Fundamentals of Investment Analysis

Quick Notes...

When analyzing potential investments, adjust future year income and expenses to reflect when they will occur.

Net present value analysis is an appropriate method of comparing investments which have lives greater than a single year.

Capital investments for periods greater than one year are common in agriculture. Examples include the investment in land, machinery, irrigation equipment, breeding livestock, and orchards. Appropriate analysis of multi-year investments must adjust future years income and expenses to reflect when they will occur (the time value of money).

Time Value of Money

A \$1000 amount of income earned one year from today is not the same as $\$ 1000$ of income received today. If the current interest rate is 10%, the $\$ 1000$ we would get in one year would have a value today of $\$ 909.09$. That is to say, if we deposited $\$ 909.09$ at 10% interest for one year we
would earn $\$ 90.91$ of interest and the
principal (\$909.09) plus the interest ($\$ 90.91$) would total $\$ 1000$ after one year.
Compounding is the term used to define computing a future value. Discounting is the term used to define computing a present value.
We use the Discount Rate or Compound Rate (read interest rate) to determine the present value or future value of a fixed amount of money (sum) or a series or stream of payments (annuity).

Future value of a sum ($\mathrm{FV}_{\text {sum }}$) is the value at a specified future time of a given sum of money invested today at a selected interest rate. Equation (3) is the formula to compute $\left(\mathrm{FV}_{\text {sum }}\right)$:

$$
\begin{equation*}
\mathrm{FV}_{\text {sum }}=\mathrm{SUM} *(1+\mathrm{i})^{\mathrm{n}} \tag{3}
\end{equation*}
$$

where: SUM = is the amount of money invested
$\mathrm{i}=$ is the compound
(interest) rate
$n=$ number of years the money is invested

EXAMPLE 1: Rancher Roy invested \$10,000 at 8% interest for 3 years. What is the value of the investment at the end of the third year?
$\$ 10,000$ * $(1+.08)^{3}=\$ 10,000$ * 1.2597 = \$12,597

The 1.2597 is known as the compound factor for a sum--if the compound factor is known it can be multiplied times any sum to determine the future value of that sum or we could view this as:

$$
\begin{array}{ll}
\$ 10,000 * 1.08=\$ 10,800 & \text { (End of year } 1 \text { value) } \\
\$ 10,800 * 1.08=\$ 11,664 & \text { (End of year } 2 \text { value) } \\
\$ 11,664 * 1.08=\$ 12,597 & \text { (End of year } 3 \text { value) }
\end{array}
$$

Table 1 shows the compound factor (for a sum) for selected interest rates and time periods.

Present Value of a sum ($\mathrm{PV}_{\text {sum }}$) is the value today of a given sum of money that we would receive at a specified future date at a selected interest rate. Equation (4) is the formula to compute $\mathrm{PV}_{\text {sum }}$.

$$
\begin{equation*}
P V_{\text {sum }}=S U M *\left[1 /(1+i)^{n}\right] \tag{4}
\end{equation*}
$$

where: $\operatorname{SUM}=$ is the amount of money to be received in the future
$\mathrm{i}=$ is the discount (interest)
rate
$n=$ number of years until
you receive the money
EXAMPLE 2: Rancher Ray will receive \$10,000 three years from now from his Uncle Bill C. Year. If the interest rate is 6%, what is the Present Value of this future income?
$\$ 10,000 *\left[1 /(1+.06)^{3}=\$ 10,000 * 0.8396=\$ 8,396\right.$
The 0.8396 is known as the discount factor.
If the discount factor is known, it can be multiplied times any sum to determine the present value of the future sum or we could view this as:
$\$ 10,000 *[1 / 1.06]=\$ 10,800$ * . 9434 = \$9,434 (Value discounted 1 yr.)
\$ 9,434*[1/1.06] $=\$ 9,434 * .9434=\$ 8,900($ Value discounted 2 yrs.)
\$ 8,900 * [1/1.06] = \$ 8,900 * . 9434 = \$8,396 (Value discounted 3 yrs.)

Table 2 shows the discount factors (for a sum) for selected interest rates and time periods.

The future value of an annuity ($\mathrm{FV}_{\mathrm{ann}}$) at the time the last payment is made is shown in equation (5):

$$
\begin{equation*}
\mathrm{FV}_{\mathrm{ann}}=P M T *\left[(1+\mathrm{i})^{\mathrm{n}}-1\right] / \mathrm{i} \tag{5}
\end{equation*}
$$

where: PMT = periodic payment $\mathrm{i}=$ periodic interest or compound rate n = number of payments

EXAMPLE 3: Farmer Fred started an Individual Retirement Account (IRA) when he was 26. He makes a $\$ 2000$ deposit each year for 40 years and earns 9% interest on his IRA. What will be the value of the IRA after he makes his 40th deposit?

$$
\begin{aligned}
\mathrm{FV}_{\mathrm{ann}}= & \$ 2,000 *\left[(1+.09)^{40}-1\right] / .09 \\
& =\$ 2,000 *[31.4094-1] / .09 \\
& =\$ 2,000 * 337.8824=\$ 675,765
\end{aligned}
$$

The 337.8824 is the compound factor for an annuity; these factors are shown in Table 3 for selected interest rates and time periods.

The present value of an annuity ($\mathrm{PV}_{\text {ann }}$) at the time of the first deposit is shown in equation (6):
$\mathrm{PV}_{\text {ann }}=\operatorname{PMT} *\left(\left\{\left[(1+i)^{n-1}-1\right] / \mathrm{i}\right\} /\left[(1+i)^{n-1}\right)+1\right.$
where: $\mathrm{PMT}=$ periodic payment
$\mathrm{i}=$ periodic interest or compound rate $\mathrm{n}=$ number of payments

EXAMPLE 4: Farmer Fredia has $\$ 600,000$ in her retirement account on her 65th birthday. She expects to live an additional 20 years. If the interest rate is 8% what would be her annual income if she does NOT spend any of the principal?

$$
\$ 600,000 * .08=\$ 48,000
$$

What would be her annual income if she spends all the principal during the 20 years of retirement?

The present value of $\$ 1$ of retirement income in each of the next 20 years would be:

$$
\begin{aligned}
\mathrm{PV}_{\mathrm{ann}}= & \$ 1 *\left(\left\{\left[1.08^{19}-1\right] / .08\right\} /[1.08]^{19}\right)+1 \\
& =\$ 1 *([4.3157-1] / .08\} / 4.3157)+1 \\
& =\$ 1 * 10.60=\$ 10.60
\end{aligned}
$$

Thus if Fredia had $\$ 10.60$ she could withdraw $\$ 1$ each year for the next 20 years. She has more than $\$ 10.60$ (she has $\$ 600,000$) thus she has 56,604 ($\$ 600,000 / \$ 10.60$) $\$ 10.60$ units each, providing $\$ 1$ for the next 20 years.

At the end of the 20 years she would have a retirement account balance of zero!

Net Present Value

The principles of discounting and compounding can be applied to enterprises which have a life greater than a single year. For example, if you planted Christmas trees you would have a major investment at the time of planting, annual expenses for fertilizer, trimming, and pest control and in the year they are harvested, the expenses of harvest and marketing. This analysis is known as capital budgeting. Net present value is the discounted value of expenses and revenue over the life of the enterprise. Comparing the net present value of two enterprises over the same time period is the appropriate method of evaluation.

EXAMPLE 5. Budgets for one acre of Christmas trees marketed in 7 years and one acre of corn with a discount rate of 10%.

Year	Expenses	Revenue	Net Income	Present Value Factor	Present Value	Net Income	Present Value	
	Christmas Trees						Corn	
1	500	0	-500	1.0000	-500	80	80	
2	50	0	-50	0.9091	-45	80	73	
3	60	0	-60	0.8264	-50	80	66	
4	70	0	-70	0.7513	-53	80	60	
5	80	0	-80	0.6830	-55	80	55	
6	90	0	-90	0.6209	-56	80	50	
7	700	2500	1800	0.5645	1016	80	45	
Total	1650	3000	1350		258	560	429	

Several points are important to the above analysis. First, we have assumed that income and expenses occur at the same time each year. Second the present value of the $\$ 500$ of Christmas tree expenses in year 1 is $\$ 500$. In year two, the $\$ 50$ of Christmas tree expenses have a present value of only $\$ 45$ because they have been discounted for one year at 10% using the discount or present value factor (see Table 2). Second, the net present value of the Christmas trees of $\$ 258$ is the return for seven years. If we want to decide between planting continuous corn with a return of $\$ 80 / \mathrm{ac} / \mathrm{yr}$ vs

Christmas trees, we should compare the income streams or net present values of the two alternatives. At a ten percent discount rate, Christmas trees are \$171 less profitable than corn over the seven years when net present values are compared. If a lower discount rate was used, Christmas trees would show a higher net present value. Finally, because the Christmas tree revenue is in year seven and a relatively high discount rate (10%) is used, that caused the net present value of Christmas tress to be less than corn.

Notes...	(For More Information) Contact:
Network Dalsted, Dept. of Ag. \& Resource Economics,	
	CSU, (970)-491-5627, Norman.Dalsted@colostate.edu
	(Updated May 2011)

Table 1. Value of $\$ 1$ compounded annually at the end of an interest-bearing period of n years.

Rate of Interest (\% per Year)												
Year	5\%	6\%	7\% 8\%	9\%	10\%	11\%	12\%	\% 14\%	\% 15\%	20\%		
1	1.0500	1.0600	1.0700	1.0800	1.0900	1.1000	1.1100	1.1200	1.1300	1.1400	1.1500	1.2000
2	1.1025	1.1236	1.1449	1.1664	1.1881	1.2100	1.2321	1.2544	1.2769	1.2996	1.3225	1.4400
3	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310	1.3676	1.4049	1.4429	1.4815	1.5209	1.7280
4	1.2155	1.2625	1.3108	1.3605	1.4116	1.4641	1.5181	1.5735	1.6305	1.6890	1.7490	2.0736
5	1.2763	1.3382	1.4026	1.4693	1.5386	1.6105	1.6851	1.7623	1.8424	1.9254	2.0114	2.4883
6	1.3401	1.4185	1.5007	1.5869	1.6771	1.7716	1.8704	1.9738	2.0820	2.1950	2.3131	2.9860
7	1.4071	1.5036	1.6058	1.7138	1.8280	1.9487	2.0762	2.2107	2.3526	2.5023	2.6600	3.5832
8	1.4775	1.5938	1.7182	1.8509	1.9926	2.1436	2.3045	2.4760	2.6584	2.8526	3.0590	4.2998
9	1.5513	1.6895	1.8385	1.9990	2.1719	2.3579	2.5580	2.7731	3.0040	3.2519	3.5179	5.1598
10	1.6289	1.7908	1.9672	2.1589	2.3674	2.5937	2.8394	3.1058	3.3946	3.7072	4.0456	6.1917
15	2.0789	2.3966	2.7590	3.1722	3.6425	4.1772	4.7846	5.4736	6.2543	7.1379	8.1371	15.4070
20	2.6533	3.2071	3.8697	4.6610	5.6044	6.7275	8.0623	9.6463	11.5231	13.7435	16.3665	38.3376
30	4.3219	5.7435	7.6123	10.0627	13.2677	17.4494	22.8923	29.9599	39.1159	50.9502	66.2118	237.3763
40	7.0400	10.2857	14.9745	21.7245	31.4094	45.2593	65.0009	93.0510	132.7816	188.8835	267.8635	1469.7716

$\mathrm{FV}_{\text {sum }}=(1+\mathrm{i})^{\wedge} \mathrm{n}$

Table 2. Value at the beginning of the period, of $\$ 1$ received after an interest-bearing period of n years.

Year	5\%	6\%	8\%	Rate of Interest (\% per Year)			12\%	14\%	15\%	20\%		
				9\%	10\%	11\%						
1	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.9009	0.8929	0.8850	0.8772	0.8696	0.8333
2	0.9070	0.8900	0.8734	0.8573	0.8417	0.8264	0.8116	0.7972	0.7831	0.7695	0.7561	0.6944
3	0.8638	0.8396	0.8163	0.7938	0.7722	0.7513	0.7312	0.7118	0.6931	0.6750	0.6575	0.5787
4	0.8227	0.7921	0.7629	0.7350	0.7084	0.6830	0.6587	0.6355	0.6133	0.5921	0.5718	0.4823
5	0.7835	0.7473	0.7130	0.6806	0.6499	0.6209	0.5935	0.5674	0.5428	0.5194	0.4972	0.4019
6	0.7462	0.7050	0.6663	0.6302	0.5963	0.5645	0.5346	0.5066	0.4803	0.4556	0.4323	0.3349
7	0.7107	0.6651	0.6227	0.5835	0.5470	0.5132	0.4817	0.4523	0.4251	0.3996	0.3759	0.2791
8	0.6768	0.6274	0.5820	0.5403	0.5019	0.4665	0.4339	0.4039	0.3762	0.3506	0.3269	0.2326
9	0.6446	0.5919	0.5439	0.5002	0.4604	0.4241	0.3909	0.3606	0.3329	0.3075	0.2843	0.1938
10	0.6139	0.5584	0.5083	0.4632	0.4224	0.3855	0.3522	0.3220	0.2946	0.2697	0.2472	0.1615
15	0.4810	0.4173	0.3624	0.3152	0.2745	0.2394	0.2090	0.1827	0.1599	0.1401	0.1229	0.0649
20	0.3769	0.3118	0.2584	0.2145	0.1784	0.1486	0.1240	0.1037	0.0868	0.0728	0.0611	0.0261
30	0.2314	0.1741	0.1314	0.0994	0.0754	0.0573	0.0437	0.0334	0.0256	0.0196	0.0151	0.0042
40	0.1420	0.0972	0.0668	0.0460	0.0318	0.0221	0.0154	0.0107	0.0075	0.0053	0.0037	0.0007

$P V_{\text {sum }}=1 /(1+i)^{\wedge} n$

Table 3. Value of a finite series of n annual payments of $\$ 1$ compounded annually at the date of last payment.

$F V_{\text {ann }}=\left[\left((1+\mathrm{i})^{\wedge} \mathrm{n}\right)-1\right] / \mathrm{i}$

Table 4. Value of a finite series of n annual payments of $\$ 1$ compounded annually at the date of first payment.

