

^н EVALUATION OF THE OUTFLOW METER IN COLORADO^И 78-7

Robert F. LaForce Lowell B. Steere Colorado Department of Highways 4201 East Arkansas Avenue Denver, Colorado 80222

Draft Final Report July 1978

Prepared for

Implementation Division HDV-22 Office of Development Federal Highway Administration Washington, D.C. 20590

78-7 с. Дон 18-1

TABLE OF CONTENTS

EVALUATION PROCEDURES	1	
TEST PROCEDURE	1	
RECOMMENDATIONS FOR FUNCTIONAL IMPROVEMENTS	2	
CONVENIENCE AND OPERATIONAL IMPROVEMENTS	3	
PERFORMANCE OF THE OUTFLOW METER	3	
ANALYSIS OF TEST DATA	4	
OUTFLOW METER VS, SKID NUMBER	5	
OUTFLOW METER VS. SPEED GRADIENT	7	
OUTFLOW METER VS. BRITISH PORTABLE SKID TESTER	8	
OUTFLOW METER VS. TEXTURE METER	8	
OTHER VARIABLES	8	
CONCLUSIONS AND RECOMMENDATIONS	9	
FIGURES 1 - 6	10 - 1	5
APPENDIX	16	
PHOTOGRAPHS 1 – 5	17 - 2	21
TABLE A - OUTFLOW METER TEST SITES	22	
TABLE B - SAMPLE FIELD WORKSHEET	23	
TABLE C - OUTFLOW METER DATA - FIRST ROUND	24	
TABLE D - OUTFLOW METER DATA - SECOND ROUND	25	
TABLE E - OUTFLOW METER DATA - THIRD ROUND	26	
TABLE F - OUTFLOW METER DATA - FOURTH ROUND	27	
TABLE G - SUMMARY OF OUTFLOW METER DATA	28	
TABLE H - CORRELATION MATRIX OF OUTFLOW METER VARIABLES	29 - 3	0
TABLE I - O - SPEED GRADIENT - OUTFLOW METER SUMMARIES	31 - 3	7
REFERENCES	38	

i

PAGE

EVALUATION OF THE OUTFLOW METER

EVALUATION PROCEDURES

The Outflow Meter evaluation procedures used by Colorado closely followed the guidelines recommended by the FHWA.

Preliminary test sites were chosen from two primary sources. First, as many as practical of the speed gradient sections from the "Skid Number-Speed Gradient Testing in Colorado" (October 1976) report were used. Following this search, the field data from the "1977 State Highway Sufficiency Rating and Needs Study" were reviewed to find locations with the range of skid numbers necessary for this evaluation.

Following receipt of the Outflow Meter, the first round of testing was begun. At this time, each section's exact location was chosen taking into account safety factors and skid truck turnarounds. Each section was identified by a mileage from a fixed geographical location. The start of the skid test and section number were then marked with paint on the shoulder. At this time, eight test sites (labeled A through H) were marked off, randomly spaced within the area of the 30 mph skid truck lockup. Distances from the start of each test site were measured and recorded. A black and white closeup photograph of the pavement surface and an overall view of the test section was then taken, photos 1-5 in the Appendix show typical layouts and textures of the five types of pavement surfaces used in this evaluation. Appendix Table A shows a list of the test sections along with the description of the section type and the traffic volume.

TEST PROCEDURE

After signs and cones were set up, the testing was started by recording the time, and also the air and pavement temperatures. The cones were set so that the skid vehicle could enter through them to take five skid measurements each at 30, 40, and 50 mph. The other tests were run between passes of the skid truck where possible. Generally, outflow-meter tests had to await completion of skid testing.

First the Rainhart TEXT-UR meter was used to take 40 readings scattered in the left wheelpath between test sites A and H. Then the British Portable Skid Tester was set on each test site in the left wheelpath and measurements were taken until five consecutive numbers within a three number spread were

obtained. Following this the outflow meter was placed on each test site (the same spot as the BPT) and five readings were taken on each of the eight sites/section. The start and finish times of each of these test procedures was recorded on the field worksheet.

Following the outflow meter testing, the time, pavement and air temperature were again recorded. A sample field worksheet, showing all recorded data, appears in Table B of the Appendix and summaries of each round of data appear in Appendix Tables C-F.

All test equipment was transported and stored in a van during each round of testing. The outflow meter was disassembled and returned to its case for travel between sites. To provide water for the outflow meter, one gallon plastic jugs were used. They were very convenient for pouring into the meter and two per site could be set out at the start of a test run which avoided carrying a large water container. These were easily carried in the van and refilled from the skid truck tank. Following each round of testing the outflow meter was cleaned thoroughly and allowed to air dry. The packing in the carrying case was also air dried before this equipment was stored between rounds. The other equipment was also cleaned and checked before and after each round. Repair and replacement parts such as slider feet for the BPT were carried in the van in case of an equipment breakdown during testing.

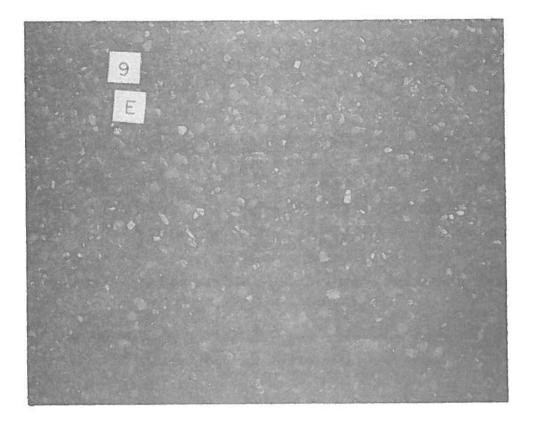
RECOMMENDATIONS FOR FUNCTIONAL IMPROVEMENTS

The only design problem that hampered field operation of the outflow meter was that water would splash or be blown by the wind onto the underside of the contact pins causing the start and middle pins to be in electrical contact. Because of this, the timer did not start when water passed the first pin. It would have been a very minor problem if the underside of these pins were more accessible for drying or better isolated to prevent this problem.

The other design problem noticed was inside the electrical control box in the plug connecting the electric stopwatch to the logic circuitry. The location of this 90°, four pin plug between the timer and the sponge backing is such that either during operation or battery changes, it was cracked. Had it been broken it would have caused considerable delay in this evaluation while a replacement could be found and installed. If possible, it should be moved to a location on the timer where no pressure is put on it when resetting the timer or changing batteries.

CONVENIENCE AND OPERATIONAL IMPROVEMENTS

If the base were fastened more securely to the sides of the outflow meter, it would facilitate carrying the meter from site to site. It would also help protect the equipment in case of an emergency when test personnel and equipment had to be removed from the road quickly.


Perhaps a small field table, which permitted affixing the timer mechanism and a clipboard to hold field sheets, would be practical if the outflow meter is adopted for continued use. This could keep the machinery up off the wet pavement and permit expeditious one-handed removal from the roadway.

PERFORMANCE OF THE OUTFLOW METER

For the evaluation of the outflow meter, Sites A-H in each section were marked with paint on the shoulder and also on the lane dividing line adjacent to the left wheelpath. This was done so that the outflow meter could be placed as close as possible to the same spot on each round of the field evaluation.

Reviewing the data from the four rounds of testing, the average outflow time variation for a given section was 12.3% from the mean for outflow meter times less than 250 seconds and 20.7% for times greater than 250 seconds. For times less than 10 seconds the variation from the mean averaged 6% and 14% for times between 10 and 100 seconds. Some of this variation is due to not placing the outflow meter in exactly the same spot each time. For the longer outflow times, the pavement texture was not as coarse or uniform and moving the outflow meter only very slightly could make a large difference in the outflow time. This was especially true on some of the slick (SN<40) sections where the only texture was from relatively large aggregate (1/2-3/4") protruding irregularly through the surface. The following picture of Section No. 9 is a good example of this type of surface.

In this section the average skid number at 40 mph (SN_{40}) for the first four rounds was 30.5 and the outflow time was less than 250 seconds for the first two rounds, and greater than 350 seconds for the last two. Typical pavements like those pictured in the Appendix had higher skid numbers, and a more uniform surface texture, so there was less variation in outflow times as a result of not hitting exactly the same spot on consecutive rounds.

On June 22, 1978, a test was run on a typical section to demonstrate the variability of the OFM time within a given section. Forty outflow meter tests were run in the left wheel path of Section 19 between test sites A and H. The outflow meter was moved for each test, so 40 spots in the left wheel path were tested. The average of these times was 16.62 seconds, with a standard deviation of 6.06 seconds (36%). The outflow time varied from 6.08 to 35.94 seconds.

The average outflow time for this concrete section in the fourth round of testing (May 1978) was 24.41 seconds using the standard test procedure.

This procedure might be investigated to find out if better data correlations can be found between the outflow meter and other texture and skid measurements.

ANALYSIS OF TEST DATA

Following the first round of outflow meter field testing, the data was compiled and reduced. The following data for each section was transferred to computer cards for analysis.

1	-	AGE	-	Years in Service
2	-	ADT	-	Average daily traffic volume
3	-	TM	-	The average of the 40 texture meter readings

4	-	BPT -	The average of the 40 British Portable Tester
			readings
5	-	OFM -	The average of the 40 Outflow Meter times
			(seconds)
6	-	sn ₅₀ -	The average of 5 skid tests at 50 mph
7	-		The average of 5 skid tests at 40 mph
8	-	SN 30 -	The average of 5 skid tests at 30 mph
9	-	30	The speed gradient between 30 and 50 mph
10	-	Air Temp	- The average air temperature during field
			testing in ^O F
11	-	Pavement T	Cemp - The average pavement temperature during
			field testing in ^O F

Using the BMD (Biomedical Computer Programs) Statistical Program, BMD-02R, (step-wise linear regression analysis) numerous other variables and correlation matrices were generated to find the best types of relationships between the data.

Following is a list of the variables considered in these matrices.

1	Age	8	SN 30	15	log (SN ₄₀)
2	ADT	9	Speed Grad.	16	log (SN ₃₀)
3	TM	10	Avg. Air Temp.	17	 OFM
4	BPT	11	Avg. Pave. Temp.	18	log (TM)
5	OFM	12	AGE X ADT	19	log (BPT)
6	SN 50	13	log (OFM)	20	log (Speed Grad.)
7	SN40	14	log (SN ₅₀)	21	1 log (OFM)

Tables C-G in the Appendix contain summaries of this data. Table H is a correlation matrix relating all of these variables.

OUTFLOW METER VS. SKID NUMBER,

The first correlation equations derived were to relate skid number and outflow meter time. As can be seen in the list of variables numerous forms of the outflow meter time and skid numbers were correlated in order to find the best relationship between these two variables.

The best correlation using all data from the four rounds of testing was SN_{50} versus log (OFM) (Corr. Coef. -0.894). However, because the SN_{40} is a more universally known and accepted variable, it was used as the dependent

variable in the OFM versus Skid Number equations. The SN_{40} and log (OFM) correlation coefficient is only slightly lower at -0.887. Figure 1 shows a plot of two equations relating SN_{40} and log (OFM). The first equation used only outflow meter times less than or equal to 250 seconds and the second equation used all data measured. As can be seen from the data plot in Figure 1, the data with outflow times greater than 250 seconds is quite scattered and using all data increased the standard error of the calculated SN_{40} by approximately 0.7. Because of the increased standard error and since the two equations are within one skid number, the equation for OFM time less than or equal to 250 seconds should be used to relate these two variables.

Using the equation relating log (OFM) and SN_{40} , the SN_{40} for each outflow time was calculated. This calculated SN_{40} was plotted against the appropriate SN_{40} measured by the skid truck. This data is presented in Figure 2 which shows the measured versus calculated data as well as the line of perfect correlation. Also plotted here are the lines enclosing two standard deviations of the equations. This data reveals that the SN_{40} can be calculated using the outflow meter time to \pm 6.5 skid numbers 95% of the time.

There are some shortcomings to the above relationship because of the data used. Referring to Figure 1, there is a scarcity of data with outflow meter times between 75 and 250 seconds and a substantial amount of data in the area could change the equation relating the two variables. The log-log relationship between SN_{40} and OFM is also relatively high, (Corr.Coef. -0.868 for all data), and with more data this might be as good or better a relationship for the two variables as the one presented here.

Based on the data collected in Colorado, the outflow meter appears to be a usable tool for estimating pavement skid resistance if the skid number is greater than 40. For skid numbers less than 40, the data available is widely scattered and the OFM results are of lesser value in estimating skid resistance. More data with outflow times between 75 and 250 seconds would be very helpful in deciding on a cutoff point for the useful range of the outflow meter.

Neither the outflow meter nor the locked wheel skid trailer produced a pattern during the four test cycles that could be attributed to "seasonal variation." With only a few excursions excluded from consideration, average ambient air temperatures taken at each test varied from 48 to $72^{\circ}F$, and average pavement surface temperatures from 50 to $80^{\circ}F$. Although other factors such as

precipitation, studded tire use, traffic counts, etc., also contribute to seasonal variation, temperature is assumed to be a primary influence. In that our test temperatures do not represent normal summer or winter extremes, the failure to establish a seasonal variation pattern is considered to be reasonable.

OUTFLOW METER VERSUS SPEED GRADIENT

The same procedure as that for skid numbers was used to find the best relationship between the speed gradient from 30-50 mph and the outflow meter time. Using all data the correlation coefficients for three relationships were of approximately the same magnitude.

Variables	Correlation Coefficient
Speed Gradient vs. 1 OFM	-0.695
Speed Gradient vs. $\frac{1}{\log (OFM)}$	-0.699
log (Speed Gradient) vs. $\frac{1}{\log (OFM)}$	-0.695

Figure 4 shows the measured versus calculated speed gradient. From the line of perfect correlation and the lines enclosing 2 standard deviations, it can be seen that the speed gradient can be calculated to within \pm 0.21 ninety-five percent of the time. This large error would appear to make the outflow meter of only marginal value for determining the speed gradient for a given section of road.

Colorado has an ongoing study in progress entitled "Skid Number-Speed Gradient Testing in Colorado." Outflow meter test sections 2, 3, 4, 5, 6, 7 and 11 are identical with test sites 5, 6, 10, 16, 18, 19 and 20 respectively, in the Skid Number-Speed Gradient Testing in Colorado report. Tests run on these sites in 1974 and 1976 were accomplished in the September-December months and therefore should closely relate seasonally to the first round of testing on this outflow meter project in October-November 1977. Updated data sheets from the speed gradient report are included as Tables I through 0 of the Appendix. The time lapse since the initial speed gradient testing has not yet produced sufficient data to draw final conclusions. In the first three years, there has been improvement in the speed gradient of all four types of pavement being tested, the most significant improvement is in the "sand mix" Colorado grading "F" asphalt, the average of which has improved from SG 80 to SG 50 on our five "F" test sections so far.

OUTFLOW METER VS. BRITISH PORTABLE SKID TESTER

As with the other variables, the British Portable Skid data (BPT) was compared with various forms of the outflow meter time. The best relationship found was the BPT vs. $\frac{1}{\log (\text{OFM})}$. Figure 5 shows a graph of this data as well as the best fit equation. From this regression analyses, the BPT skid data can only be calculated to within \pm 10 skid numbers 95% of the time. This is not an acceptable error especially considering the very limited range of numerical values produced by the BPT.

The best correlation using the BPT with any of the variables measured or calculated was by BPT vs. $\log SN_{30}$. This relationship had a correlation coefficient of 0.742 for all data. This result would be anticipated because the BPT measures a wet skid resistance at a relatively slow speed where there is little or no hydroplaning. The standard error of this relationship was ± 5 skid numbers as measured with the skid test vehicle.

The correlation coefficient between the BPT and log SN_{40} was 0.702 and that between log (BPT) and log (SN_{10}) was 0.709.

Comparing these coefficients to the SN_{40} vs. log (OFM) relationship of - 0.887, the results of this evaluation show that the outflow meter gives a better estimate of the skid resistance measured by the test vehicle than the BPT.

OUTFLOW METER VS. TEXTURE METER

For this study a Rainhart TEXT-UR Meter (TM) modified to use 15 pins was used to compare with the outflow meter. The best relationship between the two was TM vs. $\frac{1}{OFM}$ having a correlation coefficient of 0.788 using all data. Figure 6 is a plot of the data and also the best fit equation relating the two variables. Using this data, the texture meter reading could be calculated using OFM data to within 9, 95% of the time. The TM- $\frac{1}{OFM}$ correlation was the best using the texture meter with any of the variables listed.

OTHER VARIABLES

From the listing of text sections found in Table A of the Appendix, numerous other variables were considered in the correlation matrices for their effect on the outflow meter, skid resistance, or speed gradient. Following is a list of these variables and their inter-relating effects.

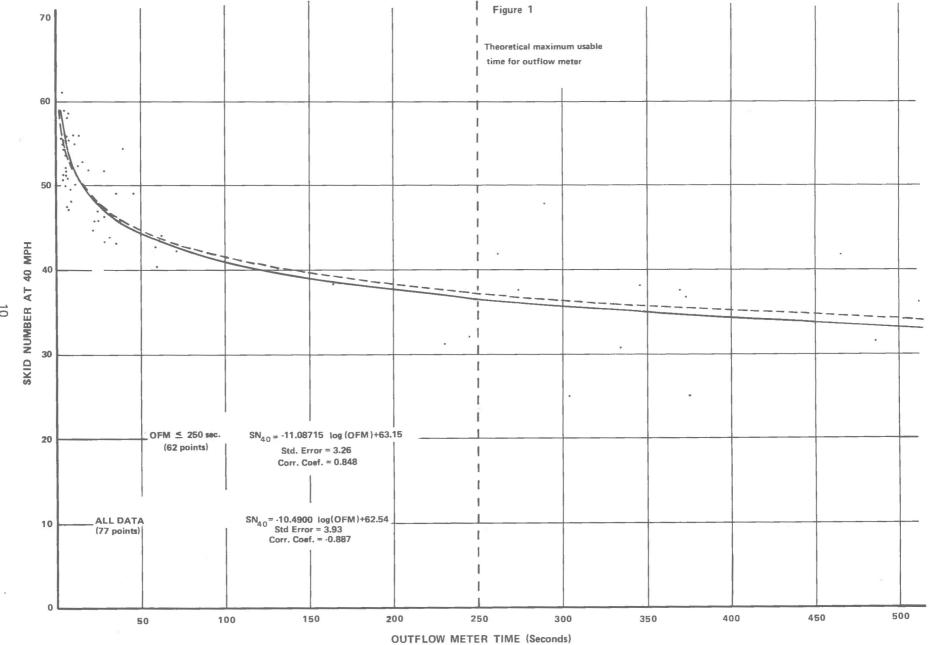
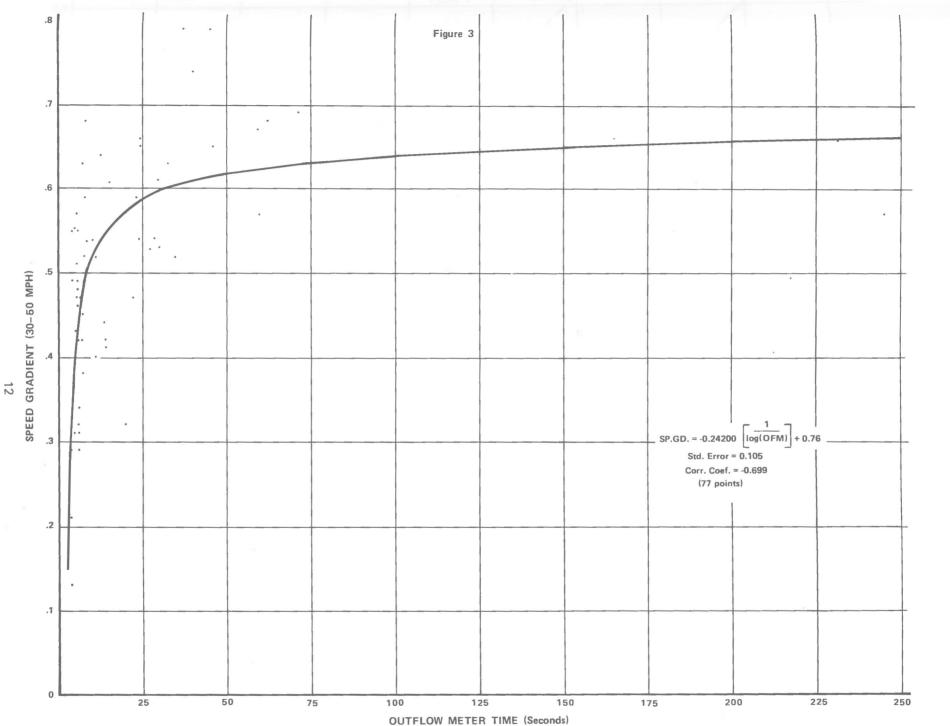
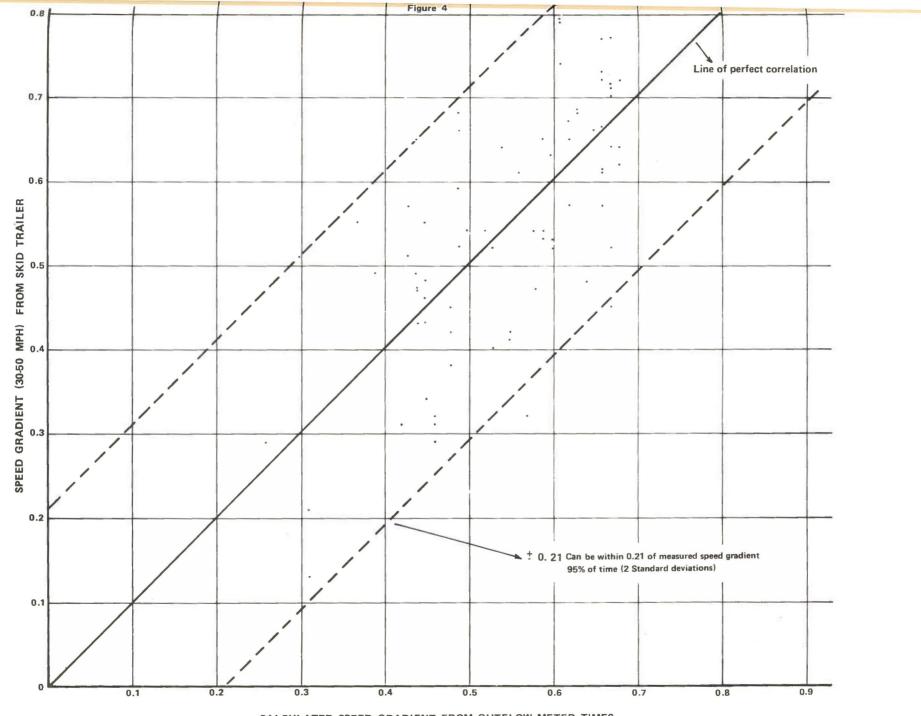
- <u>AGE</u> The best correlations between AGE and the other variables involved the direct methods of skid measurement i.e., the BPT and the skid truck measurements. Using all data, the correlation coefficients were -0.625, -0.625, -0.608, and -0.616 for the AGE versus BPT, SN_{50} , SN_{40} , and SN_{30} respectively. This indicates that roads get slicker with age.
- <u>ADT</u> The ADT seemed to have very little effect on any of the other variables listed. Its best correlation was with the OFM (-0.282).
- <u>AGE X ADT</u> This variable also had little effect on any of the skid or texture measures.

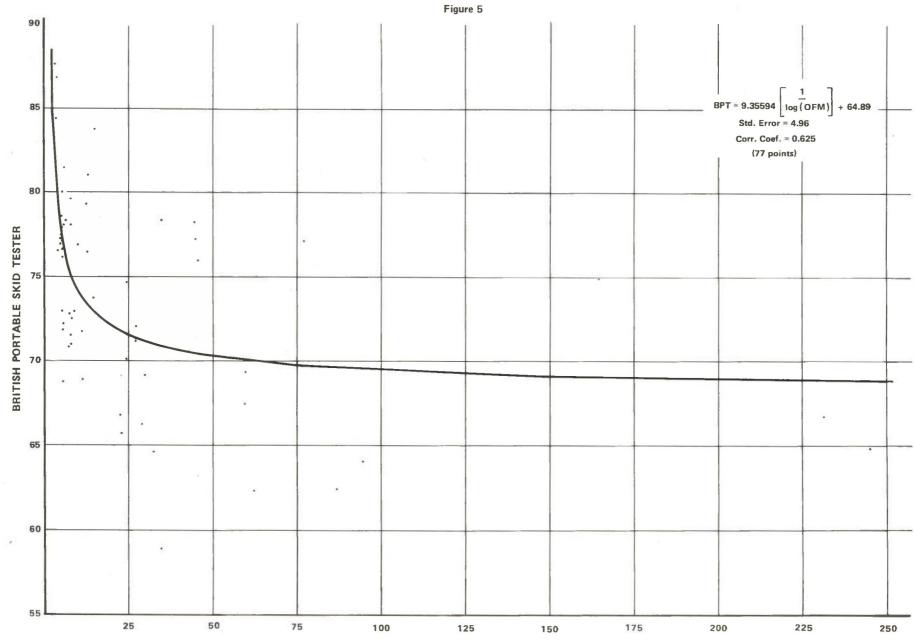
AVERAGE AIR TEMPERATURE AND AVERAGE PAVEMENT TEMPERATURES - The only significant correlation for either of these two variables was with each other.

CONCLUSIONS AND RECOMMENDATIONS

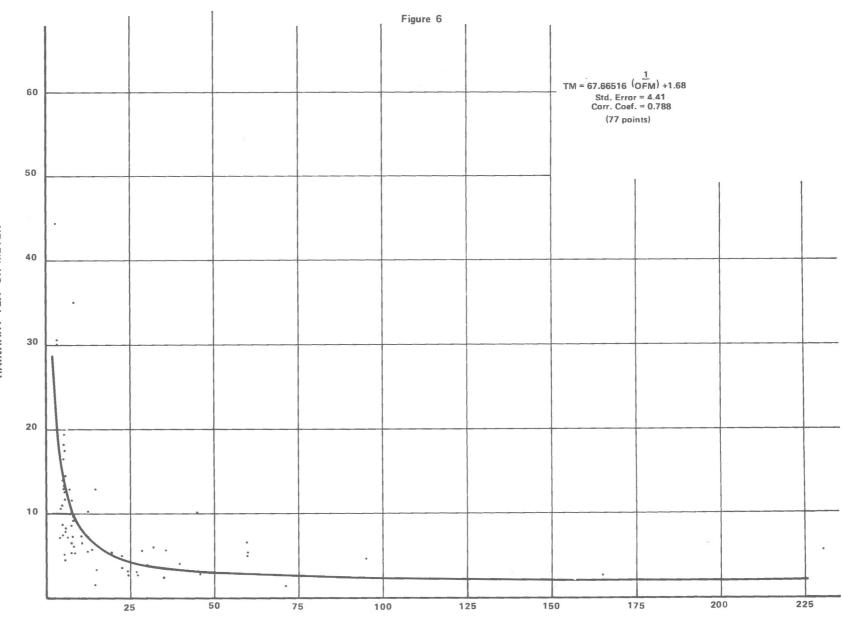
The outflow meter may be used for calculating skid resistance if the \pm 6 error is acceptable and the pavements being considered have a skid number greater than 40.

More data having outflow times between 75 and 250 seconds would be valuable for determining the usefulness of the outflow meter on roads having marginal skid numbers. This information may become available when Colorado's findings are combined with those from other states.


Figure 2 Can be within 6.5 of truck SN₄₀ 95% of time 2 standard deviations of equation SKID NUMBER FROM TRAILER TESTS : 1. : Line of perfect correlation

SKID NUMBER FROM OUTFLOW METER EQUATION



CALCULATED SPEED GRADIENT FROM OUTFLOW METER TIMES

OUTFLOW METER TIME (Seconds)

RAINHART TEX-UR METER

OUTFLOW METER TIME (Seconds)

APPENDIX

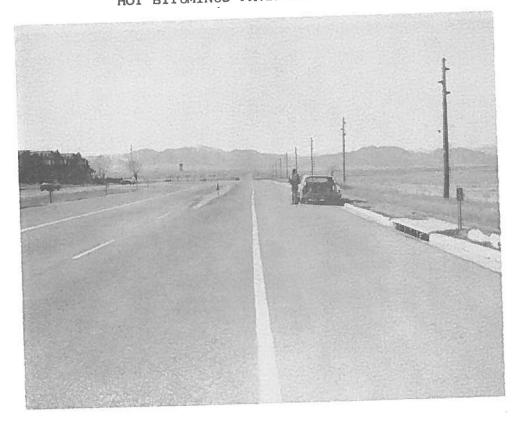
PHOTOGRAPH #1

TYPE A OPEN GRADED PLANT MIX SEAL

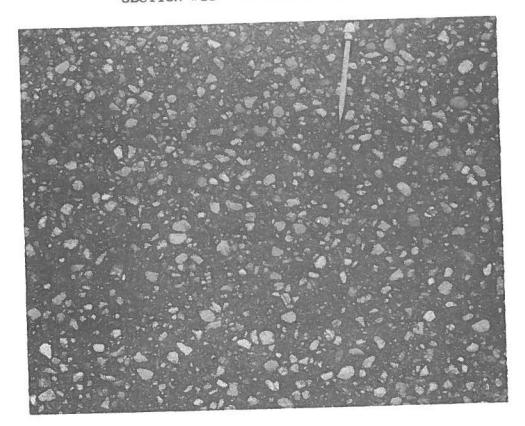
SECTION #1 I-70 WEST OF WOLCOTT

TEST SITE 1-H AVERAGE OUTFLOW TIME = 3.33 SEC.

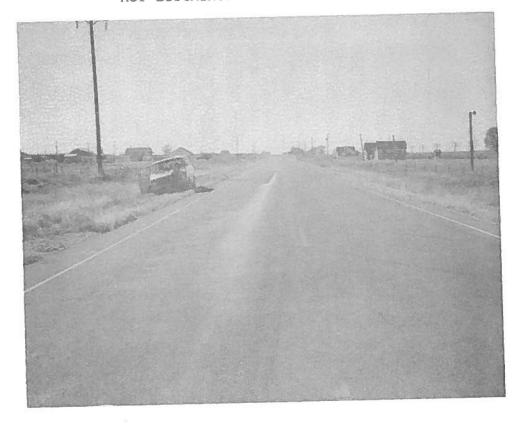
PHOTOGRAPH #2


TYPE B OPEN GRADED PLANT MIX SEAL

SECTION #3 I-70 WEST OF RIVER BEND


TEST SITE 3-D AVERAGE OUTFLOW TIME 5.98 SEC.

PHOTOGRAPH #3



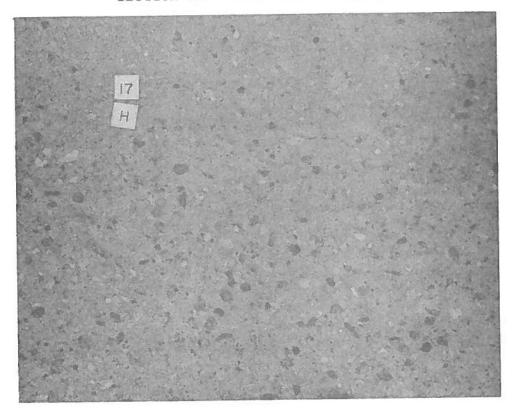
HOT BITUMINUS PAVEMENT-GRADING E

SECTION #15 SH 128 WEST OF I-25

TEST SITE 15-B AVERAGE OUTFLOW TIME = 38.33 SEC.

HOT BITUMINUS PAVEMENT-GRADING F

SECTION #7 SH 350 SOUTHWEST OF LAJUNTA



TEST SITE 7-G AVERAGE OUTFLOW TIME 6.71 SEC.

PORTLAND CEMENT CONCRETE

SECTION #17 I=76 EAST OF SH 85

TEST SITE 17-H AVERAGE OUTFLOW TIME 28.85 SEC.

TABLE A

OUTFLOW METER TEST SITES

Sec. #	Location	Pavement Type	Gradation Type	No. Lanes	Year Built	ADT*	Latest Project No.
1.	I 70-West of Wolcott	PMS	А	4	1976	4,550	I 70-2(56)
2.	US 50-East of Rocky Ford	PMS	В	4	1974	7,500	C 09-0050-03
3.	I 70-West of River Bend	PMS	В	4	1974	5,250	C 34-0070-01
4.	SH 119-East of Longmont	HBP	Ε	4	1974	6,950	US 0119(21)
5.	SH 109-North of La Junta	HBP	F	2	1974	1,650	C 09-0109-09
6.	SH 287 North of Eads	HBP	F	2	1974	1,950	C 45-0287-01
7.	SH 350 Southwest of La Junta	HBP	F	2	1974	510	C 09-0350-01
8.	SH 10 Southwest of La Junta	HBP	F	2	1972	1,050	C 09-0010-10
9.	US 50 East of La Junta	HBP	E	4	1971	3,550	C 09-0050-00
10.	US 50 East of Swink	PMS	В	4	1977	8,700	FC 050-4(10)
11.	I 225 North of SH 83	PCC	-	4	1971	26,200	I 225-4(11)
12.	I 70 East of Rifle	PCC	-	4	1976	4,000	I 70-1(44)89
13.	US 36 East of Lyons	HBP	E	4	1973	5,900	RF 0036-1(19)
14.	SH 287 North of Lamar	HBP	E	4	1966	1,900	F 001-5(20)
15.	SH 128 West of I 25	HBP	E	4	1973	10,600	F 128-1(3)
16.	US 6 North of Atwood	HBP	F	4	1972	3,450	C 13-0006-01
17.	I 76 East of SH 85	PCC	-	4	1971	6,150	I 80S-1(38)15
18.	I 76 West of Crook	PCC	-	4	1967	4,300	I 80S-2(12)133
19.	I 70 West of Tower Road	PCC	-	4	1965	10,300	I 70-4(41)294
20.	SH 52 North of Ft. Morgan	HBP	F	4	1971	3,750	S 0052(7)

*Traffic Volumes from 1976 Traffic Volume Study

14	BLE B		TFLOW METER	TEST WORKS		· D	
lest S	Section No.	& Locatio	on:				
	2					Photos:	
Start	Time:	, Air Te	emp:,	Pvmt Temp	·:′	Crew Mb	ors:
Finish	Time:/	, Air To	emp:,	Pvmt Temp	•		
Averaç	ge Rdg:	T	ext-Ur-Meter	Readings		Time:	
1	6	11	16	21	26		36
2	7	12	17	22	27	32	37
3	8	13	18	23	28	33	38
4	9	14	19	24	29	34	
5	10	15	20	25	30	35	40
Loc	BPT -	OM	BPT - OM		BPT - O	M BPT	- · · · OM
1 2 3 4	BPT - ation: 1 2 3 4	OM	BPT - OM B1 22 33 44	C. 1. 2. 3. 4.	BPT - 0	M BPT	- OM
1 2 3 4 5	BPT	OM	BPT - OM B11 22 33	C. 1. 2. 3. 4. 5.	BPT - 0	M BPT	- OM
1 2 3 4 5 av	BPT	OM	BPT - OM B1 22 33 44 55	C. 1. 2. 3. 4. 5. av	BPT - 0	M BPT	- OM
1 2 3 4 5 av	BPT - :ation:	OM 1	BPT - OM B11 22 33 44 55 avav F11	C. 1. 2. 3. 4. 5. av G. 1.	BPT - 0	M BPT D. 1. 2. 3. 4. 5. av H. 1.	- OM
1 2 3 4 5 av	BPT - :ation:	OM	BPT - OM B11 22 33 44 55 avav F11 22	C. 1. 2. 3. 4. 5. a. G. 1. 2. 3. 4. 5. a. 2. 3. 4. 5. a. 2. 3. 4. 5. a. 2. 3. 4. 5. a. 2. 3. 4. 5. a. 5. a. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	BPT - 0	M BPT D. 1. 2. 3. 4. 5. av H. 1. 2.	- OM
1 2 4 5 av	BPT - :ation: 2 3 4 5 av 1 2 3 3	OM 1	BPT - OM B11 22 33 44 55 avav F1 22 33	C. 1. 2. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	BPT - 0	M BPT D. 1. 2. 3. 4. 5. av H. 1. 2. 3.	- OM
1 2 3 4 5 av 1 2 3 4	BPT - :ation:2 33 45av1333333	OM 1	BPT - OM B11 22 33 44 55 avav F 11 22 33 44	C. 1. 2. 3. 4. 5. av G. 1. 2. 3. 4. 4. 5. av 4. 5. av 4. 5. av 4. 5. av 4. 5. av 4. 4. 5. av 4. 4. 5. av 4. 4. 5. av 4. 4. 5. av 4. 4. 5. av 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	BPT - 0	M BPT D. 1. 2. 3. 4. 5. av H. 1. 2. 3. 4. 4.	- OM
1 2 3 4 5 2 3 4 5	BPT - cation:234511333335.	OM	BPT - OM B11 22 33 44 55 avav F1 22 33 44 555	C. 1. 2. 3. 4. 5. av G. 1. 2. 3. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	BPT - 0	M BPT D. 1. 2. 3. 4. 5. av H. 1. 2. 3. 4. 5. 3. 4. 5. 5. 3. 4. 5. 5.	- OM
1 2 3 4 5 2 3 4 5	BPT - cation:234511333335.	OM	BPT - OM B11 22 33 44 55 avav F 11 22 33 44	C. 1. 2. 3. 4. 5. av G. 1. 2. 3. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	BPT - 0	M BPT D. 1. 2. 3. 4. 5. av H. 1. 2. 3. 4. 5. 3. 4. 5. 5. 3. 4. 5. 5.	1 2 3 4 5 av 1 2 3 4 5
1 2 3 4 5 2 3 2 3 2 3 2	BPT - :ation:	OM 1	BPT - OM B11223333334455.	C. 1. 2. 3. 4. 5. av G. 1. 2. 3. 4. 5. 3. 4. 5. 3. 4. 5. 3. 4. 5. 3. 4. 5. 6. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	BPT - O	M BPT D. 1. 2. 3. 4. 5. av H. 2. 3. 4. 5. av	- OM
1 2 3 4 5 2 3 2 3 2 3 2	BPT - :ation:	OM 1	BPT - OM B11 22 33 44 55 avav F11 22 33 44 55 avav <u>SKID TRA</u>	C. 1. 2. 3. 4. 5. av G. 1. 2. 3. 4. 5. av 1. 2. 3. 4. 5. av 1. 2. 3. 4. 5. av 1. av 1.	BPT - O	M BPT D. 1. 2. 3. 4. 5. av H. 1. 2. 3. 4. 5. av Finish Time	- OM
1 2 3 4 5 2 3 2 3 4 5 av Sta	BPT - cation:	OM	BPT - OM B11 22 33 44 55 avav F11 22 33 44 55 avav <u>SKID TRA</u>	C. 1. 2. 3. 4. 5. av G. 1. 2. 3. 4. 5. av 1. 2. 3. 4. 5. av 1. 2. 3. 4. 5. av 1. 2. 4. 5. av 1. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 4. 4. 5. 5. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	BPT - 0	M BPT D. 1. 2. 3. 4. 5. av H. 1. 2. 3. 4. 5. av H. 2. 3. 4. 5. av H. 5. av H. 5. av H. 5. av SN ₃₀	- OM

FIRST ROUND OUTFLOW METER FIELD DATA

	AVERAGE		AVERAGE	SKID	SKID	SKID
SEC.	OUTFLOW	AVERAGE	TEXTURE	NO.	NO.	NO.
NO.	TIME	BPT	METER	50MPH	40MPH	30MPH
1	3.08	84.3	44.3	58.0	61.0	63.8
2	6.02	68.8	13.2	50.0	55.0	58.6
3	6.13	71.8	14.6	50.2	56.6	59.4
4	71.26	77.1	1.4	36.0	42.2	49.6
5	5.43	78.0	16.5	49.2	54.6	59.4
6	14.23	73.7	1.7	49.2	53.6	57.4
7	7.67	70.8	7.2	48.2	53.4	58.6
8	273.18	70.0	6.5	30.2	37.6	43.4
9	231.57	66.7	5.5	23.8	31.2	37.0
10	11.66	68.9	7.8	51.0	56.0	59.0
11	7.97	72.5	6.1	44.6	48.2	54.4
12	5.30	77.1	14.1	52.6	58.8	64.0
13	999.99	65.6	2.5	29.2	35.0	43.5
14	304.50	55.5	• 3	19.6	25.0	31.8
15	45.07	78.2	10.1	41.2	48.8	57.0
16	999.99	66.4	1.8	24.2	31.6	37.0
17	35.06	58.9	2.5	38.8	43.0	49.4
18	59.37	69.4	5.2	36.6	42.6	48.0
19	32.32	64.7	6.0	35.6	44.2	48.2
20	7.36	75.1	7.2	49.0	55.4	61.5

SPEED GRAD. -29 -43 -46	AVG. AIR TEMP. 48 85 67	AVG. PAVE. TEMP. 54 94 70	DATE TESTED 110377 102677 102477	START TIME MST 0930 1335 1007	FINISH TIME MST 1050 1430 1125
•68	76	88	101777	1300	1430
.51	54	58	102677	0800	0905
•41	73	84	102477	1415	1600
•52	75	82	102677	1020	1140
•66	66	75	102777	0930	1220
.66	68	75	102777	1350	1600
•40	82	96	102577	1250	1350
.49	79	87	101877	1200	1325
.57	58	63	110277	1330	1445
.72	63	73	101777	0915	1115
.61	53	58	102577	0715	0930
.79	61	71	111077	1125	1300
•64	81	89	101977	1430	1600
•52	75	83	101477	1030	1400
.57	65	66	102077	0810	1015
.63	61	63	101877	0810	0950
•63	73	80	101977	1000	1115

					SECOND OUTFLOW FIELD	
	AVERAGE		AVERAGE	SKID	SKID	SKID
SEC.	OUTFLOW	AVERAGE	TEXTURE	NO.	NO.	NO.
NO.	TIME	BPT	METER	50MPH	40MPH	30MPH

1						
2	5.96	78.6	17.4	50.0	56.2	59.6
3	5.59	77.5	18.3	50.6	55.0	59.2
4	39.50	77.2	4.0	45.8	54.4	60.6
5	5.10	77.0	11.0	48.2	52.2	54.6
6	13.86	81.0	5.8	47.8	52.6	56.2
7	7.29	70.8	6.4	48.4	53.2	56.0
8	346.91	68.8	4.8	30.0	38.0	42.2
9	245.33	64.8	3.3	25.6	32.2	37.0
10	12.45	79.3	5.7	49.8	56.4	62.6
11	7.97	71.5	9.1	42.2	47.2	54.0
12	6.06	88.7	12.8	53.0	58.6	64.0
13	165.01	74.9	2.6	32.6	38.4	45.8
14	486.50	62.2	2.0	26.2	31.4	36.6
15	36.97	78.2	5.7	42.8	49.0	58.6
16	777.77	68.0	7.0	28.4	34.4	40.8
17	27.10	71.1	3.0	40.2	46.4	50.8
18	59.40	67.5	6.7	37.6	42.8	51.0
19	28.21	66.3	5.7	36.8	43.4	47.6
20	5.70	77.2	11.7	54.2	58.4	63.6

SPEED GRAD.	AVG. AIR TEMP.	AVG. PAVE: TEMP.	DATE TESTED	START TIME MST	FINISH TIME MST
.48 .43 .74 .31 .42 .38 .61 .57 .64 .59 .55 .66 .52 .79 .62 .53 .67 .53	57 48 49 51 55 73 61 60 662 37 49 47 48 53 85 48 53 85	56 51 64 53 72 56 63 65 65 56 39 65 59 46 59 48 59 48 51	121577 122177 122277 121377 121477 121477 121477 121477 121477 120177 120177 120177 122277 121377 010578 112877 010578 112977	0930 1115 1300 1525 1310 1305 0920 1330 1505 1050 1445 1005 0915 1045 1355 1335 1030 1400	1030 1335 1335 1640 1500 1405 1135 1550 1615 1135 1545 1120 1125 1200 1515 1445 1225 1500
•47	54	60	112877	1105	1210

TABLE E

THIRD ROUND OUTFLOW METER FIELD DATA

	AVERAGE		AVERAGE	SKID	SKIU	SKID
SEC.	OUTFLOW	AVERAGE	TEXTURE	NO.	NO.	NO.
NO.	TIME	BPT	METER	50MPH	40MPH	30MPH
1	3.45	87.6	30.0	55.2	58.0	57.8
2	5.74	72.2	8.1	45.8	52.0	55.2
3	5.96	76.5	12.9	52.8	55.8	59.6
4	27.13	72.1	2.9	47.0	51.6	58.8
5	4.51	76.5	7.1	44.0	50.6	53.8
6	19.17	72.8	5.2	47.2	51.8	53.6
7	6.30	76.1	8.0	48.0	51.2	54.2
8	373.77	67.8	3.2	30.6	36.8	43.4
9	376.20	64.7	1.9	20.6	25.0	34.8
10	11.00	71.7	6.5	47.8	55.2	58.2
11	7.72	72.7	5.4	44.2	50.0	57.8
12	7.37	79.6	13.0	48.0	51.0	57.0
13	262.76	68.1	2.3	33.8	41.8	49.2
14	335.65	63.4	2.1	22.6	30.6	37.0
15	24.46	74.7	8.5	43.0	47.2	56.2
16	370.32	70.5	2.4	29.6	37.6	43.8
17	23.21	65.8	5.0	39.0	46.2	49.8
18	62.40	68.3	4.9	36.0	44.4	49.6
19	22.34	66.8	3.7	40.4	45.0	49.8
20	5.81	81.4	8.7	50.6	53.8	60.4

	AVG.	AVG.		START	FINISH
SPEED		PAVE.	DATE		-
	AIP		DATE	TIME	TIME
GRAD.	TEMP.	TEMP.	TESTED	MST	MST
.13	48	52	032278	0935	1040
•47	76	91	032978	1330	1425
• 34	70	85	032778	1300	1345
•59	53	73	031478	1320	1415
.49	60	62	032878	1530	1615
• 32	72	88	032778	1525	1615
•31	58	71	032978	0855	0940
•64	71	76	032978	1015	1135
.71	71	73	032878	1320	1450
.52	72	76	033078	0905	0955
•68	47	52	031378	0950	1030
•45	68	70	032178	1540	1650
.77	50	67	031478	0945	1200
.72	68	74	032878	0855	1105
•66	50	59	032478	1050	1145
.71	44	64	031578	1345	1530
.54	52	62	032478	1240	1345
.68	46	50	031678	0955	1145
.47	55	61	031378	1235	1330
.49	45	54	031578	1020	
0 m 7	9 J	24	031210	1020	1135

TABLE F

FOURTH ROUND OUTFLOW METER FIELD DATA

	AVERAGE		AVERAGE	SKID	SKID	SKID
SEC.	OUTFLOW	AVERAGE	TEXTURE	NO.	NO.	NO.
NO.	TIME	BPT	METER	50MPH	40MPH	30MPH
1	3.46	86.8	30.7	53.0	55.6	57.2
2	5.27	80.0	7.4	49.0	54.2	57.4
3	6.24	78.3	19.3	54.0	56.8	59.8
4	15.55	83.7	3.4	48.2	52.8	60.4
5	4.18	75.1	10.7	46.8	52.8	57.8
6	12.84	76.4	10.2	48.8	53.2	57.6
7	5.56	72.9	5.1	44.2	51.4	57.2
8	467.70	70.3	1.2	36.2	41.8	45.2
9	358.64	73.0	3.0	26.2	33.5	44.0
10	10.46	76.8	7.2	49.0	54.0	59.8
ĺ1	8.20	72.9	5.4	44.0	49.6	54.8
12	7.30	78.1	8.7	45.6	47.2	54.0
13	289.40	79.7	1.5	43.0	47.8	57.6
14	512.05	76.1	3.7	29.6	36.6	45.0
15	46.82	76.0	2.8	42.2	49.0	55.2
16	559.88	70.9	1.5	35.4	37.4	49.4
17	30.03	69.2	4.0	40.4	46.8	51.0
18	94.63	64.1	4.8	35.2	41.8	44.8
19	24.41	70.1	3.2	38.2	46.0	51.2
20	6.26	78.0	4.5	48.2	54.0	54.6

SPEED GRAD.	AVG. AIR TEMP.	AVG. PAVE. TEMP.	DATE TESTED	START TIME MST	FINISH TIME MST

•21	54	59	051178	0825	0915
•42	56	65	050478	0715	0800
.29	40	48	050278	0950	1050
•61	48	62	050878	0945	1040
•55	53	70	050378	1340	1420
• 44	44	48	050278	1420	1515
.65	62	67	050478	1150	1215
.45	73	83	050478	0930	1020
.89	53	61	050378	0955	1115
•54	62	78	050478	1240	1320
•54	59	72	051278	1110	1145
•42	77	80	051078	1250	1340
.73	55	73	050878	1215	1350
.77	38	44	050378	0705	0810
•65	56	68	051278	0830	0935
.70	56	63	051778	1235	1330
.53	75	78	051578	0815	0915
.48	65	70	051878	0810	0945
.65	67	78	051278	1340	1430
.32	59	66	051778	0945	1030

		20 Sites			Sites
		successive in the local division of the loca	Round	the second s	Round
		Mean	Std.Dev.	Mean	Std.Dev.
1	AGE	4.85	3.08	4.96	3.15
2	ADT	5910	5581	5982	5725
3	TM	8.725	9.62	7.526	4.72
4	BPT	70.675	6.825	73.72	6.61
5	OFM	156.358	303.10	120.14	208.66
6	SN ₅₀	40.86	11.06	41.59	9.37
7	SN40	46.69	10.41	47.38	9.01
8	SN 30	52.05	9.53	52.67	8.81
9	Speed Grad.	.560	.124	.554	.122
10	Avg. Air Temp.	68.15	10.37	54.00	5.89
11	Avg. Pave. Temp.	75.45	12.48	54.37	6.09
12	(AGE) X (ADT)	30564	39857		
13	log (OFM)	1.50035	.79471	1.49035	.73299
14	log (SN ₅₀)	1.59356	.13303	1.60732	.10644
15	log (SN ₄₀)	1.65748	.10750	1.66742	.08866
16	log (SN ₃₀)	1.70864	.08700	1.71533	.07748
17		.08502	.08911	.07664	.07286
18	log (TM)	.73234	.47831	.79906	.26892
19	log (BPT)	1.84728	.04299	1.86591	.03889
20	log Speed Grad.	26341	.10459	26751	.10166
21	log (OFM)	.87297	.45873	.83662	.37873

.28

TABLE G

20 Sites			the second se	and the second se	Overall	
		the second se				
Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.	
5.74	3.23	5.75	3.21	5.35	3.17	
5910.	5581.	5910	5581	5960	5572	
6.805	6.37	6.915	7.00	7.631	7.12	
72.465	6.04	75.420	5.25	73.244	6.31	
97.76	147.96	123.44	194.05	101.74	167.13	
41.31	9.65	42.86	7.47	42.04	9.11	
46.78	8.64	48.12	6.76	47.60	8.45	
52.00	7.36	53.70	5.44	52.93	7.62	
.535	.169	.542	.170	.544	.146	
58.8	9.88	57.60	8.06	59.39	11.09	
68.0	9.70	66.65	8.37	65.88	13.04	
			-	33558	42606	
.41813	.73048	1.44855	.78581	1.42412	.71439	
.60238	.11786	1.62504	.08257	1.61181	.10715	
.66154	.09289	1.67781	.06551	1.66979	.08642	
.71133	.06750	1.72774	.04576	1.71869	.06826	
.08946	.08578	.09165	.08847	.08801	.08293	
.71402	.31048	.69069	.35690	.74376	.35683	
.85874	.03546	1.87648	.03035	1.86316	.03788	
.30120	.18203	28940	.15338	28346	.13872	
.89992	.43437	.90437	.45256	.89317	.42149	
	3rd Mean 5.74 5910. 6.805 72.465 97.76 41.31 46.78 52.00 .535 58.8 68.0 .41813 .60238 .66154 .71133 .08946 .71402 .85874 .30120	3rd Round Mean Std.Dev. 5.74 3.23 5910. 5581. 6.805 6.37 72.465 6.04 97.76 147.96 41.31 9.65 46.78 8.64 52.00 7.36 .535 .169 58.8 9.88 68.0 9.70 .41813 .73048 .60238 .11786 .66154 .09289 .71133 .06750 .08946 .08578 .71402 .31048 .85874 .03546 .30120 .18203	3rd Round $4th$ Mean $Std.Dev.$ Mean 5.74 3.23 5.75 $5910.$ $5581.$ 5910 6.805 6.37 6.915 72.465 6.04 75.420 97.76 147.96 123.44 41.31 9.65 42.86 46.78 8.64 48.12 52.00 7.36 53.70 $.535$ $.169$ $.542$ 58.8 9.88 57.60 68.0 9.70 66.65 $.41813$ $.73048$ 1.44855 $.60238$ $.11786$ 1.62504 $.66154$ $.09289$ 1.67781 $.71133$ $.06750$ 1.72774 $.08946$ $.08578$ $.09165$ $.71402$ $.31048$ $.69069$ $.85874$ $.03546$ 1.87648 $.30120$ $.18203$ 28940	3rd Round4th RoundMeanStd.Dev.MeanStd.Dev. 5.74 3.23 5.75 3.21 5910 . 5581 . 5910 5581 6.805 6.37 6.915 7.00 72.465 6.04 75.420 5.25 97.76 147.96 123.44 194.05 41.31 9.65 42.86 7.47 46.78 8.64 48.12 6.76 52.00 7.36 53.70 5.44 .535.169.542.170 58.8 9.88 57.60 8.06 68.0 9.70 66.65 8.37 41813.73048 1.44855 .78581.60238.11786 1.62504 .08257.66154.09289 1.67781 .06551.71133.06750 1.72774 .04576.08946.08578.09165.08847.71402.31048.69069.35690.85874.03546 1.87648 .03035.30120.1820328940.15338	3rd Round $4th$ RoundAver MeanMeanStd.Dev.MeanStd.Dev.Mean5.74 3.23 5.75 3.21 5.35 5910. 5581 . 5910 5581 5960 6.805 6.37 6.915 7.00 7.631 72.465 6.04 75.420 5.25 73.244 97.76 147.96 123.44 194.05 101.74 41.31 9.65 42.86 7.47 42.04 46.78 8.64 48.12 6.76 47.60 52.00 7.36 53.70 5.44 52.93 .535.169.542.170.544 58.8 9.88 57.60 8.06 59.39 68.0 9.70 66.65 8.37 65.88 33558 .41813.73048 1.44855 .78581 1.42412 .60238.11786 1.62504 .08257 1.61181 .66154.09289 1.67781 .06551 1.66979 .71133.06750 1.72774 .04576 1.71869 .08946.08578.09165.08847.08801.71402.31048.69069.35690.74376.85874.03546 1.87648 .03035 1.86316 .30120.18203 28940 .15338 28346	

TABLE H

CORRELATION MATRIX OF OUTFLOW METER VARIABLES

Var./Vai	. 1	-	2	3	4	5	6	7	8	9	10
1	1.0		.095	441	625	.327	625	609	616	.343	135
2			1.000	044	.005	282	.119	.130	.195	.138	.046
3				1.000	.564	354	.599	.565	.486	598	183
4					1.000	404	.719	.702	.732	328	316
5						1.000	750	770	725	.446	109
6							1.000	.986	.955	627	010
7								1.000	.965	555	013
8									1.000	367	063
9										1.000	134
10											1.000
				List	of Variab	les					
		1	AGE			11	Pavement 1	`emp.			
		2	ADT			12	(AGE) X (A	DT)			
		3	Texture M	leter		13	log(OFM)				
		4	British P	ortable S	kid Tester	14	log(SN ₅₀)				
		5	Outflow M	leter		15	$log(SN_{40})$				
		6	SN 50			16	$log(SN_{30})$				
		7	SN 40			17	1/OFM				
			40			10	log(TM)				

18

21

log(TM)

 $1/\log(OFM)$

30Speed Gradient19log(BPT)Air Temp.20log(Speed Grad.)

SN₃₀

8

9

10

CORRELATION

	11	12	<u>13</u>	14
1	161	.517	.481	597
2	.038	.862	217	.155
3	216	188	575	.540
4	246	241	563	.703
5	077	161	.878	756
6	.039	113	894	.991
7	.037	098	887	.984
8	.009	062	824	.959
9	099	.190	.640	587
10	.890	019	066	001
11	1.000	046	042	.047
12		1.000	052	065
13			1.000	877
14				1.000
15				
16				
17				
18				
19				
20				
21				

Page 2 of 2

TABLE H (cont.)

MATRIX OF OUTFLOW VARIABLES

15	16	<u>17</u>	18	<u>19</u>	20	21
581	597	516	465	629	.347	520
.157	.209	.025	.048	.015	.148	.072
.521	.464	.788	.839	.546	662	.770
.690	.726	.620	.578	.998	397	.625
771	728	581	511	406	.397	667
.974	.950	.782	.695	.723	599	.829
.993	.962	.751	.693	.709	526	.803
.962	.996	.670	.620	.742	345	.723
528	363	690	549	315	.968	699
008	053	044	096	300	058	024
.043	.018	048	165	229	041	032
058	036	134	102	232	.207	092
868	817	863	713	563	.593	915
.988	.965	.733	.671	.711	553	.786
1.000	.969	.711	.677	.701	497	.767
	1.000	.651	.617	.739	343	.706
		1.000	.777	.611	695	.993
			1.000	.581	563	.784
				1.000	379	.617
					1.000	695
						1.000

SITE NUMBER:5East of Rocky Ford (Outflow Meter Test Section 2)LANE AND LOCATION:EB Driving Lane0.36 Miles East of 8th RoadPROJECT NUMBER:C 09-0050-03YEAR PLACED: 1974SURFACE TYPE AND SPECIFICATIONS:Type B Medium Graded Plant Mixed Seal Coat

ASPHALT: 6.8% AC-10

Sieve Size	% Passing
3/8"	100
#4	56
#8	34
#50	12
#200	4

CUMMULATIVE TRAFFIC:

Up	to	1974	Tests	753,200
Up	to	1975	Tests	None
Up	to	1976	Tests	2,912,000
Up	to	1977	Tests	4,720,000

YEAR	SPEED	AVERAGE	SPEED GRADIENT
	MPH	SKID NUMBER	30-50 MPH
1974	30	73	.60
1974	40	67	
1974	50	61	
1975 1975 1975	(Not Tested	This Year)	
1976	30	62	.55
1976	40	61	
1976	50	51	
1977	30	59	.45
1977	40	55	
1977	50	50	

TABLE J

SITE NUMBER:6West of River Bend (Outflow Meter Test Section 3)LANE AND LOCATION:WB Driving Lane1.01 Miles West of River Bend InterchangePROJECT NUMBER:C 34-0070-01YEAR PLACED:SURFACE TYPE AND SPECIFICATIONS:Type B Medium Graded Plant Mix Seal Coat

ASPHALT: 5.5% AC-10

<u>Sieve Size</u>	<u>% Passing</u>
3/8"	100
#4	55
#8	35
#50	11
#200	6

CUMMULATIVE TRAFFIC:

Up to 1974 Tests	326,600
Up to 1975 Tests	None
Up to 1976 Tests	1,661,500
Up to 1977 Tests	3,142,000

	YEAR		SPEED MPH		AVERAGE SKID NUMBER	SPEED GRADIENT
	1974 1974 1974		30 40 50		53 45 45	.40
1.5	1975 1975 1975		(Not	Tested This	Year)	
	1976 1976 1976		30 40 50		62 57 52	,50
	1977 1977 1977		30 40 50	* .	59 57 50	.45

TABLE K

SITE NUMBER: 10 East of Longmont (Outflow Meter Test Section 4) LANE AND LOCATION: WB Driving Lane 0.29 Miles West of County Highway #3(ECL) PROJECT NUMBER: RS 0119(20) YEAR PLACED: 1974 SURFACE TYPE AND SPECIFICATIONS: Grading E (modified) Hot Bituminous Pavement

ASPHALT: 6.5% AC-10

Sieve Size	% Passing
1/2"	100
#4	69
#8	59
#200	6

CUMMULATIVE TRAFFIC:

Up	to	1974	Tests	279,400
Up	to	1975	Tests	None
Up	to	1976	Tests	2,388,700
Up	to	1977	Tests	4,232,000

YEAR	SPEED	AVERAGE	SPEED GRADIENT
	MPH	SKID NUMBER	30-50 MPH
1974	30	65	.40
1974	40	58	
1974	50	57	
1975 1975 1975	(Not Tested	l This Year)	
1976	30	60	.85
1976	40	53	
1976	50	43	
1977	30	50	.70
1977	40	42	
1977	50	36	

SITE NUMBER: 16 South of Cheraw (Outflow Meter Test Section 5) LANE AND LOCATION: SB 1.36 Miles North of South End of Project PROJECT NUMBER: C 09-0109-09 YEAR PLACED: 1974 SURFACE TYPE AND SPECIFICATIONS: Grading F Hot Bituminous Pavement

ASPHALT: 7.0% AC-10

Sieve Size	% Passing
1".	100
#8	73
#200	8

CUMMULATIVE TRAFFIC:

Up to 1974 Tests	150,600
Up to 1975 Tests	None
Up to 1976 Tests	566,400
Up to 1977 Tests	1,315,000

YEAR	SPEED	AVERAGE	SPEED GRADIENT
	MPH	SKID NUMBER	30-50 MPH
1974	30	71	.75
1974	40	63	
1974	50	56	
1975 1975 1975	(Not Tested This	Year)	
1976	30	62	.50
1976	40	56	
1976	50	52	
1977	30	59	.50
1977	40	54	
1977	50	49	

SITE NUMBER:18North of Eads (Outflow Meter Test Section 6)LANE AND LOCATION:SB5 Miles South of North End of ProjectPROJECT NUMBER:C45-0287-01YEAR PLACED:SURFACE TYPE AND SPECIFICATIONS:Grading F Hot Bituminous Pavement

ASPHALT: 6,5% AC-10

Sieve Size	%Passing
1"	100
#8	88
#20	9

CUMMULATIVE TRAFFIC:

Up to	1974	Tests	185,100
Up to	1975	Tests	None
Up to	1976	Tests	732,200
Up to	1977	Tests	1,714,000

YEAR	SPEED MPH		AVERAGE ID NUMBER		SPEED GRADIENT 30-50 MPH
1974 1974 1974	30 40 50		71 62 55		.80
1975 1975 1975	(Not Tested	This Yea	ar)		
1976 1976 1976	30 40 50		58 51 48	5	.50
1977 1977 1977	30 40 50		57 54 49		.40

.SITE NUMBER:19Southwest of LaJunta (Outflow Meter Test Section 7)LANE AND LOCATION:NB0.3 Miles North of 38th Lane, SEPROJECT NUMBER:C09-0350-01YEAR PLACED:SURFACE TYPE AND SPECIFICATIONS:Grading F Hot Bituminous Pavement

ASPHALT: 7.5% AC-10

Sieve Size	% Passing
י ר	100
#8	68
#200	8

CUMMULATIVE TRAFFIC:

Up	to	1974	Tests	31,400
Up	to	1975	Tests	None
Up	to	1976	Tests	150,300
Up	to	1977	Tests	262,000

YEAR	SPEED	AVERAGE	SPEED GRADIENT
	MPH	SKID NUMBER	30-50 MPH
1974	30	71	,85
1974	40	62	
1974	50	54	
1975 1975 1975	(Not Tested	This Year)	
1976	30	59	,70
1976	40	52	
1976	50	45	
1977	30	59	, 55
1977	40	53	
1977	50	48	

SITE NUMBER: 20 Metro Denver (Outflow Meter Test Section 11)LANE AND LOCATION: NB Driving Lane0.64 Miles North of SH 83PROJECT NUMBER: I 225-4(12)YEAR PLACED: 1971SURFACE TYPE AND SPECIFICATIONS: Portland Cement, Burlap Drag Finish

ASPHALT: --

Sieve Size	% Passing

CUMMULATIVE TRAFFIC:

Up	to	1974	Tests	6,329,200
Up	to	1975	Tests	None
Up	to	1976	Tests	13,701,800
Up	to	1977	Tests	25,406,000

YEAR	SPEED	AVERAGE	SPEED GRADIENT
	MPH	SKID NUMBER	30-50 MPH
1974	30	64	.70
1974	40	58	
1974	50	50	
1975 1975 1975	(Not Tested This	s Year)	
1976	30	53	.50
1976	40	49	
1976	50	43	
1977	30	54	.45
1977	40	48	
1977	50	45	

REFERENCES

- Steere, L. B., "Skid Number-Speed Gradient Testing in Colorado" Colorado Department of Highways, Interim Report, October 1971.
- "1977 State Highway Sufficiency Rating and Needs Study," Colorado Department of Highways, July 1977.
- 3. Moore, A. B. and Humphreys, J. B., "High Speed Skid Resistance and the Effects of Surface Texture on the Accident Rate," <u>Skid</u> <u>Resistance of Highway Pavements</u>, ASTM STP 350, American Society for Testing and Materials, 1973, pp. 91-100.