well as manmade 

conditions including application of deicing salts on roads and bridges, are some of the factors involved in 

the deterioration of a bond.  

Over the years, research has been conducted to study the behavior of the bond between FRP and 

concrete using different testing methods and testing exposures. The following sections of this chapter 

provide descriptions of the various methods used by previous researchers to test bond, and reviews 

durability studies that have been conducted in the past.  

6.2 Bond Tests 

 The strength and behavior of the bond between CFRP and concrete can be determined through 

various testing methods, depending on the nature of the study. Factors such as size, geometry, and 

quantity of specimens are taken into consideration when choosing an appropriate bond test. Sections 6.2.1 

through 6.2.5 describe the different bond testing methods that were evaluated, and the various reasons 

why two methods were specifically chosen for the purposes of the durability study, described later in this 

Section 6.0. 



 

6.2.1 D

Pr

Pan and L

concrete m

using a s

composite

bond, a st

concrete 

causing d

disadvant

place. The

decreased

 
6.2.2 D

D

determine

two bonde

type and 

specimens

Direct Shear

revious studie

Leung (2007) 

members flex

imple diagram

e, was placed

teel frame wa

specimen wa

direct shear b

age of this m

e slightest err

d the accuracy

Double- Face

Double shear 

e the strength

ed regions be

dimensions a

s has been co

r Tests 

es have empl

used direct s

xurally streng

m. For testin

d vertically on

as designed to

as held in pla

etween the c

method is the c

ror in alignme

y of the result

Figu

e Shear Tes

tests have s

h of the CFRP

eing tested at 

are attached 

onducted in d

loyed direct s

shear tests to 

thened with F

ng procedures

n the materia

o hold the spe

ace, while th

oncrete beam

complexity o

ent could hav

s. For this rea

ure 6.1 Direc

sts 

some similari

P-concrete bo

the same tim

together by t

different ways

83 

hear tests in o

“study the cr

FRP composi

s, the concre

al testing syst

ecimen in its v

he FRP plate 

m and the com

f having to bu

ve caused ecc

ason, direct sh

ct shear test re

ity with sing

ond under pu

me. More spec

two strips of

s. Ko and Sat

order to test b

rack-induced 

ites”. Figure 6

te specimen, 

tem. In order

vertical positi

was subject

mposite (Pan 

uild a custom

centricity on t

hear tests wer

epresentation

gle shear test

ure shear. Ho

cifically, two 

f CFRP on o

to (2007) perf

bond strength

debonding fa

6.1 illustrates

 already bon

r to perform d

ion. When ali

ted to an upw

n & Leung, 2

m frame to ho

the specimen 

re not used in

 

ts in the sen

owever, doubl

blocks of co

pposite sides

formed a stud

h under pure 

ailure in reinf

s a direct shea

nded with the

direct shear o

igned properl

ward tensile 

007). The pr

old the specim

which would

n this study. 

nse that they

le shear tests

ncrete of the 

s. Testing of 

dy in which a

shear. 

forced 

ar test 

e FRP 

on the 

ly, the 

force, 

rimary 

men in 

d have 

y both 

 have 

same 

these 

a steel 



 

bar was in

into the 

measurem

a double-

CFRP-con

The main

properly 

difficult, 

conducted

6.2.3 D

T

to the bon

circular lo

a threaded

also know

nternally fixe

concrete and

ments were rec

face shear tes

ncrete bond i

n issue that w

aligned when

particularly 

d in this study

Direct Tensio

The pull-off te

nd) that the FR

oading fixture

d hole in the 

wn as a pull-o

ed in the conc

d the compo

corded with t

st can consist

n pure shear.

was noticed w

n the two F

when movin

y. 

Figu

on Pull-off T

est is a test me

RP-concrete b

e, also referre

center that a

off tester. Onc

crete block, a

site. Uniaxia

the use of stra

t of pushing t

 Figure 6.2 s

with this test

RP sheets w

ng them was

ure 6.2. Types

Tests 

ethod that det

bond can resi

ed to as a doll

allows for att

ce attached, th

84 

and cut in the

al tension wa

ain gauges. (K

two specimen

shows the two

t type was m

were bonded. 

s necessary. 

s of double-fa

termines the g

ist. The meth

ly or puck, to

tachment of t

he tester slow

e middle to al

as applied b

Ko & Sato, 2

ns away from

o different ki

making sure t

Also, handl

As a result,

ace shear tests

greatest tensi

hod consists o

o the surface b

the fixed alig

wly applies te

llow the stres

by gripping t

007). In addi

m each other. 

inds of double

that both con

ling of the s

, double she

 

s 

ion force (app

of adhesively 

being tested. 

gnment adhes

nsion to the b

ss to be distri

the steel bar

tion, a variati

Both types pu

e- face shear 

ncrete blocks 

specimens se

ear tests wer

plied perpend

bonding a me

The dolly con

ion testing d

bond until a p

ibuted 

r, and 

ion of 

ut the 

tests. 

were 

eemed 

re not 

dicular 

etallic 

ntains 

evice, 

partial 



 

or full det

Figure 6.3

T

fixtures (d

cutter. Th

hole mus

instrumen

tachment of t

3 illustrates a 

The main inst

dollies), epox

he circular ho

t be the sam

nts are shown 

the dolly is w

pull-off test s

Fi

truments nee

xy adhesive t

ole cutter is u

me diameter a

in Figure 6.4

Figure 6.4

witnessed, at w

scenario.  

igure 6.3. Pul

ded to perfo

to attach the 

used to isolate

as the loadin

4. 

4. Instruments

85 

which point th

ll-off test repr

orm pull-off t

dollies to th

e the area bei

ng fixture, co

s needed to co

he load is reg

resentation 

tests consist 

he surface, an

ing tested fro

ommonly tak

onduct pull-of

garded as max

 

of the pull-

nd a core dri

om the rest o

ken as 50 m

 

ff tests 

ximum bond 

off tester, lo

ill or circular

of the surface

mm (2.0 in). T

force. 

oading 

r hole 

. This 

These 



86 
 

Prior to 2009, the standard used as guidance for pull-off tests was ASTM D4541. This standard 

was primarily created as a test method for the pull-off strength of coatings. However, due to similarities in 

specimen preparation and testing procedures, the standard was used by previous studies as a method for 

testing pull-off strength of FRP materials bonded to concrete. With the increase in popularity of this 

specific test application, ASTM D7522/D7522M was created in 2009, specifically to determine the pull-

off strength of FRP bonded to concrete.  The standard is applicable to both wet lay-up and shop-fabricated 

or pultruted laminates bonded to concrete. The test cannot be classified as non-destructive, but due to its 

relatively small scale, surface repairs are minimal.  

The maximum force recorded during each pull-off test is used to calculate the pull-off bond 

strength, as shown in Equation 6.1, where σp is the pull-off strength, Fp is the maximum pull-off force, 

and D is the diameter of the dolly. 

Equation 6.1 

௣ߪ ൌ
ସி೛
గ஽మ

                                                                   

Following completion of the test, different failure characteristics may be witnessed at the bond 

surfaces. ASTM D7522/D7522 (2009) classifies these failure modes into seven types, labeled from Mode 

A through Mode G. These failure modes are summarized in Table 6.1. 

Table 6.1. Pull-off Test Failure Modes (ASTM D7522/D7522M, 2009) 

Failure Mode Failure Type Causes of Failure
A Bonding adhesive failure at dolly Improper adhesive bonding of dolly. Not an

acceptable failure mode.
B Cohesive failure in FRP Improper saturation of the FRP, environmental

degradation.
C Adhesive failure at FRP/adhesive interface Contamination of adhesive during application,

incomplete adhesive cure.
D Cohesive failure adhesive Contamination of adhesive, incomplete cure,

environmental damage of material.
E Adhesive failure at FRP/concrete interface Contamination of adhesive during application,

incomplete adhesive cure.
F Failure mode E and G combined Inconsistent FRP-concrete adhesion. Failure

is partly adhesive and partly on substrate
G Cohesive failure in concrete substrate Proper adhesion of FRP-concrete. Desirable

failure mode  
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6.3  Testing Plan Overview 

 The purpose of this study was to evaluate the behavior of the bond between the concrete and the 

CFRP when subjected to various environmental scenarios. These environmental conditions include 

freeze-thaw and wet-dry cycles, as well as immersion in deicing agents over two testing stages. The 

testing stages consisted of keeping the specimens exposed to these scenarios over a period of 6 months, 

and 12 months. Section 3.3 describes the stages in more detail. 

In order to test the bond between the CFRP and concrete, various testing methods were evaluated 

with the purpose of finding a test that was most suitable for this study. Tests such as single shear and 

double face shear were considered. However, these types of tests showed to have some inconveniences in 

relation to the goal of this study. Since various environmental scenarios were considered, a large amount 

of specimens was needed. Therefore, practical specimen sizes were necessary for easy handling of the 

blocks, as well as lower cost for materials and testing devices. As a result, two different testing methods 

were chosen: pull-off tests, and small three-point bending tests.  

6.4  Environmental Exposure Scenarios 

During the winter months in Colorado and other northern regions, roads and bridges are faced 

with various adverse weather conditions that may affect their performance over time. These conditions 

include exposure to rain and snow. In addition, the use of deicing products to improve driver’s safety on 

bridges is also a factor. As a result, various environmental exposures were considered in the study to 

evaluate the FRP-concrete bond durability. These exposures include: immersion in deicing agents, wet-

dry cycles, freeze-thaw cycles, and immersion in water. Each exposure is described in more detail in the 

subsequent sections. 

6.4.1  Exposure to Deicing Agents 

 To evaluate long-term bond durability under deicing exposure, concrete blocks and beams 

reinforced with CFRP were placed face down in a 0.25 in - 0.50 in (6 mm - 13 mm) depth of deicing 

solution. ASTM C672/C672M (2003) was used for guidance on the depth of solution needed for the 
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conditioning of the beams and blocks. The standard specifies the exposure procedure using a solution of 

calcium chloride, but for the purposes of this study, two different deicers were used: Meltdown Apex and 

Apogee, provided by Envirotech Services. The first one is characterized as a performance enhanced 

magnesium chloride solution, while the second one is described as a non-chloride deicer.  

For preparation of the deicers, both products were diluted with water at a 1:1 weight ratio to 

achieve a concentration more representative of field conditions. Exposure was carried out for all of the 

testing stages described in Section 3.3. Since a constant depth was desirable, specimens were monitored 

to make sure a minimum depth of 0.25 in (6 mm) was maintained. When the depth was lower than the 

recommended 0.25 in, the plastic bins containing the specimens were refilled to the desired depth. 

However, all of the containers were fully covered which prevented rapid evaporation of the solution. As 

specified by Envirotech, concentration of the solutions is shown to decrease over time. As a result, 

samples of the solutions were collected and taken to the facilities at Envirotech to determine the rate at 

which the concentration decreased. With this rate, it was determined how often a new batch of Meltdown 

Apex and Apogee were needed to be mixed, in order to keep a constant concentration and avoid 

discontinuities in the long-term exposure. 

6.4.2  Wet-Dry Cycles 

 A series of wet-dry cycles were applied on some specimens for all of the testing durations. One 

complete cycle was as follows: specimens remained soaking in a 0.25-in depth of magnesium chloride 

solution for 4 days, then were removed from the containers and allowed to dry for 3 days. The week-long 

cycles were repeated for 6 and 12 months. 

6.4.3  Freeze-Thaw Cycles  

Freeze-thaw exposure was applied to some of the specimens. Since there is no specific standard 

for testing FRP-concrete bond under freeze thaw conditions, the exposure developed by Yun and Wu 

(2011) was followed, and it is based on two ASTM Standards for concrete were used as guidance to 

develop this exposure: ASTMC666 (2003) and ASTMC672/C672M (2003). A total of four blocks 
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pull-off tests were performed during this stage. Stage 0 specimens were characterized as control, kept in 

dry conditions and at room temperature. These specimens provided a basis for comparison for the later 

testing stages.  Stage 1 was the testing stage following 6 months of environmental exposure. A total of 15 

blocks and 13 beams were tested during this stage. Finally, Stage 2 represented 12 months of exposure, in 

which 15 blocks and 13 beams were tested. Tables 6.2 and 6.3 summarize the entire testing plan, showing 

the different types of specimens and environmental scenarios at each stage. 

Table 6.2. Stage 1 (6-month) Tests 

Pull-off Beam Bending

# of Blocks Exposure CFRP # of Beams Exposure CFRP
Layers Layers

1 Dry 2 2 Dry 2
2 Water 2 2 W/D in Chloride Deicer 2
2 W/D in Chloride Deicer 2 3 Water 2
2 Non-Chloride Deicer 2 3 Non-Chloride Deicer 2
2 Non-Chloride Deicer 3 3 Chloride Deicer 2

2 Chloride Deicer 2
2 Chloride Deicer 3

2 F/T in Chloride Deicer 2

Note: W/D = Wet- Dry cycles, F/T = Freeze-Thaw cycles  
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Table 6.3. Stage 2 (12-month) Tests 

Pull-off Beam Bending

# of Blocks Exposure CFRP # of Beams Exposure CFRP
Layers Layers

1 Dry 2 2 Dry 2
2 Water 2 2 W/D in Chloride deicer 2
2 W/D in Chloride deicer 2 3 Water 2
2 Non-chloride deicer 2 3 Non-chloride deicer 2
2 Non-chloride deicer 3 3 Chloride deicer 2
2 Chloride deicer 2
2 Chloride deicer 3
2 F/T in chloride deicer 2

Note: W/D = Wet- Dry cycles, F/T = Freeze-Thaw cycles  

6.6  Fabrication and Testing of Specimens 

 With pull-off and three-point flexural tests chosen for testing the bond, two types of concrete 

specimens were manufactured according to the quantities shown in Tables 6.2 and 6.3. The concrete 

specimens were then reinforced with the carbon fiber fabrics and finally exposed to their respective 

environmental exposures. Sections 6.5.1 through 6.5.4 explain in detail the procedure for the concrete 

casting, CFRP application, and specifics for the pull-off and bending tests. 

6.6.1  Concrete Specimens 

The concrete mix was obtained from Lafarge North America, located north of Fort Collins. 

Specifications for the concrete were taken from the Colorado Department of Transportation 2011 

Specifications Book, Section 601: Structural Concrete. For the purposes of this study, Class D concrete 

was chosen. Class D concrete was chosen to represent a common concrete type that is used in bridges. 

The mix specifications included a slump of 4 inches, air entrainment of 5-8%, a water to cement ratio of 

0.45, and a 28-day compressive strength of 4500psi (31.0 MPa). As stated in the specifications book, 

Class D concrete is a dense medium strength structural concrete, required to be made with AASHTO M 

43 sizes No. 57, or No. 67 coarse aggregate.  

Wooden molds were fabricated prior to casting the concrete. Once the forms were finished, the 

mixing truck arrived at the Colorado State University Engineering Research Center to proceed with the 
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Table 6.7. Stage 0 Beam Results 

Beam
Kip kN ksi MPa

1 4.28 19.04 0.963 6.64
2 3.72 16.55 0.837 5.77

Maximum Load Bond Shear Stress

 

6.8 Stage 1 Results 

6.8.1  Stage 1 Cylinder Tests 

A total of four cylinders were tested under compression during this stage. With an average load of 

155 kips (690 kN) and average strength of 5.49 ksi (37.83 MPa), these cylinders were weaker by 

approximately 12% than those tested 6 months prior. These lower values were unexpected and may have 

been due to calibration of the machine that was made prior to Stage 1 testing. Failure modes for the four 

specimens were similar to those from Stage 0. See Table 6.8 for the summarized results of the four 

cylinders.  

Table 6.8. Cylinder Tests for Stage 1 

kip kN ksi Mpa
1 161 716 5.69 39.26
2 151 672 5.34 36.82
3 151 672 5.34 36.82
4 158 701 5.57 38.41

Average 155 690 5.49 37.83

Cylinder
Load Compressive Strength

 

6.8.2 Stage 1 Pull-off Tests 

Forty five pull-off tests were performed during this stage. Environmental exposures included 

water immersion, wet-dry (W/D) cycles in Chloride- based deicer (Apex), immersions in both chloride 

and non-chloride based deicers (Apex and Apogee), and freeze-thaw cycles on chloride-based deicer 

(Apex). All specimens that underwent conditioning were pulled out of their respective containers and left 

in dry conditions and room temperature for 5 days to allow for proper air drying before the adhesion of 

the dollies. In addition, a cloth was used every day for the 5-day period to help increase drying speed. 
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Once fully dried, the specimens were prepared as previously described, including the core drilling and 

adhesion of the dollies. Table 6.9 shows the results obtained from the forty five pull-off tests. 
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Table 6.9. Stage 1 Pull-off Test Results 

Block Dolly Exposure CFRP Failure Mode
Layers psi MPa psi Mpa (ASTM D7522)

1 226 1.56 F
2 152 1.05 F
3 139 0.96 F
4 528 3.64 A
5 513 3.54 A
6 Immersion in 408 2.81 A
7 Water 308 2.12 A
8 304 2.10 A
9 173 1.19 F
10 89 0.61 F
11 Wet-Dry 132 0.91 F
12 in Chloride 133 0.92 F
13 Deicer 291 2.01 F
14 579 3.99 F
15 530 3.65 F
16 179 1.23 F
17 Immersion in 458 3.16 F
18 Non- Chloride 432 2.98 F
19 Deicer 579 3.99 F
20 475 3.28 F
21 575 3.96 F
22 101 0.7 F
23 Immersion in 403 2.78 G
24 Non- Chloride 294 2.03 F
25 Deicer 82 0.57 F
26 142 0.98 F
27 224 1.54 F
28 408 2.81 F
29 405 2.79 F
30 Immersion in 528 3.64 A
31 Chloride Deicer 375 2.59 A
32 355 2.45 F
33 237 1.63 F
34 467 3.22 F
35 627 4.32 G
36 Immersion in 522 3.6 F
37 Chloride Deicer 389 2.68 F
38 80 0.55 F
39 -
40 313 2.16 F
41 Freeze-Thaw 296 2.04 A
42 in Chloride 287 1.98 A
43 Deicer 422 2.91 F
44 351 2.42 F
45 291 2.01 A

4

2

5

6

2

7

14

2

15

8

3

9

10

2

11

12

3

13

1 Dry 2

2

2

3

Pull-Off Strength

2.02292

defective

417 2.87

Average Strength

1.19172

2.57372

327 2.25

450 3.10

208 1.43

385 2.65
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variation was quite large, with forces ranging from 89 psi up to 579 psi (0.61 MPa to 3.99 MPa) among 

the two blocks. Potential causes for these large discrepancies among the forces will be explained later on 

in this section.  

The next specimens that underwent exposure were those immersed in a non-chloride based 

deicer. A total of four blocks were exposed, two reinforced with two layers of CFRP and two reinforced 

with three layers. Eleven of the twelve pull-off tests in this group showed a Mode F failure, with the 

remaining failure being identified as Mode G. However, in this case, the use of an extra CFRP layer did 

not demonstrate any improvements to the bond strength. In fact, the average pull-off strength for the six 

pull-offs performed on the double- CFRP layer specimens was 450 psi (3.10 MPa), which turned out to be 

242 psi higher than the average pull-off strength seen on the two blocks reinforced with three CFRP 

layers. 

The next group of specimens consisted of four blocks immersed in a chloride-based deicer. 

Similar to the previous group, this one consisted on two blocks reinforced with two layers of CFRP and 

two blocks strengthened with three layers, with a total of 12 pull-off tests. From these twelve tests, eight 

showed a Mode F failure, two showed a Mode A failure, one showed a full concrete failure Mode G, and 

the remaining one was categorized as defective due to thread malfunction of the dolly. The average pull-

off strength for the double-layer specimens was 385 psi (2.65 MPa), this force being 32 psi (0.220 MPa) 

lower than those reinforced with three layers of composite.  

The last group of specimens consisted of those exposed to lower temperatures. Freeze-thaw 

cycles were applied on specimens reinforced with two layers of CFRP. Two blocks, or six pull-off tests 

were conducted in this group. Three pull-offs showed a Mode F failure, and the remaining three failed at 

the adhesive layer. Forces ranged from 287 psi (1.98 MPa) to 422 psi (2.91 MPa), with an average bond 

strength of 328 psi among the six pull-offs. ASTM D7522 does not consider failure Mode A as an 

acceptable mode. For this reason, if these adhesive failures are not taken into consideration, the average 
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strength increases to 365 psi among the three dollies that failed partly at the concrete and partly at the 

FRP-concrete interface.  

There are large variances in the results from the pull-off tests. A special concern is the fact that 

the control specimens showed the lowest strengths in relation to the other groups. Exact reasons why 

strengths can vary to this magnitude among specimens that underwent similar conditioning are unknown, 

but it gives an idea of the extremely localized behavior that pull-off tests can exhibit.  

While firm conclusions are difficult, listed below are several potential reasons why such 

discrepancies in the results would be created: 

 Inconsistencies in the depth of the core drilling prior to puck adhesion. The recommended depth per 

ASTM D7522 is 0.25 in. (6 mm) to 0.50 in. (12 mm). A core drill depth of 0.50 in. could present much 

different results than a core that is 0.25 in. deep. 

 Varying volumes of epoxy used per dolly. Since the dollies are manually adhered onto the surface one 

by one, a slight difference in the volume of epoxy used per dolly could potentially decrease precision 

of results. 

 Irregularities on the surface of the specimen that would prevent a fully flat adhesion. If a surface is not 

completely flat, more epoxy would have to be used on the side that is not in contact with the dolly. 

This would lead to variations in thickness across a bond surface. 

 Twisting of the dollies when adhering to the FRP surface. Such twisting during adhesion could create 

minor air voids and decrease adhesion performance. Therefore, a uniform pressure with no rotation of 

the dolly is recommended. 

 Inconsistencies in the mixing of epoxy. Since the type of epoxy used is only workable for 5-7 minutes, 

and there was a large number of dollies that needed to be adhered, several mixes of epoxy had to be 

performed separately. As this is all done by hand, occasions in which an ideal 1:1 ratio of resin to 

hardener is not used, may decrease the performance of the epoxy and deviate results. 
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Table 6.11 shows the results summarized by exposure. The wet-dry exposure was identified as 

the group of beams that degraded the least in terms peak load values, with a load of 88% of the control 

beams. On the other hand, the chloride-based deicer was found to be the exposure that corresponded to 

the highest strength degradation, with the peak load being 63% of the control specimens. 

Table 6.11.  Stage 1 Average Results for Beams 

% of
Exposure Kip kN ksi Mpa Control
Dry 4.043 17.98 0.910 6.271 100.0%
W/D in chlorde deicer 3.572 15.89 0.804 5.541 88.4%
Water 2.876 12.79 0.647 4.462 71.2%
Non-chlorde deicer 2.803 12.47 0.631 4.348 69.3%
Chloride deicer 2.552 11.35 0.574 3.959 63.1%

Average Peak Load Average Bond shear Stress

 

6.9 Stage 2 Results 

6.9.1  Stage 2 Cylinder Tests 

 A total of four cylinders were tested in compression during Stage 2. The average strength for this 

group was 5.14 ksi (35.44 MPa). These cylinders turned out to be 6.5% weaker than those tested six 

months prior, and 18% than the ones tested twelve months prior. The failure mode, however, was similar 

to those tested in the previous stages. Table 6.12 summarizes the results for these cylinders. 

Table 6.12. Cylinder Tests for Stage 2 

kip kN ksi Mpa
1 147.5 656 5.22 35.97
2 137.5 612 4.86 33.53
3 141 627 4.99 34.38
4 155 689 5.48 37.80

Average 145 646 5.14 35.42

Cylinder
Load Compressive Strength

 

6.9.2  Stage 2 Pull-off Tests 

 A total of forty five pull-off tests were conducted during Stage 2. The specimens were subject to 

the same environmental conditioning as Stage 1. One block was left at room temperature to be used as 

control. For this stage, all specimens undergoing conditioning were pulled out of the containers seven 
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days prior testing. Specimens were again prepared following procedures previously explained. Table 6.13 

shows the results for the forty five pull-offs, including their average strength per group, and failure mode 

per ASTM D7522. 
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Table 6.13. Stage 2 Pull-off Test Results 

Block Dolly Exposure CFRP Failure Mode
Layers psi MPa psi Mpa (ASTM D7522)

1 245 1.69 F
2 249 1.72 F
3 365 2.52 F
4 382 2.63 A
5 353 2.43 A
6 Immersion in 367 2.53 A
7 Water 209 1.44 F
8 399 2.75 F
9 425 2.93 F
10 192 1.32 F
11 Wet-Dry 152 1.05 F
12 in Chloride 334 2.30 F
13 Deicer 275 1.90 F
14 313 2.16 F
15 66 0.46 F
16 340 2.34 A
17 Immersion in 308 2.12 A
18 Non- Chloride 311 2.14 F
19 Deicer 372 2.56 F
20 425 2.93 G
21 386 2.66 F
22 330 2.28 F
23 Immersion in 310 2.14 F
24 Non- Chloride 306 2.11 A
25 Deicer 131 0.90 F
26 239 1.65 F
27 241 1.66 F
28 95 0.66 F
29 154 1.06 F
30 Immersion in 329 2.27 F
31 Chloride Deicer 289 1.99 A
32 163 1.12 F
33 190 1.31 F
34 139 0.96 F
35 329 2.27 F
36 Immersion in 270 1.86 F
37 Chloride Deicer 281 1.94 F
38 273 1.88 A
39 251 1.73 F
40 330 2.28 F
41 Freeze-Thaw 283 1.95 F
42 in Chloride 348 2.40 A
43 Deicer 344 2.37 A
44 311 2.14 A
45 494 3.41 A

14

2 2.42352

15

12

3 1.77257

13

10

2 1.40203

11

8

3 1.79260

9

6

2 2.46357

7

4

2 1.53222

5

2

2 2.45356

3

Pull-Off Strength Average Strength

1 Dry 2 1.97286
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adding an extra layer of FRP. However, the high variances among individual results make it difficult to 

draw solid conclusions as to what the values actually mean. As far as failure modes go, ten of the twelve 

showed a Mode F failure, and the remaining two were adhesive Mode A failures. The next and final 

group of specimens corresponded to two blocks that underwent freeze-thaw cycles in a chloride-based 

deicer for twelve months. In this case, forces ranged from 283 psi to 494 psi (1.95 MPa to 3.41 MPa). 

Failure modes, however, were controlled by Mode A. Out of the six pull-offs, only two showed a Mode F 

failure and the remaining detached at the adhesive level.  

In this stage, the presence of moisture in some of the dollies was also witnessed. Two of the 

dollies within the water exposure group, three within the wet-dry cycle group, three within the non-

chloride based deicer group, and nine within the chloride-based deicer group, were the specimens that 

showed moisture between the concrete and FRP. Once again, the different tonalities of gray as well as a 

softer more clayey feel to the touch helped identify which dollies showed levels of moisture. The amount 

of moisture ranged from very small spots around the edges, to larger areas within the dolly. Figure 6.32 

shows a characteristic image of the presence of moisture in the specimens. As far as moisture – strength 

relationship in the water group, no logical pattern was found. In fact, dollies #8 and #9 resulted in the 

highest bond strength in the group, even though these were the ones that showed some moisture within 

the group. However, dollies #25, #26, and #27 did turn out to be weakest ones within the non – chloride 

based deicer group. For the chloride based deicer group, the moisture-strength relationship makes sense in 

the double-layer reinforcement ones, where dollies #28, #29, #32, and #33 showed the lowest strengths as 

oppose to the drier ones. These patterns, however, are difficult to interpret, as the moisture was not 

present within individual blocks, but rather within individual dollies. 
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debonding on one of the FRP-concrete interfaces is witnessed. The lowest strength corresponded to beam 

#4, in the wet-dry group. It is unknown if that specific environmental exposure might have been the main 

cause of strength degradation. However, it was observed that those beams exhibiting lower strengths were 

the ones that showed more adhesive marks on the concrete, meaning the FRP strip did not fully adhere to 

the surface. Figure 6.34 illustrates the significant difference there is between a proper bond and an 

improper one. This clearly had an effect in strength, especially in beams #4, #5, #6, and #12. Table 6.14 

shows the peak loads with respect to each environmental conditioning. Table 6.14 also shows the values 

for the bond shear stress. 

Table 6.14. Stage 2 Beam Results 

Beam Exposure
Kip kN ksi Mpa

1 4.181 18.60 0.94 4.18
2 3.656 16.26 0.82 3.66
3 W/D in chloride 3.704 16.48 0.83 3.71
4 deicer 2.104 9.36 0.47 2.11
5 2.928 13.02 0.66 2.93
6 2.295 10.21 0.52 2.30
7 4.317 19.20 0.97 4.32
8 Non-chloride 3.895 17.33 0.88 3.90
9 deicer 3.780 16.81 0.85 3.78
10 3.927 17.47 0.88 3.93
11 3.640 16.19 0.82 3.64
12 2.303 10.24 0.52 2.30
13 4.106 18.26 0.92 4.11

Note: W/D = Wet-dry cycles

Maximum Load Bond Shear Stress
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6.10 Durability 

Figure 6.35 illustrates the average results from the 6-month and 12-month exposures for the pull-

off tests, classified per conditioning. For the most part, there was a strength degradation observed in the 

specimens exposed for an additional six months. The only exceptions were in the groups of freeze-thaw, 

and the non-chloride specimens with three FRP layers. Also, there was a decrease in strength in the 

control specimens between 0 and 6 months, but it increased at the end of the twelve month period.  

 

Figure 6.35. Average pull-off results for the 6-month and 12-month exposure 

Figure 6.36 shows a comparison plot of the beams tested at all stages. As expected, the dry 

(control) beams were the strongest ones throughout the entire durability study. In addition, a decrease in 

strength was witnessed in the water group. However, for unknown reason there was an increase in 

strength during the last six months of exposure for the rest of the groups. This may have been due to an 

increase in the concrete strength during conditioning. 
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Figure 6.36. Average beam results for the 6-month and 12-month exposure 

Due to these unexpected results it is impossible to draw any conclusions regarding the effect of 

the conditioning. From what was seen in all of the results previously discussed, high variability was 

witnessed, especially in the pull-offs. Factors such as an increase in strength over time, as well as 

inconsistencies in failure modes within the same specimens make interpretation of results challenging. It 

is difficult to know if the type of exposure has any influence in strength degradation. Therefore, the next 

section will be focused on evaluating pull-offs, by examining the challenges that may be encountered 

when analyzing the data obtained during testing, including the high variances pull-off test results can 

exhibit in the field and laboratory. 
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7.0 EVALUATING PULL-OFF TESTS 
 

7.1 Pull-off Tests Limitations Overview 

In effect of obtaining variations in results from both the field study in the Castlewood Canyon 

Bridge, as explained in Section 3.0, and from the durability study conducted in the lab as described in 

Section 6.0, pull-off tests were researched more in depth in this section. Over the years, various tests have 

been created in the laboratory and the field in order to characterize the bond behavior. Due to their low 

cost, small scale, and convenient method of testing bond. Although convenient, this test method does 

contain certain limitations affecting consistency and interpretation of results. For one, in a direct tension 

test, load is applied perpendicular to the surface. When the FRP repair is in service, perfectly 

perpendicular loads are never experienced by an FRP-concrete bond, meaning it can be difficult to 

understand what the test results actually mean in terms of structural performance. Also, due to the small 

scale of the testing procedure, drastic variations among results within the same test group can occur. The 

strength of the concrete substrate plays a large role in the bond strength that an FRP-concrete system can 

show. However, when bond strength is controlled by the strength of the pre-existing concrete, test results 

may not necessarily be indicative of the quality of the actual repair. In addition, preparation of the testing 

surface can introduce factors that may potentially increase variability of results, such as the presence of 

water as well as torsional and thermal stresses applied during the core drilling process. Finally, variations 

in the depth of the core cut must be paid close attention, as certain guidelines specify different depths, 

which could potentially alter the results. In light of these limitations, this chapter seeks to evaluate direct 

tension tests as a tool for understanding FRP-concrete bond in both the laboratory and the field. 

7.2 Variations in the Depth of Cut 

In addition to the specifications and procedures described by ASTM D7522, there are additional 

guidelines that focus on pull-off tests, and the depth of the core cut depths must be paid special attention. 

Guideline No. 03739 by the International Concrete Repair Institute (ICRI) also targets pull-off tests as a 

way to evaluate the tensile strength of a concrete surface repair. However, when looking at these different 
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guidelines, the depth of the core cut was found to be inconsistent. The ICRI Technical Guideline No. 

03739 (2004) recommends a minimum depth of core drill to be 1 in (25 mm) for a 2 in (50 mm) dolly. On 

the other hand, ASTM D7522 (2009) recommends for the same size dolly, a core depth of 0.25 in (6 mm) 

to 0.50 in (12 mm). Finally, ACI 503R (1993) advises to barely core drill into the substrate. As a result, 

variations in these figures make it quite difficult to determine which depth would be the most appropriate 

for use in any field or laboratory setting.  

7.3 Previous Laboratory Studies involving Direct Tension Pull-off Tests 

In this section, previous research laboratory studies regarding pull-off tests were summarized. 

Karbhari and Ghosh (2009) used pull-off tests to study the long-term bond durability of CFRP adhered to 

concrete under various environmental conditions such as immersion in salt water, immersion in water, 

exposure to freezing conditions, and different humidity levels. A total of 250 pull-off tests were 

conducted, which were split among the various environmental exposures. The tests were conducted at 6 

month intervals for a total of 24 months. In general, results were fairly consistent, with a gradual increase 

in the level of deterioration for those specimens immersed for a longer period. They concluded that the 

specimens immersed in salt water exhibited the largest degree of deterioration, possibly due to infiltration 

of the sodium chloride into the CFRP-concrete interface.  

A recent study conducted by Eveslage et. al. (2009) investigated the effect of variations in the use 

of ASTM D7522 as a standard pull-off test for FRP-concrete systems. The study included variables such 

as depth of core cut, shape of loading fixture or specimen, and the effects of retesting specimens that 

showed an unacceptable failure mode initially (Mode A per ASTM D7522). The experimental program 

involved a total of 75 pull-off tests. The specimens were prepared in accordance with instructions from 

the standard. For the specimens that exhibited a Mode A adhesive failure initially, it was determined that, 

even though the retests did show a Mode G failure, the average strengths were in fact lower, which 

indicated the possibility that damage to the specimens occurred during the initial testing. However, 

consistency in results from this group of specimens was witnessed, with a coefficient of variation of about 

16%, similar to those that did not require retests. Three different cut depths were investigated: 0.10 in (2.5 
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mm), 0.25 in (6 mm), and 0.75 in (19 mm), with a total of 5, 21, and 5 pull-off tests conducted, 

respectively. From the test results, no change in strength was witnessed among the 0.10 in (2.5 mm) and 

0.25 in (6 mm) core depths. However, the deeper core cut of 0.75 in (19 mm) showed a decrease in 

strength of up to 26%. A possible explanation for this lower strength is the likelihood of larger torsional 

and thermal stresses induced by drilling, as compared to the lower cuts. Table 7.1 shows statistics of pull- 

off results for each cut depth. 

Table 7.1. Pull-off Strength Results (Eveslage et. al., 2009) 

Depth of Sample COV
Cut, mm Size Mpa psi MPa psi %

0 31 2.72 395 0.141 20.5 20
2.5 5 2.78 403 0.094 13.6 13
6 21 2.78 403 0.110 15.9 16
19 5 2.06 299 0.125 18.2 22

Mean Bond Strength Standard Deviation

 

7.4 Previous Field Studies Involving Direct Tension Pull-off Tests 

Banthia, Abdolrahimzadeh, and Boulfiza (2009) conducted a field study in which four bridges in 

Canada were investigated to assess the durability of the FRP repairs applied on the bridges after several 

years of service. Four structures were selected to represent a range of environmental conditions, lengths 

of service, and types of FRP reinforcement. Table7.2 summarizes some of the characteristics of these 

structures.  

Table 7.2. Bridges Characteristics  (Banthia, Abdolrahimzadeh, and Boulfiza, 2009) 

Year of Year of Type of
Construction FRP Repair FRP Repair

SafeBridge Youbou, BC 1955 2001 Sprayed GFRP
St-Ètienne Bridge Quebec 1962 1996 GFRP and CFRP column wraps
Leslie Street Bridge Ontario 1960s 1996 CFRP column wraps
Maryland Bridge Manitoba 1969 1999 CFRP sheets at girder ends

Structure Location

 

Pull-off tests were conducted on specific sections of these repairs in order to determine the 

condition of the bond. These tests were conducted following ASTM C1583-04, titled “Standard Test 

Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete 

Repair and Overlay Materials by Direct Tension (Pull-off Method)”. Similar to ASTM D7522, this 
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standard is suitable for both laboratory and field tests and is used to determine the bond strength of the 

repair. The testing procedures are similar for both standards, requiring core drilling, attachment of the 

dolly, and tensile load application until failure.  

The locations of the pull-off tests on these bridges were randomly chosen, except in the case of 

the girders of the Maryland Bridge, where the cores were made at locations near the supports where 

maximum shear is witnessed. The depth of the cores was 0.40 in (10 mm) and diameter of the dollies used 

was 2 in (50 mm), as specified by ASTM C1583. Results from the pull-off tests showed significant 

variability. The average pull-off bond strength for all four structures ranged from 104 psi (0.72 MPa) to 

522 psi (3.60 MPa), both values obtained on different columns of the same bridge. For all structures the 

COV is very large, where values ranged from 27.7% for the Maryland Bridge, up to 154.2% for column 1 

of the St-Etienne Bridge. 

Interpretation of these results is challenging for several reasons. Failure modes were not specified 

in this study. Therefore, it is unknown what material controlled the bond strength; whether it was a 

concrete substrate failure or an FRP failure. In addition, the strength of concrete at the time of testing, 

which most likely varied among the different bridges, has significant influence on results and is important 

to interpret them. Finally, the lack of baseline or control values makes it difficult to understand whether 

low strengths represent poor application of the repair or degradation of bond strength over time. Figure 

7.1 shows a plot of the values obtained for each structure.  
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Figure 7.1. Pull-off Strength Results (Banthia, Abdolrahimzadeh, and Boulfiza, 2009). The ends of the 
vertical lines represent the lowest and highest values, and the boxes represent the mean values. 

Another example involving pull-off tests in the field consisted of a recent quality control 

procedure focused on the evaluation of an FRP repair. The repair was made on the pier caps and columns 

of an Interstate bridge in Colorado. A total of seven pull-off tests were completed in 2011, using steel 

dollies with 3 in (76 mm) diameters, as opposed to the commonly used 2 in (50 mm) diameter aluminum 

dollies. Once again, large variations in the bond strength results were witnessed, as seen in Table 7.3. 

Strengths ranged from as low as 99 psi (0.683 MPa) to as high as 424 psi (2.92 MPa). The predominant 

failure mode was a cohesive concrete failure, also known as Mode 6, as labeled by the ICRI Technical 

Guideline No. 03739, equivalent to Mode G per ASTM D7522.  
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Table 7.3. Bond Strength Results (CTL Thompson Materials Engineers, Inc., 2011) 

kN lbs MPa psi (ICRI No. 03739) ASTM D7522
Pier 4 West side
Pier Cap North

Pier 4 West side
Column North

Pier 6 East Side
Pier Cap North
Pier 6 East Side
Column South

Pier 6 West Side
Pier Cap North
Pier 5 East Side

Pier Cap North

Pier 5 East Side

Pier Cap South

Load Pull-off Strength

6.23 1400 1.37 198

2100 2.05 297 6

99 5

61.75

6

424

297

113 5

254

3000

9.34

13.34 2.92

Location

2.05

18008.01

3.56 800

2100

0.78

3.11 700 0.68

9.34

G

F

C

Failure Mode

G

G

G

F

3

6
 

This example is limited by the small number of tests conducted, only one pull-off per bridge 

section, which makes statistical validation impossible. When conducting pull-off tests as a quality control 

procedure in the field, the tests are in fact destructive and repair of the surface is needed. Even though 

these tests are fairly simple to prepare, in the long run they can take time to complete if the amount of 

pull-offs becomes large. Therefore, pull-off tests do not become very practical if used as quality control. 
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8.0 CONCLUSIONS 
 

This project investigated the long-term performance of FRP strengthening materials in the field 

and in laboratory durability tests.  Special attention was paid to the bond between the FRP and concrete 

because it is vital to the successful function of a FRP repair.  The field evaluation of the Castlewood 

Canyon Bridge indicated that debonding seemed to be occurring at more locations on the bridge over 

time.  The strength of the FRP materials removed from the bridge was lower than the manufacturer 

provided values, but it was difficult to draw strong conclusions without more baseline data regarding the 

original quality of the material application.  While the FRP seems to be holding up pretty well, it is 

recommended that if CDOT continues to use FRPs for strengthening existing bridges, the need to collect 

durability data should be considered at the time of the repair and provision made for establishing baseline 

values and a periodic testing/evaluation plan. 

The laboratory component of this project was not successful at determining the durability of the 

FRP concrete bond when subject to common deicing chemicals due to limitations of the testing process.  

The direct tension pull-off  test was used because it is simple and compact, but the results of this research 

made it apparent that the test method is very sensitive to localized conditions and can produce results with 

high variability.  Pull-off tests are typically specified as a quality control measure by CDOT.  CDOT 

engineers should understand the limitations of this test.   Based on this research it is recommended that 

CDOT require pull-offs to evaluate the underlying concrete before the FRP is applied and that 

supplementary tests such as acoustic sounding are used to evaluate the quality of a repair.  In the longer 

term there may be value in trying to determine a better quality control test. 

FRPs provide a valuable alternative for strengthening existing concrete structures.  In many 

situations they are likely to be the best available option.  When FRP is applied by CDOT there is great 

value in continuing to collect data from these field applications and in conducting targeted laboratory 

studies to answer specific design questions. 
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APPENDIX A: VOIDS, DEFECTS, AND THERMAL IMAGES  
 
 The following appendix is an account of the size and location of all notable defects, voids, cracks, 

and rust stains, found on the East arch during the field assessment of 2011. This documentation is 

intended to be a permanent record as opposed to the temporary physical markings left directly on the 

bridge. Details of the defects found are tabulated below. In addition, the available photographs and 

thermal images of the defects are organized with regard to the “bay” in which the defects were located. 

 Due to circumstances during the field assessment, there were a limited amount of thermal images 

and photographs. In some cases there was no photograph or thermal image of a particular defect. It is 

possible that defects with areas smaller than 5.1 cm x 5.1 cm (2” x 2”) exist on the extrados of the east 

arch and are not documented in the table or photographs below. 

 Sizes and distances were approximated in cases such as the rust spot found on the extrados in the 

1NW bay, seen below in Figures A1 and A2.  

 



Table A1. Summary of Voids on the Extradoses of the Entire East Arch and One Bay of the West Arch 
 

Summary of Defects on the Extrados of the 
East Arch 

Location 

Void 
ID # 

Bay 

2007 Size, 
NS x EW     
Units: cm 

(in) 

2011 Size, 
Measured : NS 
x EW   Units: 

cm (in) 

Reference 
Column  

Distance 
from 

reference 
column     

Units: cm 
(in) 

Edge 
Reference 

Distance 
from edge     
Units: cm 

(in) 

1 1NE   
27.9 x 50.8 (11 

x 20) 
1NE 91.4 (36) East 101.6 (40)  

2 1NE   5.1 x 5.1 (2 x 2) 1NE 119.4 (47)  East 58.4 (23)  

3,4,5 1NE   
< 5.1 x 5.1 (2 x 

2) 
NA NA NA NA 

6 2NE   
22.9 x 14 (9 x 

5.5) 
1NE 203.2 (80) East 52.1 (20.5)  

7 2NE   
12.7 x 5.1 (5 x 

2) 
2NE 195.6 (77) East 43.2 (17)  

8 2NE   
34.3 x 7.6 (13.5 

x 3) 
2NE 40.6 (16) East 40.6 (16) 

9 3NE   
68.6 x 20.3 (27 

x 8) 
2NE Near  West 15.2 (6)  

10 3NE 
7.6 x 12.7 

(3 x 5) 
24.1 x 25.4 (9.5 

x 10) 
2NE 195.6 (77) West 68.6 (27)  

11 3NE   
52.1 x 68.6 
(20.5 x 27)  

2NE 256.5 (101) West 61 (24) 

12 3NE   
27.9 x 30.5 (11 

x 12) 
2NE 317.5 (125) West 45.7 (18) 

  3NE 
20.3 x 20.3 

(8 x 8) 
20.3 x 68.6 (8 x 

27) 
2NE Near  West 15.2 (6) 

13 3NE   
50.8 x 10.2 (20 

x 4) 
3NE 152.4 (60) East 8.9 (3.5) 

14 4NE   
10.2 x 3.8 (4 x 

1.5) 
3NE 61 (24) West 45.7 (18) 

15 6E   
8.9 x 7.6 (3.5 x 

3) 
5NE 61 (24) East 45.7 (18) 

16 6E   
10.2 x 20.3 (4 x 

8) 
5NE 62 (24) West 63.5 (25) 

17 4SE   
29.2 x 17.8 ( 

11.5 x 7) 
4SE Near  East 20.3 (8) 

18 4SE 
17.8 x 29.2 
(7 x 11.5) 

35.6 x 35.6 (14 
x 14) 

4SE 17.8 (7) East 45.7 (18) 

19 4SE   
152.4 x 64.8 (60 

x 25.5) 
4SE 106.7 (42) West 71.1 (28) 

20 3SE   
10.2 x 10.2 (4 x 

4) 
2SE 30.5 (12) West 17.8 (7) 

21 3SE   
10.2 x 12.7 (4 x 

5) 
2SE 45.7 (18) West 96.5 (38) 

22 2SE   
15.2 x 16.5 (6 x 

6.5) 
2SE 226.1 (89) East 61 (24) 

23 2SE   
12.7 x 7.6 (5 x 

3) 
2SE 218.4 (86) East 91.4 (36) 
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Table A1. Continued 
 

Summary of Defects on the Extrados of 
the East Arch 

Location 

Void ID 
# 

Bay 

2007 
Size, 
NS x 
EW      

Units: 
cm (in) 

2011 Size, 
Measured 
: NS x EW   
Units: cm 

(in) 

Reference 
Column 

Distance 
from 

reference 
column     

Units: cm 
(in) 

Edge 
Reference 

Distance 
from edge     
Units: cm 

(in) 

24 2SE 
 

5.1 x 10.2 
(2 x 4) 

2SE 165.1 (65) East 91.4 (36) 

25 1SE 
 

14 x 
16.5(5.5 x 

6.5) 
1SE 68.6 (27) West 16.5 (6.5) 

26,27,28 1NW 
 

< 5.1 x 5.1 
(2 x 2) 

NA NA NA NA 

Table A2. Summary of Cracks on the Extradoses of the Entire East Arch 

Crac
k ID 

# 
Bay 

2007 Size, NS x 
EW             Units: 

cm (in) 

2011 Size, NS x 
EW          Units: 

cm (in) 

Reference 
Column 

Distance 
from 

reference 
column    

Units: cm 
(in) 

Edge 
Reference 

Distance 
from edge   
Units: cm 

(in) 

1 
1N
E 

Crack identified, 
length unknown 

Section removed 1NE 91.4 (36) East 101.6 (40) 

2 
2N
E 

Crack identified, 
length unknown 

88.9 (35) 2NE 101.6 (40) East 88.9 (35) 

3 
3S
E 

Crack identified, 
length unknown 

NA NA NA NA NA 

Table A3. Summary of Rust on the Extradoses of the Entire East Arch and One bay of the West Arch 

Rust 
ID # 

Bay 

2007 Size, 
NS x EW    
Units: cm 

(in) 

2011 Size, NS x 
EW Units: cm (in) 

Reference 
Column 

Distance 
from 

reference 
column     

Units: cm 
(in) 

Edge 
Reference 

Distance 
from edge     
Units: cm 

(in) 

1 1NW 

Rust 
identified, 

Size 
unknown 

25.4 x 45.7 (10 x 
18) 

1NW 101.6 (40) East 25.4 (10) 
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APPENDIX B: PULL-OFF TEST RESULTS 

Table B1. Pull-off Test Results from 2011 

Global 
Test 

Number 
Date 

Test 
No. 

Core Diameter  
Tensile Bond 

Strength   Failure 
Mode 

(ASTM A-
G) mm in MPa psi 

Test Location: North End of East Arch (1NE) 

1 7/11/2011 1 50 2 1.63 237 F 
2 7/11/2011 2 50 2 2.07 300 A 
3 7/11/2011 3 50 2 2.93 425 A 
4 7/11/2011 4 50 2 1.54 224 E 
5 7/12/2011 5 50 2 1.92 279 F 
6 7/12/2011 6 50 2 2.39 346 F 
7 7/12/2011 7 50 2 2.25 327 F 
8 7/12/2011 8 50 2 1.15 167 E 

9 7/12/2011 9 50 2 1.35 196 F 

Test Location: North End of West Arch (1NW) 

10 7/12/2011 1 50 2 1.03 150 E 

11 7/12/2011 2 50 2 NA NA NA 

12 7/12/2011 3 50 2 1.03 150 E 

13 7/12/2011 4 50 2 0.83 120 E 

14 7/12/2011 5 50 2 1.15 167 E 

15 7/12/2011 6 50 2 0.52 76 E 

16 7/12/2011 7 50 2 NA NA NA 

17 7/12/2011 8 50 2 3.81 553 G 

18 7/12/2011 9 50 2 3.42 496 F 
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Table B1. Continued 

Global 
Test 

Number 
Date 

Test 
No. 

Core Diameter  
Tensile Bond 

Strength   
Failure 
Mode 

(ASTM A-
G) mm in MPa psi 

Test Location: Center of East Arch (6E) 

19 7/12/2011 1 50 2 3.35 486 B/F 

20 7/12/2011 2 50 2 3.09 448 B/F 

21 7/12/2011 3 50 2 2.55 370 G 

22 7/12/2011 4 50 2 1.98 287 G 

23 7/12/2011 5 50 2 0.74 108 G 

24 7/12/2011 6 50 2 1.79 260 G 

25 7/12/2011 7 50 2 3.08 446 G 

26 7/12/2011 8 50 2 0.13 19 G 

27 7/12/2011 9 50 2 2.50 363 G 
 

Table B2. Pull-off Test Results from 2003 

Global 
Test 

Number 
Date 

Test 
No. 

Core Diameter  
Tensile Bond 

Strength  

Failure 
Mode 

(ASTM A-
G) mm in MPa psi 

Test Location: 1SE 

1 6/10/2003 1 50 2 2.59 375 A 

2 6/10/2003 2 50 2 3.43 498 A 

3 6/10/2003 3 50 2 4.12 597 G 

4 6/10/2003 4 50 2 NA NA NA 

5 6/10/2003 5 50 2 4.09 593 G 

6 6/10/2003 6 50 2 3.24 470 G 

Test Location: 1SW 

7 6/10/2003 1 50 2 4.07 590 G 

8 6/10/2003 2 50 2 3.52 510 G 

9 6/10/2003 3 50 2 3.50 508 E 

10 6/10/2003 4 50 2 3.34 485 G 

11 6/10/2003 5 50 2 3.03 439 A 

12 6/10/2003 6 50 2 3.03 440 G 
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Table B2. Continued 

Global 
Test 

Number 
Date 

Test 
No. 

Core Diameter  
Tensile Bond 

Strength  

Failure 
Mode 

(ASTM A-
G) mm in MPa psi 

Test Location: 1NW 

13 6/13/2003 1 50 2 3.54 513 A 

14 6/13/2003 2 50 2 3.54 514 G 

15 6/13/2003 3 50 2 3.94 572 A 

16 6/13/2003 4 50 2 3.76 545 A 

17 6/13/2003 5 50 2 3.45 501 A 

18 6/13/2003 6 50 2 3.25 471 A 

Test Location: 6E 

19 6/30/2003 1 50 2 3.03 439 G 
20 6/30/2003 2 50 2 3.12 452 G 

21 6/30/2003 3 50 2 3.25 471 G 

Test Location: 6W 

22 6/30/2003 1 50 2 3.30 478 G 

23 6/30/2003 2 50 2 2.72 395 G 

24 6/30/2003 3 50 2 2.99 433 G 

Test Location: 5SE 

25 7/9/2003 1 50 2 1.32 191 A 

26 7/9/2003 2 50 2 1.50 217 G 

27 7/9/2003 3 50 2 1.67 242 G 

Test Location: 5SW 

28 7/9/2003 1 50 2 2.81 408 E 
29 7/9/2003 2 50 2 2.72 395 G 

30 7/9/2003 3 50 2 2.90 420 G 

Test Location: 5NE 

31 7/17/2003 1 50 2 2.94 427 G 

32 7/17/2003 2 50 2 2.76 401 G 

33 7/17/2003 3 50 2 NA NA NA 

Test Location: 5NW 

34 7/17/2003 1 50 2 1.76 255 G 

35 7/17/2003 2 50 2 1.89 274 G 

36 7/17/2003 3 50 2 NA NA NA 
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APPENDIX C: TENSILE TEST RESULTS 

Table C1. 2011 Tensile Tests 

Specimen ID Width  Thickness  
Actual Area 
of 1 Layer 

Normalized Area 
of 1 Layer  

  mm in mm in mm² in² mm² in² 

Small Patch from Bay 1NE 

1 25.7 1.01 2.39 0.09 61.3 0.10 26.1 0.040 

2 25.9 1.02 2.95 0.12 76.2 0.12 26.3 0.041 

3 27.0 1.06 3.23 0.13 87.0 0.13 27.4 0.042 

4 25.9 1.02 3.20 0.13 82.9 0.13 26.3 0.041 

5 25.8 1.02 2.87 0.11 74.1 0.11 26.2 0.041 

6 26.0 1.02 2.79 0.11 72.6 0.11 26.4 0.041 

7 25.9 1.02 2.67 0.11 69.0 0.11 26.3 0.041 

8 25.9 1.02 2.54 0.10 65.7 0.10 26.3 0.041 

9 25.9 1.02 3.15 0.12 81.5 0.13 26.3 0.041 

10 25.2 0.99 3.63 0.14 91.6 0.14 25.6 0.040 

11 25.8 1.02 3.53 0.14 91.1 0.14 26.2 0.041 

12 25.9 1.02 3.11 0.12 80.5 0.12 26.3 0.041 

Large Patch from Bay 3NE 

1 26.1 1.03 3.15 0.12 82.2 0.13 26.5 0.041 

2 26.5 1.04 3.33 0.13 88.2 0.14 26.9 0.042 

3 26.0 1.02 3.56 0.14 92.4 0.14 26.4 0.041 

4 26.2 1.03 3.53 0.14 92.5 0.14 26.6 0.041 

5 26.0 1.02 3.48 0.14 90.5 0.14 26.4 0.041 

6 26.6 1.05 3.33 0.13 88.5 0.14 27.0 0.042 

7 25.5 1.00 3.48 0.14 88.6 0.14 25.9 0.040 

8 26.5 1.04 3.58 0.14 94.9 0.15 26.9 0.042 

9 26.5 1.04 3.35 0.13 88.7 0.14 26.9 0.042 

10 25.9 1.02 3.51 0.14 90.9 0.14 26.3 0.041 

11 26.4 1.04 3.12 0.12 82.5 0.13 26.8 0.042 

12 26.4 1.04 3.61 0.14 95.3 0.15 26.8 0.042 

Manufacturer's 
Data 

    1.016 0.04         
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Table C1. Continued 

Specimen ID Tensile Force 
Normalized 

Tensile 
Strength  

Normalized 
MoE  

Rupture 
Strain 

Failure 
Mode 

  N lb (f) MPa ksi GPa ksi     

Small Patch Removed from Bay 1NE 

1 1197 5324 36.7 5.3 79.3 11506 0.00046 SGM 

2 1100 4892 16.9 2.4 87.7 12714 0.00019 LAT 

3 1064 4732 10.9 1.6 74.8 10852 0.00015 LAB 

4 1039 4621 8.0 1.2 88.2 12795 0.00009 LWB 

5 939 4176 5.8 0.8 84.6 12272 0.00007 SGM 

6 1123 4996 5.7 0.8 82.7 11998 0.00007 SGM 

7 1305 5807 5.7 0.8 72.2 10476 0.00008 XGM 

8 1115 4960 4.3 0.6       SGM 

9 1106 4920 3.8 0.5 103.3 14982 0.00004 MAB 

10 907 4035 2.8 0.4 66.5 9649 0.00004 LGM 

11 1050 4669 2.9 0.4 71.3 10335 0.00004 LGM 

12 1149 5110 2.9 0.4       AWT 

Large Patch Removed from Bay 3NE 

1 878 3906 26.9 3.9       SAB 

2 1115 4961 17.1 2.5 75.4 10942 0.00023 LWB 

3 840 3737 8.6 1.2 61.1 8855 0.00014 LAB 

4 1041 4632 8.0 1.2 69.8 10123 0.00011 LAT 

5 756 3365 4.6 0.7 88.1 12779 0.00005 SGM 

6 1164 5179 6.0 0.9 72.2 10477 0.00008 MGM 

7 933 4151 4.1 0.6 91.4 13255 0.00004 SAT 

8 1274 5666 4.9 0.7 85.5 12397 0.00006 LAT 

9 960 4269 3.3 0.5 102.3 14843 0.00003 LAT 

10 1078 4795 3.3 0.5 61.6 8929 0.00005 LWB 

11 781 3474 2.2 0.3 54.8 7955 0.00004 LAB 

12 297 1320 0.8 0.1 51.3 7437 0.00001 LAB 

Manufacturer's 
Data 

    875.6 127 72.4 10500 0.01210   

 
Table C2. Average Values for Each Sample 

Averages 
Tensile Force 

Normalized Tensile 
Strength  

Normalized MoE  Rupture 
Strain 

N lb(f) MPa ksi GPa ksi 

Bay 1NE 1091 4854 820 119 81 11758 0.010121 

Bay 3NE 926 4121 688 100 74 10726 0.009306 

Total 1009 4487 754 109 78 11242 0.009713 
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