# RECLAMATION FEASIBILITY REPORT HENSON CREEK WATERSHED



Paul Krabacher, Jim Herron, Jeff Graves, Kirstin Brown

Colorado Department of Natural Resources Division of Minerals & Geology

In cooperation with the

Lake Fork Watershed Stakeholders

Funded through a Clean Water Act §319 Grant

#### RECLAMATION FEASIBILITY REPORT HENSON CREEK WATERSHED

PREPARED BY

PAUL KRABACHER, PRINCIPLE EDITOR/PROJECT MANAGER JIM HERRON, HYDROLOGIST JEFF GRAVES, GEOLOGIST KIRSTIN BROWN, GEOLOGIST

> SPECIAL THANKS TO THE LAKE FORK WATERSHED STAKEHOLDERS

COLORADO DEPARTMENT OF NATURAL RESOURCES COLORADO DIVISION OF MINERALS AND GEOLOGY 1313 SHERMAN STREET, ROOM 215 DENVER COLORADO 80203

**JUNE 2006** 

# TABLE OF CONTENTS

| INTRODUCTION                                              |     |
|-----------------------------------------------------------|-----|
| GENERAL SITE DESCRIPTION                                  | 1   |
| LOCATION                                                  | 1   |
| GEOLOGY                                                   |     |
| BASELINE DATA COLLECTION                                  | .10 |
| WATER QUALITY SAMPLING                                    | .11 |
| MINE WASTE SAMPLING                                       | .18 |
| WATERSHED CHEMISTRY                                       | .25 |
| PALMETTO GULCH CHEMISTRY                                  |     |
| NORTH FORK OF HENSON CHEMISTRY                            | .34 |
| HENSON CREEK MAINSTEM CHEMISTRY                           |     |
| RECLAMATION OPTIONS                                       |     |
| SURFACE HYDROLOGIC CONTROLS                               |     |
| PASSIVE TREATMENT                                         |     |
| SUBSURFACE HYDROLOGIC CONTROLS                            |     |
| MINE SITE CHARACTERIZATION                                |     |
| PALMETTO GULCH SITE DESCRIPTIONS                          | 43  |
| HOUGH MINE – FRANK HOUGH LODE MS. #549                    |     |
| SARAH WOODS MINE (POLAR STAR MS. #289)                    |     |
| MINERS BANK MINE                                          |     |
| ROY PRAY MINE                                             |     |
| PROSPECTS BETWEEN THE ROY PRAY AND PALMETTO MINES         |     |
| WYOMING MINE                                              |     |
| EMPEROR WILHELM MS #1309                                  |     |
| PALMETTO MINE MS #233                                     |     |
| HENSON CREEK ABOVE CAPITOL CITY SITE DESCRIPTIONS         |     |
| BLM ADIT BELOW THE CONFLUENCE OF PALMETTO GULCH           |     |
| MILL ACROSS FROM THOREAU'S CABIN                          |     |
| MILE ACROSS FROM THOREAUS CADIN                           |     |
| MINE ON SOUTHWEST SIDE OF REDCLOUD                        |     |
| MINE ON SOUTHWEST SIDE OF REDCEOOD                        |     |
| MINE ON SOUTH SIDE OF HENSON BETWEEN REDCEOUD AND SCHAFER | -   |
| NORTH MINE AT HEADWATERS OF NORTHWEST SCHAFER TRIB        |     |
| SOUTH MINE ON SOUTHWEST SIDE OF NORTHWEST SCHAFER TRIB    |     |
| GOLCONDA MINE                                             |     |
| MINE BELOW SIEGEL MOUNTAIN IN SCHAFER GULCH               |     |
| LOWER MINE ON NORTHWEST SIDE OF GRAVEL MOUNTAIN           |     |
| UPPER MINE ON NORTHWEST SIDE OF GRAVEL MOUNTAIN           |     |
| CHICAGO TUNNEL                                            |     |
| UPPER DOLLY VARDEN                                        |     |
| LOWER DOLLY VARDEN                                        |     |
| HIGHLAND CHIEF MINE                                       |     |
| HIGHLAND CHIEF MINE                                       |     |
| SCHAFER BASIN MINE WEST SIDE                              |     |
| SCHAFER BASIN MINE WEST SIDE                              |     |
|                                                           |     |
| SCHAFER BASIN MINE EAST SIDE LOWER                        |     |
|                                                           |     |
| HANNA MILL TAILINGS                                       |     |
| NORTH FORK OF HENSON CREEK SITE DESCRIPTIONS              |     |
|                                                           |     |
| CAPITOL CITY MINE                                         | .81 |

| YELLOW MEDICINE MINE                              | 81  |
|---------------------------------------------------|-----|
| YELLOWSTONE MILL                                  | 84  |
| BROKER LODE                                       | 86  |
| EXCELSIOR LODE MS #5184                           |     |
| CZAR AND CZARINA MINES                            |     |
| LUCKY STRIKE MINE                                 |     |
| HENSON CREEK BELOW CAPITOL CITY SITE DESCRIPTIONS | 90  |
| VERMONT MINE                                      | 91  |
| VERMONT TUNNEL DRAINING MINE                      |     |
| LITTLE CASINO MINE                                |     |
| FOUR ACES MINE                                    |     |
| PRIDE OF AMERICA MINE                             |     |
| LELLIE MINE (WAVE OF THE OCEAN)                   |     |
| RED ROVER TUNNEL                                  |     |
| OWL GULCH MINE                                    |     |
| YELLOW JACKET MINE                                |     |
| MOUNTAIN CHIEF MINE                               |     |
| UTE-ULE MINE                                      |     |
| HIDDEN TREASURE TAILINGS                          |     |
| RISORGIMENTO (GRAND LA PLATA) MINE                |     |
| PELICAN MINE                                      |     |
| DM-18 – DRAINING MINE BELOW PELICAN               |     |
| RECOMMENDATIONS FOR FURTHER INVESTIGATIONS        |     |
| ANALYSIS OF RESULTS                               |     |
| CONCLUSIONS                                       |     |
| REFERENCES                                        | 110 |

# LIST OF FIGURES

| Figure 1. (  | General Location Map - Henson Creek                                            | 3  |
|--------------|--------------------------------------------------------------------------------|----|
| Figure 2. \$ | San Juan Volcanic Field (reprinted from Lipman, 1976.)                         | 5  |
| Figure 3. (  | Calderas, Associated Structural Features and Study Area                        | 8  |
| Figure 4. I  | Limonitic Hydrothermal Alteration in the Lake City Caldera.                    | 9  |
| Figure 5. I  | Upper Henson Creek Water Quality Sampling Sites                                | 12 |
|              | Henson Creek Above North Fork and N. Fork Water Quality Sampling Sites         |    |
| Figure 7. I  | Henson Creek Below North Fork Water Quality Sampling Sites                     | 14 |
|              | Henson Creek Above Lake City Water Quality Sampling Sites                      |    |
|              | Upper Henson Creek Waste Rock Sampling Sites                                   |    |
| Figure 10.   | Henson Creek Above North Fork Waste Rock Sampling Sites                        | 22 |
| Figure 11.   | North Fork Henson Creek Waste Rock Sampling Sites                              | 23 |
| Figure 12.   | Henson Creek Below North Fork Waste Rock Sampling Sites                        | 24 |
| Figure 13.   | Henson Creek Above Lake City Waste Rock Sampling Sites                         | 25 |
| Figure 14.   | Palmetto Gulch Sampling Sites                                                  | 27 |
| Figure 15.   | Upper Henson Creek - High-flow Loading Al, Cd, Cu, Fe and Zn                   | 29 |
| Figure 16.   | Henson Creek Above North Fork - High-flow Loading Al, Cu, Fe and Zn            | 30 |
|              | North Fork - High-flow Loading AI, Cu, Fe and Zn                               |    |
| Figure 18.   | Henson Creek Below North Fork - High-flow Loading Al, Cu, Fe and Zn            | 30 |
| Figure 19.   | Henson Creek Above Lake City - High-flow Loading Al, Cu, Fe and Zn             | 33 |
| Figure 20.   | Upper Henson Creek - Low-flow Loading Al, Cd, Cu, Fe and Zn                    | 35 |
| Figure 21.   | Henson Creek Above North Fork and N. Fork - Low-flow Loading Al, Cu, Fe and Zn | 36 |
| Figure 22.   | Henson Creek Below North Fork - Low-flow Loading Al, Cu, Fe and Zn.            | 37 |
| Figure 23.   | Henson Creek Above Lake City - Low-flow Loading Al, Cu, Fe and Zn              | 38 |
| Figure 24.   | Lower Hough Mine Waste Pile                                                    | 45 |
| Figure 25.   | Upper Hough Mine Waste Pile                                                    | 47 |
| Figure 26.   | Palmetto Gulch crossing Miners Bank Vein - DM2 area.                           | 53 |

| Figure 27. | Roy Pray Bulkhead - 137' location                                                        | 55 |
|------------|------------------------------------------------------------------------------------------|----|
|            | Roy Pray Mine Geology and Miners Bank Vein Location                                      |    |
|            | Roy Pray Cross-section map                                                               |    |
|            | Upper Prospect on Miners Bank vein                                                       |    |
|            | Middle Prospect on Miners Bank Vein                                                      |    |
|            | Lower Prospect on Miners Bank Vein                                                       |    |
|            | Hanna Mill Tailings during reclamation in September 2005                                 |    |
|            | Yellow Medicine Mine, Upper Dump (Site #45)                                              |    |
|            | Yellow Medicine Mine, Lower Dump (Site #46)                                              |    |
|            | Remains of a Harz jig at Yellowstone Mill (above western pile)                           |    |
|            | Yellowstone Mill looking down western pile                                               |    |
| •          | View down the drainage below the Excelsior waste rock pile.                              |    |
| •          | View of Ephemeral drainage above Excelsior with Broker waste rock pile in the background |    |
|            | Pride of America Mine Drainage and DMG Closure                                           |    |
| Figure 41. | Pride of America Mine Waste Piles - showing Big Casino Gulch and Mine Openings           | 95 |
|            | Pride of America Mine Waste Pile Showing Location for an on-site repository              |    |
|            | Lellie Mine (Site #54) and adjacent drainage.                                            |    |
| Figure 44. | Red Rover Tunnel in lower right and Ocean Wave Mine in upper middle of picture 1         | 00 |

## LIST OF TABLES

| Table 1. | Henson Creek Water Quality Sampling Sites                            | 16 |
|----------|----------------------------------------------------------------------|----|
| Table 2. | Mining waste physical ranking system                                 | 18 |
| Table 3. | Priority Mining Waste Sites in Henson Creek                          | 19 |
| Table 4. | Heavy Metals for which Henson Creek Mine Sites Ranked in the Top Ten | 20 |
| Table 5. | Summary of Reclamation Actions Recommended at This Time 1            | 80 |

# APPENDICES

| Appendix 1 - High-Flow Concentration Data |     |
|-------------------------------------------|-----|
| Appendix 2 - High-Flow Loading Data       |     |
| Appendix 3 - Low-Flow Concentration Data  |     |
| Appendix 4 - Low-Flow Loading Data        | 148 |
| Appendix 5 - Mine Waste Results           |     |
| Appendix 6 - Mine Waste Ranking           |     |

## INTRODUCTION

This report is intended to be a guidance document for use by the Lake Fork of the Gunnison Watershed Group (LFWG) in prioritizing and planning water quality reclamation projects at Mine sites in Henson Creek above the confluence with the Lake Fork of the Gunnison River. The initial reconnaissance investigation of the basin was performed by the LFWG in September and October of 2004. The initial investigation included identification of potential sources of heavy metals and sampling of mining wastes that could be potential sources of heavy metals.

Investigation of the water quality of Henson Creek was initiated as part of the effort to improve the water quality in the Lake Fork of the Gunnison above Lake City. Henson Creek was targeted because previous investigations had shown that Palmetto Gulch was impacted by past mining, resulting in listing on the Clean Water Act 303(d) list of impaired waters for zinc and cadmium. In addition there was visual evidence of impairment in other portions of the Henson Creek Watershed.

The ultimate goal of this work is to assess and potentially improve the water quality and fisheries of the Lake Fork of the Gunnison River above Lake City. Additional investigations are planned for the Lake Fork of the Gunnison above the confluence with Henson Creek starting in 2006.

## **GENERAL SITE DESCRIPTION**

#### LOCATION

Henson Creek is located in Hinsdale County in the San Juan Mountains in southwestern Colorado. The headwaters of Henson Creek begin near the top of Engineer Pass and flow eastward for approximately 17 miles towards Lake City, where Henson Creek joins the Lake Fork of the Gunnison River. **Figure 1** is a general location map of the area.

Prospecting began in Hinsdale County about 1860. With the discovery of the Ute-Ule veins, mining began shortly there after in 1871. There are numerous inactive and abandoned Mines and prospects in Henson Creek with the major concentrations in the headwaters, near Capitol City and in the lower section of Henson Creek. There are currently no operating mines in the Henson Creek Watershed above Lake City.

#### <u>GEOLOGY</u>

It is well documented that geology plays a critical role in overall water quality within a watershed. Specific geologic factors including structure, mineralogy, bedrock stratigraphy and hydrothermal alteration often result in both water quality degradation and improvement. The Henson Creek watershed like many others within the San Juan Mountains has shown through extensive water sampling that many water quality problems can be directly correlated to the general geologic factors listed above. Certain geologic factors like hydrothermal alteration and corresponding mineralization, typically play a greater role in the predictive influence of geology on in-stream water chemistry, but certainly are not exclusive of other factors that may contribute more greatly on a site to site basis.

The following section will explain the general geologic factors including bedrock stratigraphy, surficial geology, structural geology and hydrothermal alteration that influence water quality within Henson Creek. Geology specific to individual stream reaches will be described in more detail in following sections. Understanding the influence of geologic factors existent within the

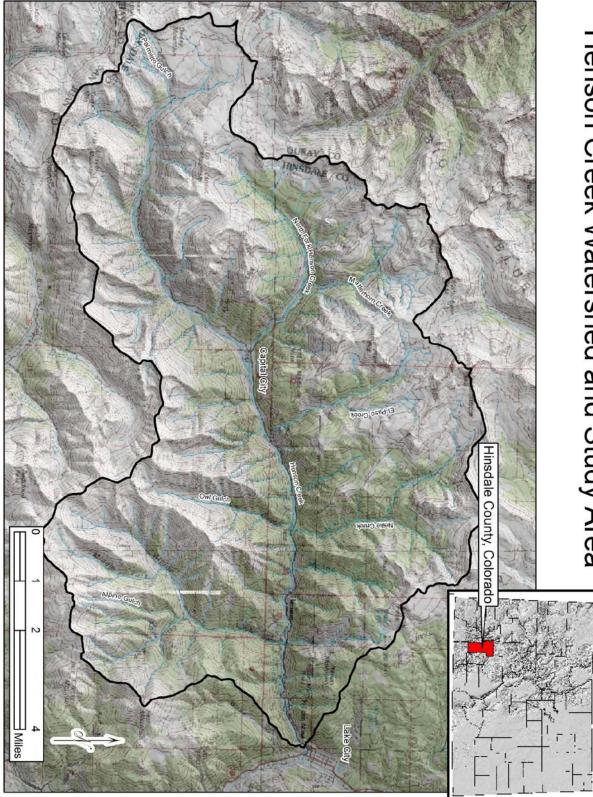
Henson Creek watershed provides a framework for water quality analysis and more informed decision making regarding reclamation feasibility.

No new geologic mapping was conducted in conjunction with this project. Instead, field verification and interpretations of existing geologic knowledge were made. The geology referenced in this report has been observed and described by others including Irving and Bancroft in 1911, Burbank and Luedke in 1969, Lipman in 1976, and Hon in 1987 which was heavily relied upon. Recent work by Bove, Hon and others in 2001 has helped to more accurately pinpoint geologic evolution of rocks within the watershed through new K-Ar dating techniques, but has not substantially changed historical geologic understanding.

Detailed geologic mapping within the study area has been conducted by numerous parties and can be referenced in the following reports: <u>Geology and Ore Deposits Near Lake City</u>, <u>Colorado</u>. Irving and Bancroft, 1911; <u>Geologic Map of the Handies Peak Quadrangle, San</u> Juan, Hinsdale and Ouray Counties. Luedke, and Burbank, 1987; <u>Geologic Map of the Lake</u> <u>City Caldera Area, Western San Juan Mountains, Southwestern Colorado</u>. Lipman, 1976; <u>Geologic, Alteration and Vein Maps of the Redcloud Peak (Lake City Caldera) and Handies</u> <u>Peak Wilderness Study Areas, Hinsdale County, Colorado</u>. Hon, 1987.

#### Bedrock Stratigraphy

The Henson Creek watershed is situated within the San Juan volcanic field. Henson Creek flows along the northern margin of the Tertiary aged Lake City Caldera, which lies within the larger San Juan–Uncompandere Caldera complex as shown in **Figure 2**. The San Juan volcanic field is a complex assemblage of interbedded volcanic tuffs, lavas and intrusives of Tertiary age overlying Paleozoic sedimentary and Precambrian basement rocks. There are no Paleozoic or Precambrian rocks exposed within the watershed.


The majority of rocks within the study area are related to the formation and collapse of numerous volcanic calderas including the San Juan, Uncompany, Silverton and Lake City. The eruption and subsequent collapse of these calderas resulted in the expulsion of voluminous amounts of ash, forming large ash-flow tuffs and breccias that blanket the underlying basement rock. During formation of these pyroclastic flow deposits, rhyodacitic to andesitic lavas were extruded from within the caldera margins resulting in a complex interfingering rock assemblage. Intrusion of rocks ranging in composition from granite to monzonite formed stocks, dikes, plugs and sills along caldera margins.

The following is a description of the complex sequence of rock units exposed within the study area, from oldest to youngest, and can be referenced for their location on the attached geologic map. (Irving and Bancroft, 1911, Lipman, 1976, Burbank and Luedke, 1989)

#### Tertiary Volcanic Rocks

<u>Oligocene Lavas and Related Rocks</u> Assemblage of andesite, rhyodacite and latite lava flows (Tef), dacitic and rhyodacitic breccias related to the Larsen and Cimarron volcanoes (Teb), and volcaniclastics associated with the above mentioned volcanics (Tec). Located along the northern margin of the study area outside the San Juan-Uncompany caldera boundary.

<u>Ute Ridge Tuff (Tu) (Oligocene)</u> Volcanic quartz latitic ash-flow sheet erupted from the Ute Creek caldera. Small areas of exposure in the northwestern part of the study area in upper Matterhorn Creek.



<u>Sapinero Mesa Tuff (Oligocene)</u> Ash-flow sheet erupted from the San Juan-Uncompany caldera composed of numerous members. Outcrops along the stream channel and adjacent valley of mainstem Henson Creek from Lake City to its upper reaches.

<u>Picayune Megabreccia Member (Tsm)</u> Volcaniclastic of intermediate composition and large clast size underlying and interfingering with the Eureka Member. Typically brownish-gray in color, but often greenish-gray in appearance due to extensive propylitic alteration. Considered caldera collapse breccia from oversteepened walls of San Juan-Uncompanding caldera (Lipman, 1976).

<u>Landslide Breccia Member (Tsl)</u> Aerially limited landslide breccia, compositionally similar and transitional to the Picayune Megabreccia member. Typical clast size is small, less than one cm.

<u>Eureka Member (Tse)</u> Ash-flow tuff of quartz latitic to rhyolitic composition, moderately welded, with obvious eutaxitic structure (banding resulting in streaky or blotched appearance) located within the San Juan-Uncompany caldera. Typically gray to redbrown in color except were locally altered by propylitization to a greenish-gray appearance.

<u>Silverton Volcanics (Oligocene)</u> Lava flows and related volcaniclastics that collected within the San Juan-Uncompany caldera. Composition ranges from andesite to rhyolite. Large aerial exposure along the northern margin of the study area occupying Palmetto Gulch, North Fork Henson Creek, Matterhorn Creek and El Paso Creek.

<u>Pyroxene Andesite Member (Tap)</u> Porphyritic andesite lava flows commonly interfingering with the Burns and Henson members. Dark gray, tabular flows with amygdaloidal (cavities or vesicles containing zeolites, calcite and quartz) texture and containing 15-25% phenocrysts of plagioclase and augite.

<u>Burns Member (Tbb)</u> Lava flows and domes of silicic composition, generally biotitequartz latite within the study area, that are complexly interfingered. Light- to dark-gray except were altered by propylitization to a greenish-gray color. Phenocrysts comprise 15-30% of the rock mass and consist of plagioclase, augite and biotite.

<u>Rhyolite (Tbr)</u> Rhyolitic lava flow, with few phenocrysts and well developed flow lamination, occurring locally within the study area on the northeast side of Sunshine Mountain.

<u>Henson Member (Ths)</u> Volcaniclastic tuffaceous sandstone, greenish-gray in color that intertongues with shaly tuffs and freshwater limestone. Complex interfingering of the Henson member with both the Pyroxene Andesite and Burns members is noted.

<u>Fish Canyon Tuff (Tf) (Oligocene)</u> Quartz-latitic ash-flow tuff erupted from the La Garita caldera that overlies both Silverton Volcanics and Sapinero Mesa Tuff. Light to dark gray, poorly to densely welded, with up to 50% phenocrysts of plagioclase, sanidine, biotite, quartz and hornblende. Outcrops within the San Juan-Uncompandere caldera and occupies portions of the upper reaches of drainages north of Henson Creek.

<u>Crystal Lake Tuff (Tcl) (Oligocene)</u> Rhyolitic ash-flow tuff erupted from the Silverton caldera. Gray to reddish-brown, poorly to densely welded with few phenocrysts. Difficult to distinguish from Carpenter Ridge Tuff except for the abundance of small rock fragments. Generally, exposures are adjacent to and overlying the Fish Canyon Tuff.

<u>Carpenter Ridge Tuff (Tcr) (Oligocene)</u> Rhyolitic ash-flow tuff erupted from the Bachelor caldera. Similar in composition and appearance to the Crystal Lake Tuff except for the absence of small rock fragments and the presence of a basal vitrophyre (glassy) and lithophysal (bubble like structures) zone. Outcrops are similar to Crystal Lake and Fish Canyon Tuffs. <u>Volcaniclastic Sedimentary Rocks (Tvs) (Oligocene)</u> Assemblage of tuffaceous sandstones and shale occurring in lenticular and cross-stratified beds. Similar in composition to the Henson

member of the Silverton Volcanics. Occurrence within the study area is of limited aerial extent and corresponds to outcrops of Fish Canyon and Crystal Lake Tuffs.

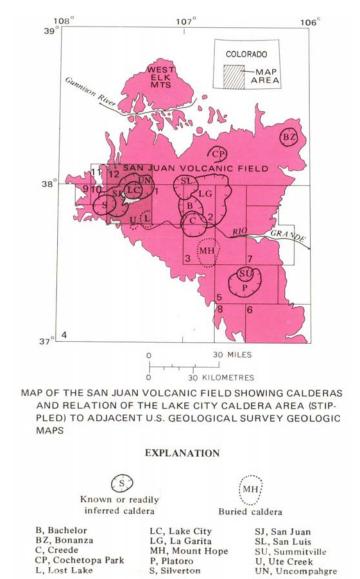



Figure 2. San Juan Volcanic Field (reprinted from Lipman, 1976)

<u>Intrusives (Oligocene)</u> Typically occur as stocks, plugs and dikes mostly along the northern margin of the Lake City caldera, specifically Capitol City and Matterhorn Creek.

<u>Monzonite (Tm)</u> Poorly to slightly porphyritic intrusive rock, gray in color, occurring generally as stocks and plugs and grading to Monzonite porphyry.

Monzonite Porphyry (Tmp) Moderately to coarsely porphyritic intrusive rock, gray in color.

<u>Porphyro-aphanitic rocks (Ti)</u> Andesitic to rhyolitic, fine grained intrusive rocks occurring generally as dikes and small plugs.

<u>Volcanics of Uncompandere Peak (Oligocene)</u> Lava flows and related volcaniclastic sediments of intermediate to silicic composition. Thick flows of porphyritic quartz latite (Tuq) outcrop on Uncompandere Peak and portions of Broken Hill. Thick flows of light-tan to white rhyolite (Tur)

which outcrop on Sunshine Mountain. Dark gray andesite (Tua) outcropping at the head of Modoc Creek. Localized volcaniclastic sedimentary rocks of varying composition (Tus).

<u>Nelson Mountain Tuff (Tn) (Oligocene)</u> Quartz latitic ash-flow sheet erupted from the San Luis caldera, and outcrops along the northern margin of the study area. Poorly to moderately welded, with 25-35% phenocrysts of plagioclase, sanidine, biotite, and augite. Mapped by Lipman (Lipman, 1976) in three separate subunits Upper (Tnu), Middle (Tnm) and Lower (Tnl) based on a successive sequence of zones similar in each unit.

<u>Sunshine Peak Tuff (Miocene)</u> Large rhyolitic ash-flow sheet and associated caldera collapse breccias erupted from the Lake City caldera that dominates the geology of the study area's southern boundary.

<u>Ash-flow Member (Tsp)</u> Silicic alkalic rhyolitic tuff extensively indurated and densely welded. Phenocrysts are quartz, sodic sanidine, and sparse biotite comprising approximately 25% of the rock mass. The majority of outcrop within the study area is intracaldera and as such is a single coherent rock unit with numerous xenolithic fragments and extensive propylitic alteration.

Landslide Breccia Member (Tspl) Landslide derived debris breccia, locally lensed and interfingering with the upper Ash-flow member. Fragments are relatively small in size and are consistent in composition to the caldera wall rock. This member grades into the Megabreccia member.

<u>Megabreccia Member (Tspm)</u> Assemblage of large and chaotically associated fragments of precaldera rock and underlying ash-flow sheets that interfinger with the Sunshine Peak Ash-flow member.

<u>Post-Caldera-Collapse Lava Flows (Miocene)</u> Accumulations of quartz latitic flows associated with eruptions along the perimeter of the Lake City caldera, isolated to the upper eastern reaches of Alpine Gulch within the study area.

<u>Quartz Latite of Red Mountain (Tqr)</u> Extensively altered porphyritic quartz latite flow and dome underlying the petrologically similar Quartz Latite of Grassy Mountain. <u>Quartz Latite of Grassy Mountain (Tqg)</u> Thick unaltered flow of light-gray porphyritic quartz latite, with approximately 30% phenocrysts of plagioclase, sanidine, biotite, and augite.

<u>Intrusives (Miocene)</u> Typically occurring within the study area as plugs, sills, irregular intrusions and possibly batholiths of granitic, rhyolitic and quartz latitic compositions.

<u>Granite (Tig)</u> Typically occurring as porphyritic granite or quartz monzonite exclusively within the Lake City caldera. Phenocrysts are mostly K-feldspar and plagioclase in an aphanitic groundmass of quartz and alkali feldspar. Occurences within the study area are mostly discordant intrusive bodies such as ring dikes, but outside the study area, large concordant exposures suggest possible large batholic intrusions underlying large portions of the Lake City caldera.

<u>Rhyolite (Tir)</u> Silicic alkalic rhyolitic intrusions located along an easterly trending line from Engineer Pass to the upper reaches of Nellie Creek. Outcrops are buff, gray and white with 10-20% phenocrysts of quartz, sodic sanidine and sparse biotite.

<u>Quartz Latite (Tiq)</u> Gray porphyritic quartz latite intrusions occurring as plugs and irregular bodies, restricted to two outcrop locations within the study area, north of Engineer Pass and along a ridge west of Schafer Basin.

#### Surficial Geology

Morphology and surficial deposition have been extensively affected by both glacial and alluvial processes. Many of the upper valleys within the study area exhibit the classic glacial morphology of broad U-shaped valleys bounded by steep sidewalls. Much of the original glacial

deposition within the watershed was Pleistocene in age, specifically Pinedale, and has been covered by more recent geologic activity or has been transported away through alluvial processes. The one mapped area of morainal material is located north of Capitol City along the southwestern flanks of Broken Hill. It is likely that some areas of glacial material have been classified as colluvium due to similar physical characteristics and composition.

Fluvial processes within the watershed have resulted in down-cutting and deposition of alluvial material along the existing stream courses. Fluvial action is obviously still a dominant erosional and depositional process within the watershed.

Surficial deposition within the upper reaches of Henson Creek and its tributaries are dominated by talus and scree aprons associated with erosion of steep cliffs and mountainsides. Numerous rock glaciers, lobate structures consisting of angular fragments and ice cores, are actively advancing in some upper tributaries like Horseshoe and Hurricane Basins. Large debris fans of coarse, cobbly and bouldery alluvium dominate the lower outwashes of side tributaries to Henson Creek.

Typical soil cover within the study area is thin to non-existent. Where existent, the soil is poorly developed and typically gravelly and sandy in texture with little organic material. The areas of thickest soil cover are below timberline and on heavily vegetated slopes of low to moderate angles. Sporadic beaver activity within the watershed has resulted in moderately thick alluvial deposits of sand, clay and organics along some tributaries and portions of Henson Creek.

#### Structural Geology

The formation and destruction of volcanic calderas was the dominant structural geologic process within the study area. At least two calderas, the Uncompany caldera and the Lake City caldera, formed and erupted within the Henson Creek watershed as shown in **Figure 3**. The eruption and subsequent collapse of the calderas resulted in extensive concentric ring faulting along their margin. The moats formed during caldera collapse and resurgence resulted in confinement and accumulation of vast quantities of volcanic strata up to 5,000 feet thick (Hon, 1987). Within the study area all Sunshine Peak Tuff is confined to the Lake City caldera, much like most Sapinero Mesa Tuff is confined to the San Juan-Uncompany caldera.

Following caldera eruption and collapse, a period of resurgence was typical. Resurgence is the doming of overlying strata, generally within the collapsed caldera, due to the movement of magma upward, but not reaching the surface. One of the most notable resurgences following the San Juan-Uncompany eruptive events resulted in the Eureka Graben. As magma moved upward within the collapsed calderas, overlying strata was stretched and eventually fractured resulting in a set of distentional, steeply dipping faults trending northeasterly. These steeply dipping faults are most notable in Palmetto, Redcloud and Schafer Gulches, and are typically mineralized. Resurgence also took place within the Lake City caldera resulting in distentional fracturing along the crest of the dome.

Within the project area, faulting generally trends northeast, and stratigraphic beds dip slightly to the north and northwest, due in part to resurgence. The vast majority of faulting unrelated to ring faults exhibit limited movement. One notable exception to the limited offset is the Alpine Gulch fault which shows a maximum offset of 4,000 feet (Hon, 1987). The Alpine Gulch fault appears to be related to resurgence along the eastern caldera margin. Within the study area, resurgence accounts for the majority of faulting.

Structural geology also greatly influences groundwater flow patterns. The faulting and fracturing associated with caldera collapse and resurgence will often form preferential flow patterns within the strata that can act to confine groundwater flow. These preferential flow pathways not only

direct modern day groundwater flow, but enabled historic circulation of hydrothermal fluids and mineralization. Variations in welding of tuffs and density of fracturing within certain layers of stratigraphic units can also act to restrict groundwater flow. The outcrop of numerous springs along certain stratigraphic unit contacts also indicates that those contacts provide excellent pathways for flow.

#### Hydrothermal Alteration

Varying types and degrees of alteration are present within the Henson Creek watershed and are shown to have ongoing influences to in-stream water quality. The specific types of alteration vary from regional propylitization and solfataric alteration to localized silicification confined by veins. These altered mineral suites are often indicative and predictive of water quality not only in disturbed watersheds, but especially in undisturbed watersheds.

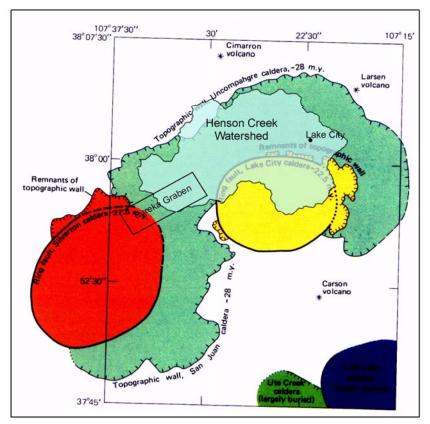



Figure 3. Calderas, Associated Structural Features and Study Area (modified from Lipman, 1976)

Propylitic alteration is probably the most common type of alteration within the study area. Propylitic alteration is a result from the addition of carbon dioxide and water to the rock mass through circulation of hydrothermal aqueous solutions. The suite of altered minerals typically produced during propylitization is chlorite, calcite, epidote, albite and varying clays, which result in a greenish-gray appearance to the rock mass. Propylitization appears to be confined within the project area to the intracaldera zone and specific geologic units. The units most heavily altered are the Sapinero Tuff, Silverton Volcanics and Sunshine Peak Tuff. Propylitic alteration was regional in scale and typically prior to ore deposition.

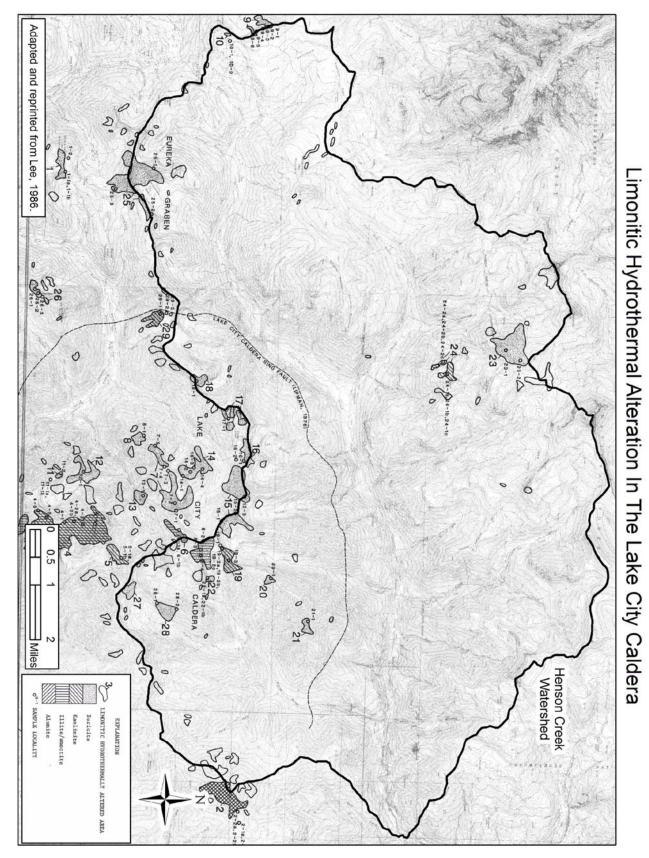



Figure 4. Limonitic Hydrothermal Alteration in the Lake City Caldera

Solfataric alteration within the study area is limited, and localized to faults and areas adjacent to intrusives. Circulation of hydrothermal solutions and gases saturated with sulphur (solfataric) in varying states of oxidation resulted in alteration of the rock mass to varying percentages of pyrite, kaolinite, alunite, sericite and silica. Areas that have been sofatarically altered will appear red, orange and often yellow due to the oxidation and subsequent staining of solfatarically deposited pyrite. The most prominent areas of solfataric alteration are the head of Palmetto Gulch, Redcloud Gulch, Horseshoe Basin, areas surrounding Broken Hill, Dolly Varden Mountain and a large portion of Red and Grassy Mountains.

Ring faulting along the perimeter of the Lake City caldera does not appear to have been a prominent pathway for solfataric alteration unlike the ring faults associated with the Silverton Caldera. Mapping of limonitic alteration in 1986 by Keenan (**Figure 4**) noted that alteration was more closely related to distentional faulting due to resurgence, than granitic or rhyolitic intrusions. Some areas like the Iron Beds (Broken Mountain) and Dolly Varden Mountain appear to have no extensive faulting and may be more closely tied to intrusions. The area of solfataric alteration at the head of Palmetto Gulch appears to be related to a breccia pipe located along the ridge north of Engineer Pass.

Veins within the study area have some variation, but are typically considered "simple" fissure type veins. Economically important veins varied in width from six inches to more than four feet and generally consisted of sulfide mineral suites with associated quartz and sericite. Typically, wallrock is altered, but localized along the vein. These veins are often correlative to areas of solfataric alteration but many areas do not lie in close proximity to large scale altered zones. Palmetto Gulch appears indicative of economic veins in close proximity to solfataric zones, unlike mineralization along the lower stretches of Henson Creek from Capitol City to Lake City which appear to be isolated veins from areas of extensive alteration. Heavily altered zones along Broken Mountain, Grassy Mountain and Red Mountain are widespread but resulted in no economically valuable mineralization. Veins on Red Mountain are typically barren quartz.

Based on water sampling within the study area, it is apparent that areas of extensive alteration, with little associated mining, contribute substantially to in-stream water quality changes. The areas of Henson Creek most likely affected by extensive alteration unrelated to mining are North Fork Henson Creek, specifically Matterhorn Creek, and lower Henson Creek below Capitol City, specifically Lee Smelter and Alpine Gulches. The tributaries that feed Henson Creek from Red and Grassy Mountains are extensively altered to sericites, kaolinites and illites and therefore are probably the source for much of the background loading. Water quality problems within Palmetto Gulch most certainly have a natural component due to widespread solfataric alteration, but are difficult to quantify in relation to mining related problems.

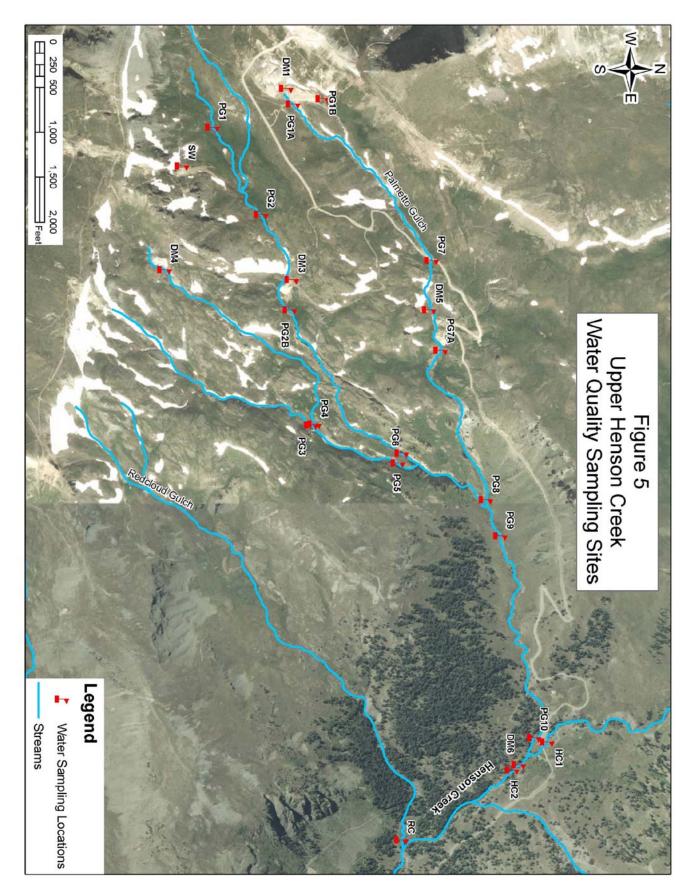
### **BASELINE DATA COLLECTION**

Water, mill tailings and waste rock were sampled and analyzed to better understand the sources of heavy metals in Henson Creek. The initial reconnaissance of Henson Creek was completed by the LFWG in September and October 2004. Previous investigations had focused on Palmetto Gulch and the Ute-Ule Mine area. The Bureau of Land Management performed tracer studies on several sections of upper Henson Creek in 2000 (Palmetto Gulch) and 2001. Very little work has been completed on other portions of the Henson Creek Watershed.

Based on the reconnaissance investigations, water quality sampling was coordinated by the Division of Minerals and Geology (DMG) in June 2005 and September 2005. Mining waste sampling was conducted by the LFWG in September and October 2004. The locations of these

sampling areas are shown on **Figures 5 - 13**. Location descriptions for each of the water and mine waste sites can also be found in subsequent tables and within the data lists in the Appendices.

#### WATER QUALITY SAMPLING


Sampling was performed along Henson Creek during the low-flow and high-flow regimes to determine the extremes in the amount of heavy metals contributed by various sources. Water samples were collected on Henson Creek below Capitol City on June 1 and 2, 2005 to obtain the high-flow data on the lower section of Henson Creek and June 28 and 29, 2005 above Capitol City to obtain the high-flow data on the upper section of Henson Creek. The high-flow sampling was done at two different times because the peak of snowmelt in the lower portion of Henson Creek occurred much earlier than the upper watershed. Two sampling sites (HC-5 and NFHC-3) were sampled during both periods. During both sampling periods, flows were too high in several locations to be safely measured.

Water samples were collected on Henson Creek on September 13 and 14, 2005 to obtain the low-flow data on Henson Creek below Redcloud Gulch and September 19 and 20, 2005 above Redcloud Gulch. The low-flow sampling had to be split because of potential contamination to Palmetto Gulch from a construction project on September 13. Two sampling sites (HC-5 and HC-3) were duplicated during both sampling events to serve as a basis for comparing the data. During both sampling periods, the draining mine adits were sampled on the first day followed by sampling of the stream sites on the second day.

Water samples were collected in Henson Creek above and below sites identified as potential sources during reconnaissance investigations. The DMG sampling plan included collecting dissolved metal, total recoverable metal, and major cation and anion samples at 67 different locations in Henson Creek. Two planned sampling sites were not sampled due to lack of flow. A list of the sampling sites, their locations and the time of year at which sampling was performed at that location is provided in **Table 1**. The locations of the sampling sites are shown on **Figures 5, 6, 7** and **8**.

Water samples were collected by teams composed of individuals from various government agencies and local volunteers. Raw depth and width integrated samples were taken in the stream. The total recoverable metals samples were then transferred directly to pre-cleaned pre-acidified 250 ml sample bottles; anion samples were transferred to pre-cleaned neutral 250 ml sample bottles; and dissolved metals samples were collected by filtering the raw water through a 0.45 micron filter into a pre-cleaned pre-acidified 250 ml sample bottle. After sampling, the samples were placed in coolers, and the anion samples were iced. All sampling activities were completed at the sampling site. Immediately after the sampling, pH, electrical conductivity and temperature were measured at a central location using one instrument.

During the low-flow sampling events, flow measurements were taken at the same time that the water quality samples were collected. Water quality sampling and flow measurements were taken by continually moving up the watershed during the day. During the high-flow sampling event, virtually all of the water quality samples at stream sites were taken during the period between 10:00 a.m. and 11:00 a.m. on June 1, 2005 and between 11:00 a.m. and 12:00 p.m. on June 29, 2005. This was done to limit the diurnal flow variations in the streams. On June 1, 2005, duplicate flow measurements were taken at stations NFHC-3 and HC-18 and pressure transducers were installed at stations HC-18, HC-17, HC-15, HC-9 and NFHC-3. On June 29, 2005, duplicate flow measurements were taken at sampling sites HC-5, HC-1, PG-10 and PG-1 plus a pressure transducer was installed at sampling site PG-10.



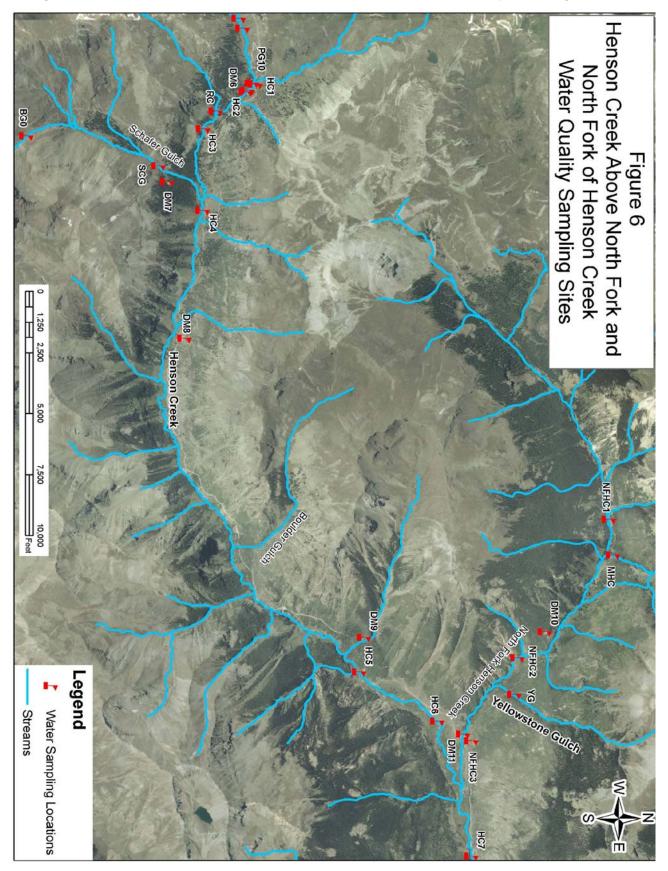
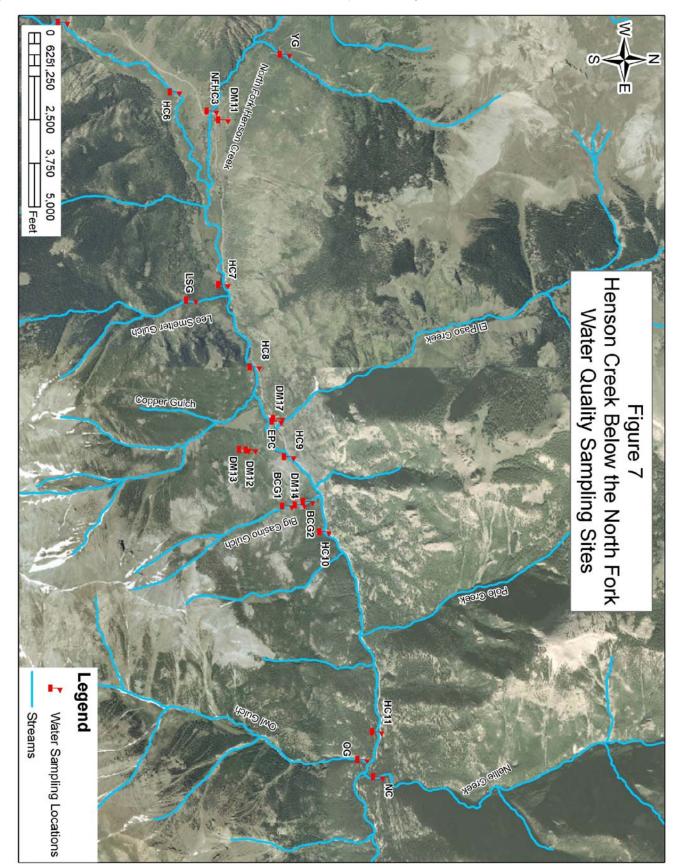
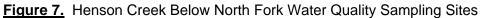
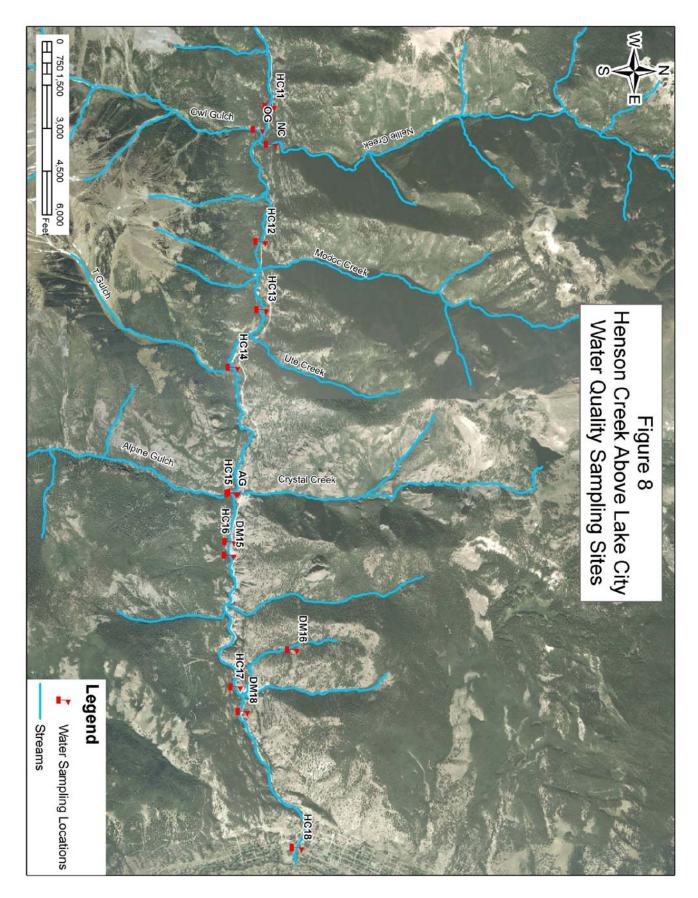






Figure 6. Henson Creek Above North Fork and North Fork Water Quality Sampling Sites







The flow measurements at these sites plus duplicate measurements taken during the sampling period at other sites, were used to adjust the flow measurements taken later in the day.

The high-flow concentration data is presented in **Appendix 1**. High-flow loading data is presented in **Appendix 2**. The low-flow concentration data is presented in **Appendix 3** and low-flow loading data is presented in **Appendix 4**.

| Sample<br>No. | Location                              | June<br>2005 | Sept.<br>2005 | Comments                                                                    |
|---------------|---------------------------------------|--------------|---------------|-----------------------------------------------------------------------------|
| HC-1          | Henson Headwaters                     | Х            | X             | Headwaters                                                                  |
| HC-2          | Henson below Palmetto                 | Х            | Х             |                                                                             |
| HC-3          | Henson below Redcloud                 | Х            | Х             |                                                                             |
| HC-4          | Henson below Schafer                  | Х            | Х             |                                                                             |
| HC-5          | Henson above Hanna Mill               | Х            | Х             |                                                                             |
| HC-8          | Henson above Copper                   | Х            | Х             | Flow too high to measure 6-1-<br>2005                                       |
| HC-5          | Henson above Hanna Mill               | Х            | Х             |                                                                             |
| HC-6          | Henson above North Fork               | Х            | Х             |                                                                             |
| HC-7          | Henson above Lee Smelter              | Х            | Х             |                                                                             |
| HC-8          | Henson above Copper                   | Х            | Х             |                                                                             |
| HC-9          | Henson above Big Casino               | Х            | Х             |                                                                             |
| HC-10         | Henson below Big Casino Gulch         | Х            | Х             | Flow too high to measure 6-1-<br>2005                                       |
| HC-11         | Henson above Nellie and Owl Gulch     | Х            | Х             |                                                                             |
| HC-12         | Henson above Ute-Ule Tailings         | X<br>X       | X<br>X        | Flow too high to measure 6-1-<br>2005 & 6-29-2005                           |
| HC-13         | Henson below Ute-Ule Tailings         | Х            | Х             | Flow too high to measure 6-1-<br>2005 & 6-29-2005                           |
| HC-14         | Henson below Ute-Ule                  | Х            | Х             | Flow too high to measure 6-1-<br>2005 & 6-29-2005                           |
| HC-15         | Henson above Alpine                   | Х            | Х             | Flow too high to measure 6-29-2005                                          |
| HC-16         | Henson below Alpine                   | Х            | Х             | Flow too high to measure 6-1-<br>2005 & 6-29-2005                           |
| HC-17         | Henson Below Pelican                  | Х            | Х             |                                                                             |
| HC-18         | Henson above Lake Fork                | Х            | Х             |                                                                             |
| PG-1A         | Runoff from Hough Dump                | Х            |               | Largest runoff channel from<br>Hough Dump                                   |
| PG-1B         | Downstream of Hough Adit              | Х            |               | Adit drainage could not be located under snow                               |
| PG-1          | Palmetto Gulch Headwaters             | Х            | Х             | Headwaters                                                                  |
| SW            | Sarah Woods Dump Drainage             | Х            |               | No flow in September                                                        |
| PG-2          | Palmetto below Sarah Woods            | Х            | Х             |                                                                             |
| PG-2A         | Palmetto Gulch below Roy Pray         |              | Х             | Immediately below Roy Pray                                                  |
| PG-3          | South Trib to Palmetto                | Х            | Х             | Includes effects from Engineer<br>and Emperor Wilhelm Mines                 |
| PG-4          | Palmetto Trib below Wyoming & Hoffman | Х            | Х             | Includes effects from Wyoming<br>dump and drainage and<br>Hoffman Mine dump |
| PG-4A         | Palmetto Trib below Wyoming Adit      | Х            |               | Adit drainage could not be located under snow                               |

Table 1. Henson Creek Water Quality Sampling Sites

| Sample<br>No.  | Location                            | June<br>2005 | Sept.<br>2005 | Comments                    |
|----------------|-------------------------------------|--------------|---------------|-----------------------------|
| PG-5           | Below Confluence of PG-3 and PG-4   | Х            | Х             |                             |
| PG-6           | Palmetto below Roy Pray             | Х            | Х             |                             |
| PG-7           | Palmetto below Hough                | Х            | Х             |                             |
| -              | Palmetto immediately below Palmetto |              | Х             | Immediately below Palmetto  |
| PG-7A          | Mine                                |              |               | Mine                        |
|                |                                     | Х            | Х             | Approximately 1/4 mile      |
| PG-8           | Palmetto below Palmetto Mine        |              |               | downstream of Palmetto Mine |
| PG-9           | Palmetto below Tributary Confluence | Х            | Х             |                             |
| PG-10          | Palmetto above Henson               | Х            | Х             |                             |
| AG             | Alpine Gulch                        | Х            | Х             |                             |
| NC             | Nellie Creek                        | Х            | Х             |                             |
| OG             | Owl Gulch                           | Х            | Х             |                             |
|                | Big Casino Gulch above Pride of     | X            | Х             |                             |
| BCG-1          | America                             |              |               |                             |
|                | Big Casino Gulch below Pride of     | Х            | Х             | Flow estimated              |
| BCG-2          | America                             |              |               |                             |
|                |                                     | Х            | Х             | No flow measurement in      |
| EPC            | El Paso Creek                       |              |               | September 2005              |
| LSG            | Lee Smelter Gulch                   | Х            | Х             |                             |
|                | Ephemeral Drainage below Czar &     |              |               | Dry in June and September.  |
| CZ             | Czarina Mines                       |              |               | Flow observed in May 2005   |
| YG             | Yellowstone Gulch                   | Х            | Х             |                             |
| MHC            | Matterhorn Creek                    | X            | X             |                             |
| NFHC-1         | North Fork Henson Headwaters        | X            | X             |                             |
|                | North Fork Henson above             | X            | X             |                             |
| NFHC-2         | Yellowstone                         | ~            |               |                             |
| NFHC-3         | North Fork Henson above Henson      | Х            | Х             |                             |
| SCG            | Schafer Gulch                       | X X          | X             |                             |
| BGO            | Schafer Gulch below Golconda Mine   | ~            | X             | Inaccessible in June        |
| RC             | Redcloud Gulch                      | Х            | X             |                             |
| NO             |                                     | Λ            | X             | Could not be located under  |
| DM-1           | Hough Mine                          |              | ~             | snow in June                |
| DM-2           | Drainage above Roy Pray             |              |               | Not sampled                 |
| DM-3           | Roy Pray Mine                       |              | Х             | Not sampled in June         |
|                |                                     |              | X             | Could not be located under  |
| DM-4           | Wyoming Mine                        |              | ~             | snow in June                |
| DM-5           | Palmetto Mine                       | Х            | Х             |                             |
| DM-6           | BLM Adit below Confluence           | Λ            | X             | Standing water in June      |
| DM-0<br>DM-7   | Chicago Tunnel                      | Х            | X             |                             |
| DM-8           | Highland Chief Mine                 | X            | X             |                             |
| DM-9           | Moro Tunnel                         | X            | X             |                             |
| DM-9<br>DM-10  | Vulcan Mine                         | X            | X             |                             |
| DM-10<br>DM-11 | Lucky Strike Mine                   | X            | X             |                             |
| DM-11<br>DM-12 |                                     | X<br>X       | ^             | Standing water in September |
|                | Four Aces Upper Adit                | ^            |               | Standing water in September |
| DM-13          | Four Aces Lower Adit                | V            | V             | Standing water, no flow     |
| DM-14          | Pride of America Mine               | X            | X             |                             |
| DM-15          | Risorgimento Mine                   | Х            | Х             |                             |
| DM-16          | Pelican Mine                        | Х            |               | No flow in September        |
| DM-17          | El Paso Creek Draining Mine         | X            |               | No flow in September        |
| DM-18          | Draining Mine below Pelican         | Х            | Х             |                             |

#### MINE WASTE SAMPLING

Mine waste samples were collected at 66 different locations in Henson Creek. The samples included 61 waste rock sites and five mill tailings sites. Iron bed soil in Matterhorn Creek was also sampled. The location of the sampling sites is shown on **Figures 9-13.** The mining wastes were investigated to provide information sufficient to allow the LFWG to prioritize mine sites for reclamation.

Waste rock and soil/outcropping samples were collected from a minimum of thirty locations at each site. New four oz. plastic Dixie cups and a rock from the mine dump were used to remove the top two inches of material. The 30+ sub-samples from each site were composited in a one-gallon re-closeable plastic bag.

After collection, the composited samples were thoroughly mixed by inverting the bag numerous times. After mixing, 150 ml of sample was removed and placed in a one liter plastic beaker along with 300 ml of deionized water. The wetted sample was then vigorously mixed for 15 seconds, plastic wrap was placed over the top, then left to settle for 90 minutes. It took 90 minutes for the clay fraction to settle to the bottom of the beaker.

| Erosion                   | Distance<br>to channel | Vegetation<br>On Pile | Kill Zone<br>Below Pile       |
|---------------------------|------------------------|-----------------------|-------------------------------|
| 1=none                    | 1=over 300 yds         | 1=lots                | 1=no kill zone                |
| 2=sheet wash              | 2=over 100 yds         | 2=yes                 | 3=very little kill zone       |
| 3=rills less than 6" deep | 3=over 100 ft          | 3=little              |                               |
| 4=rills 6" – 12" deep     | 4=less than 100 ft     |                       | 4=trees but not<br>underbrush |
| 5=gullies over 12" deep   | 5=less than 10 ft      | 5=no                  | 5=yes                         |

#### Table 2. Mining waste physical ranking system

After 90 minutes, the liquid was filtered through very fine grade soil filters (approximately two micron). A portion of the liquid was then used to measure the total acidity, pH, and specific conductance. The remaining liquid was filtered through a 0.45 micron filter and acidified with nitric acid for lab analysis. Total acidity was determined using an Hach digital titrator to reach a phenolphthalein end-point. Specific conductance and pH were measured with a standard calibrated instrument. The data from the waste rock sampling is presented in **Appendix 5**.

| Site |                                       | Chemical | Physical | Overall |
|------|---------------------------------------|----------|----------|---------|
| #    | Description                           | Rank     | Rank     | Ranking |
| 2    | Lower Hough Mine                      | 1        | 1        | 1       |
| 1    | Upper Hough Mine                      | 2        | 1        | 2       |
| 5    | Lower Sarah Woods Mine                | 5        | 1        | 3       |
| 48   | Excelsior Lode                        | 4        | 4        | 4       |
| 43   | Yellowstone Mill Tailings West        | 6        | 4        | 5       |
| 55   | Red Rover Tunnel/Little Hattie Lode   | 18       | 4        | 6       |
| 56   | Pride of America Mine                 | 14       | 9        | 7       |
| 42   | Yellowstone Mill Tailings East        | 11       | 12       | 7       |
| 8    | Miners Bank Mine                      | 9        | 14       | 7       |
| 12   | Upper Emporer. Wilhelm Mine           | 8        | 17       | 10      |
| 9    | Wyoming Mine                          | 13       | 14       | 11      |
| 15   | Second Dump above Palmetto Mine       | 24       | 4        | 12      |
| 60   | Hidden Treasure Tailings              | 15       | 14       | 13      |
| 11   | Hofman Mine                           | 22       | 9        | 14      |
| 54   | Wave of the Ocean                     | 10       | 21       | 14      |
| 61   | Risorgimento Mine                     | 3        | 28       | 14      |
|      | Dump at gate below Czarina (Broker    |          |          |         |
| 47   | Lode)                                 | 7        | 28       | 17      |
|      | Collapsed Adit between Palmetto and   |          |          |         |
| 14   | Roy Pray                              | 28       | 9        | 18      |
| 17   | Palmetto Mine                         | 21       | 21       | 19      |
| 3    | Backfilled shaft north of Sarah Woods | 26       | 17       | 20      |
| 6    | Dump East of lower Sarah Woods        | 24       | 21       | 21      |
| 27   | Upper Golconda Mine                   | 17       | 28       | 21      |
| 46   | Mountain Belle Lode                   | 19       | 28       | 23      |
| 45   | Yellow Medicine Mine                  | 27       | 21       | 24      |
| 40   | Hanna Mill Tailings                   | 23       | 28       | 25      |
| 50   | Vermont Mine                          | 36       | 17       | 26      |

#### Table 3. Priority Mining Waste Sites in Henson Creek

The 66 mining sites that were sampled were prioritized on the basis of their chemical and physical characteristics, proximity to a stream course, vegetation on the waste pile, presence or absence of a vegetation kill zone and historic erosion. Chemical prioritization was done by ranking the sampling sites in progressive order for acidity, pH, specific conductance, and concentration of aluminum, arsenic, cadmium, copper, iron, manganese, lead and zinc in the leachate extraction, summing the individual rankings to determine a final ranking. Physical prioritization was done following the method developed by Wildeman, et. al. as shown in **Table 2.** 

| Table 4. Heavy | y Metals for which Henso | n Creek Mine Sites R | Ranked in the Top Ten |
|----------------|--------------------------|----------------------|-----------------------|
|----------------|--------------------------|----------------------|-----------------------|

| Site # | Description                              | Top 10 Metal                 |
|--------|------------------------------------------|------------------------------|
| 1      | Upper Hough Mine                         | Al, As, Cd,Cu, Fe, Mn, S, Zn |
| 2      | Lower Hough Mine                         | Al, As, Cd,Cu, Fe, Mn, S, Zn |
| 5      | Lower Sarah Woods Mine                   | AI, As, Cu, Fe, S            |
| 6      | Dump East of lower Sarah Woods Mine      | Fe                           |
| 8      | Miners Bank Mine                         | Al, As                       |
| 9      | Wyoming Mine                             | AI                           |
| 10     | Engineer Mine                            | As                           |
| 12     | Upper Emporer. Wilhelm Mine              | Al, Fe                       |
| 15     | Second Dump above Palmetto Mine          | Fe                           |
| 16     | Dump across stream from Palmetto Mine    | S                            |
| 21     | Mine Near Ridge on North Side of Schafer | As, Fe                       |
| 27     | Upper Golconda Mine                      | Al, Cd, Cu, Mn, S, Zn        |
| 35     | Highland Mine                            | Mn, S                        |
| 36     | Schafer Basin Mine West Side             | Cu, Pb                       |
| 42     | Yellowstone Mill Tailings East           | Cd, Cu, Pb, Zn               |
| 43     | Yellowstone Mill Tailings West           | Cd, Cu, Pb, Zn               |
|        | Dump at gate below Czarina (Broker       |                              |
| 47     | Lode)                                    | Al, Cd, Cu, Mn, Pb, Zn       |
| 48     | Excelsior Lode                           | Al, Cd, Cu, Fe, S, Zn        |
| 52     | Little Casino                            | Pb                           |
| 53     | Four Aces Lode                           | Cd, Pb                       |
| 54     | Wave of the Ocean                        | Cu, Mn, Pb                   |
| 55     | Red Rover Tunnel/Little Hattie Lode      | S                            |
| 56     | Pride of America Mine                    | Cd, Mn, Pb, S, Zn            |
| 60     | Hidden Treasure Tailings                 | Cd, Mn, Pb, Zn               |
| 61     | Risorgimento Mine                        | Al, Fe, Mn, S, Zn            |
| 63     | Mountain Chief Upper                     | Mn                           |

The physical and chemical ranking of the mining waste pile is presented in **Appendix 6**. A listing of the 25 highest ranking waste pile is presented as **Table 3**, and a listing of the top ten sites for each of the heavy metals is presented as **Table 4**. In general, most of 25 highest ranking mining waste sites also were in the top 10 for each individual heavy metal.

No natural background samples were taken in Henson Creek. However, in comparison to natural background samples taken throughout the state, over half of the samples had total acidity similar to background soils. Many were also low in leachable heavy metals although most had higher concentrations of heavy metals in the leachate than natural background samples.

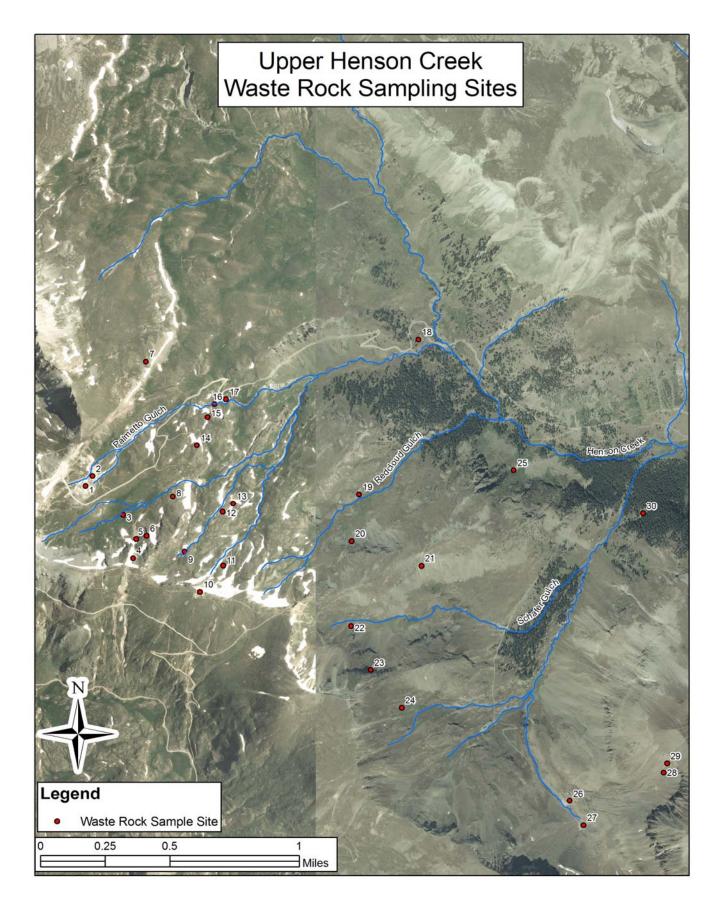
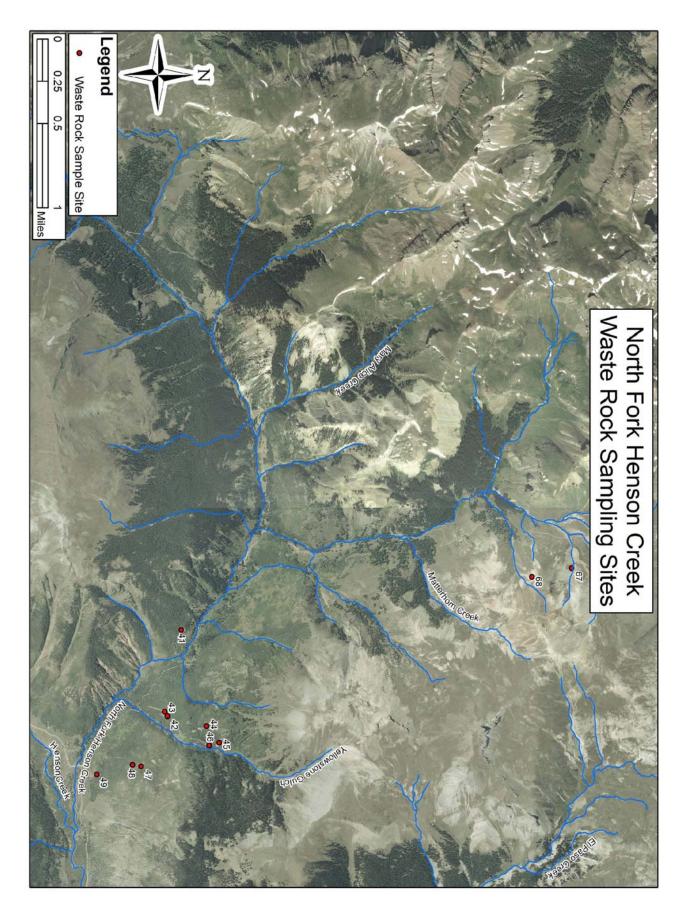






Figure 10. Henson Creek Above North Fork Waste Rock Sampling Sites



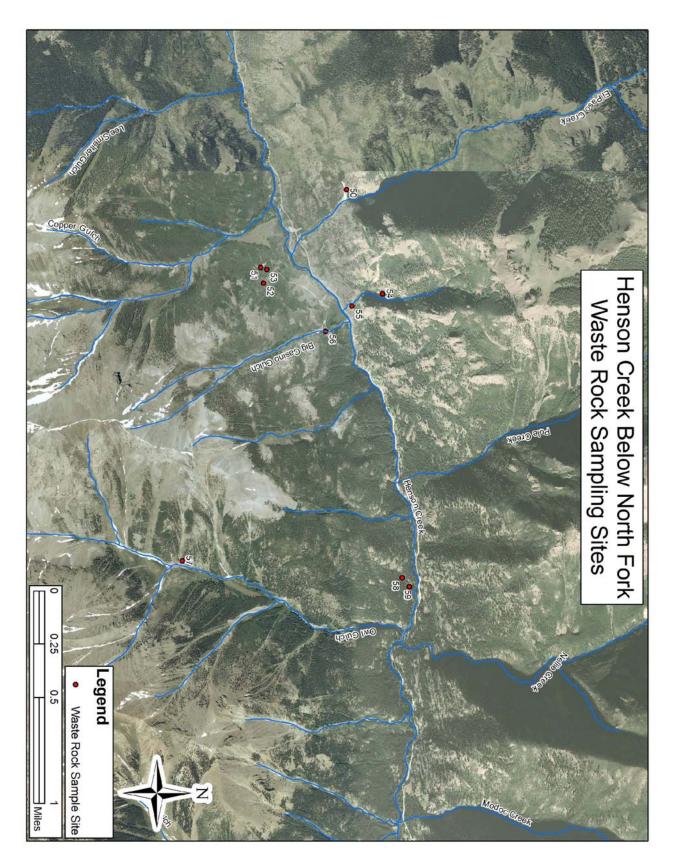
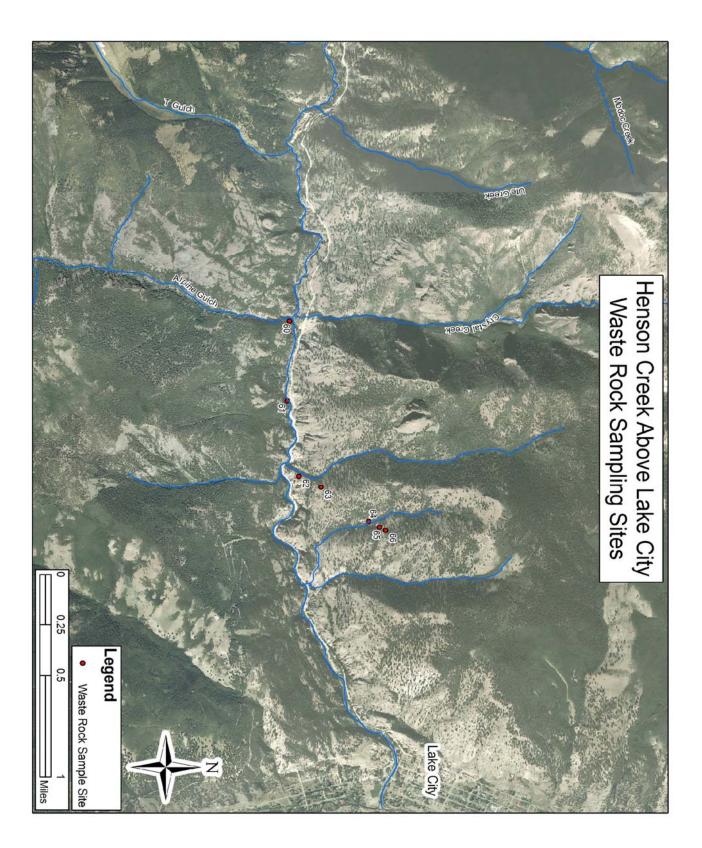




Figure 12. Henson Creek Below North Fork Waste Rock Sampling Sites



## WATERSHED CHEMISTRY

The water chemistry in Henson Creek is very complex because there are both natural and mining-related metals loading affecting the streams. There are also some differences in speciation of metals due to the varying geology of the area.

#### Palmetto Gulch Chemistry

<u>High Flow</u> – Palmetto Gulch is actually comprised of four main tributaries that flow together at various points (**Figure 14**). For the purpose of this discussion, the tributary represented by sampling sites SW, DM-2, DM-3, PG-1, PG-2 and PG-6 will be referred to as Middle Palmetto Gulch. The tributary flowing past the Hough Mine and sampled as DM-1, DM-5, PG-1A, PG-1B, PG-7, PG-7A and PG-8 will be referred to as North Palmetto. The two drainages containing sampling sites DM-4, PG-3, PG-4, and PG-5 will be referred to as South Palmetto.

During high flow, the chemistry of Palmetto Gulch is dominated by nonpoint source of heavy metals (**Figure 15**). The draining mines only account for less than 5% of the heavy metals measured above the confluence with Henson Creek. Loading that is believed to be directly attributable to the Sarah Woods and Hough Mine dumps was measured directly and indirectly. The metal loads from these sites accounts for almost 40% of the zinc and 18% of the manganese, which are the most conservative of the metals measured. Leachate from the Sarah Woods and Hough Mine dumps also accounts for a large portion of the aluminum, copper and iron loading, but a large portion of these metals are naturally attenuated before the confluence with Henson Creek.

The major mines in the North Palmetto drainage are the Hough, near the headwaters and the Palmetto Mine. During high flow the Hough Mine has a major impact on North Palmetto. Direct impacts from the Hough Mine were measured at sampling sites PG-1A and PG-1B during high-flow and indirectly at sampling site PG-7. The majority of the metals load from high-flow is from leaching and runoff from the Hough waste rock pile. Runoff from the waste pile was sampled at site PG-1A. There were additional flow channels from the waste rock pile with the largest channel being sampled. Sampling site PG-1B is a mixture of Hough Mine. Total metals loading at sampling site PG-7 is over 70.5 pounds (32,000 grams) per day, including aluminum, arsenic, copper, cadmium, iron, lead, manganese and zinc. Between sampling sites PG-7 and PG-8, the metals load reduces from clean water inflows causing precipitation of the metals. This data indicates that there is minimal loading from the Palmetto Mine.

On Middle Palmetto, the total zinc load at sampling site PG-1 on Palmetto Gulch was below measurable quantities. Sampling site SW is directly below the lower Sarah Woods Mine and downstream of sampling site PG-1. The total zinc load measured at sampling site SW was only 0.4 grams per day. However, the total zinc load at sampling site PG-2, downstream of the Sarah Woods jumped to over 4.2 pounds (1900 grams) per day. Since there are virtually no other sources between PG-1 and PG-2, this load is directly attributable to the Sarah Woods Mine workings or to the Miners Bank vein that contains the Sarah Woods Mine workings. The majority of this load most likely enters Middle Palmetto Gulch as shallow ground water. Precipitate first forms on Middle Palmetto Gulch below the Sarah Woods.

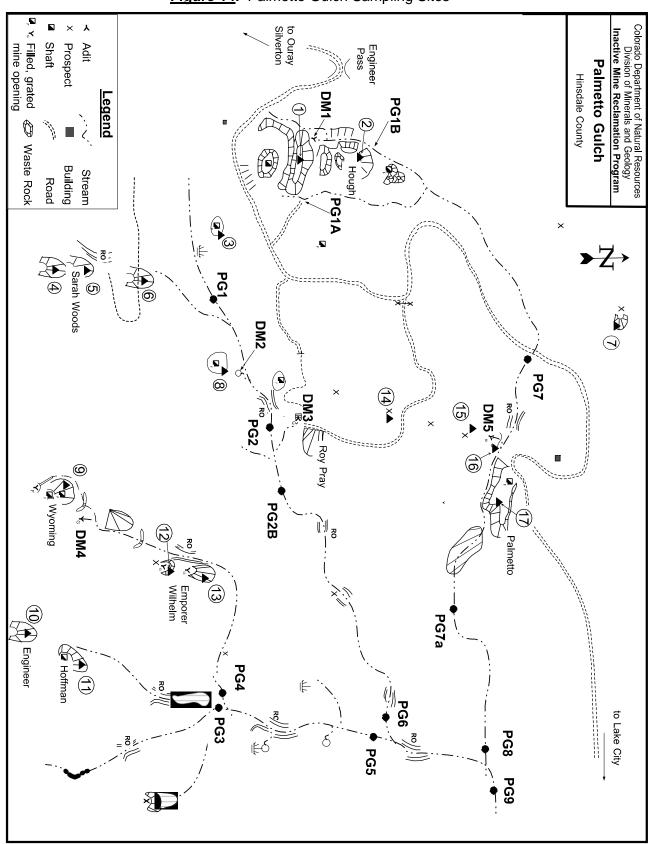



Figure 14. Palmetto Gulch Sampling Sites

Below sampling site PG-2 is the Roy Pray Mine. This site was completely covered by snow during the high-flow sampling, so there was no direct measurement of the input from the draining mine between the inflows between the bulkhead seal and the portal. However, the zinc load increases to over 11 pounds (5,000 grams) per day at sampling site PG-6. An unknown portion of this load is attributable to the Roy Pray Mine, but also within this reach, the stream flows along a mineralized zone that could also be partially responsible for the loading.

Aluminum and manganese loading follows the same pattern as zinc. A small load was measured in flow from the Sarah Woods site, but a total aluminum load over 44 pounds (20,000 grams) per day and a total manganese load of over 11 pounds (5,000 grams) per day was measured at sampling site PG-2 immediately downstream. There also appears to be an increase in aluminum loading along with the manganese load doubling at sampling site PG-6 below the Roy Pray Mine. Again, a portion of the source is likely the Roy Pray inflow mine drainage and leaching of the waste rock, but the low-flow data indicates that the natural mineralization along the stream channel below the Roy Pray Mine may be the principal source of metals in this stream segment. The majority of the copper, cadmium and iron loading along Palmetto Gulch appears to originate from the Sarah Woods site.

The high-flow hydrology of South Palmetto is complex. Sampling site PG-3 measures impacts from the Engineer and Emperor Wilhelm Mines and sampling site PG-4 measures impacts from the Wyoming Mine, the Hoffman Mine and numerous prospects. The metals loading at both sampling sites is significant during high-flow. A large portion of this load can be attributed to leaching of the waste rock pile with a small portion of the load at PG-4 coming from the Wyoming Mine drainage. However, natural sources cannot be discounted as a loading source.

The only way to ascertain the contributions from each of the waste piles is to sample above and below each pile. Unfortunately, this could not be done during the high-flow synoptic sampling because snow depths were too great. Future investigators should consider an additional sampling during July when most of the snow is gone to further characterize the impacts of the waste rock piles. At sampling site PG-5, approximately 1,200 feet below the confluence of PG-3 and PG-4, the AI, Cd, Cu, Fe, Mn, and Zn load more than double. There are no significant mines in this stream stretch, but there are several springs.

Below the confluence of the three tributaries at sampling site PG-9, metals loading generally decreases. Below PG-9, there are no major inflows and no significant mining-related activity.

<u>Low-Flow</u> – Whereas the Hough Mine site is a dominant source of metals during high-flow, it is a minor source of metals during low-flow. During low-flow, there is very little impact to North Palmetto Gulch from the mine sites (**Figure 19**).

On Middle Palmetto Gulch, there is still some measurable impact from the Sarah Woods Mine, but quantifiable impacts are dominated by the Roy Pray inflow mine drainage. Below the Roy Pray, the aluminum, cadmium, copper, zinc and manganese loading more than doubles. The concentrations remain relatively stable while the flow more than doubles. This could indicate that there is communication from the bulkheaded Roy Pray reservoir and lower strata.

On South Palmetto Gulch, there is very little impact from the Wyoming and Hoffman Mines, but there is a detectable metals load at PG-3 from the Engineer and Emperor Wilhelm Mines. Below the confluence of PG-3 and PG-4, the flow more than doubles, but unlike at high-flow, there is a metal loading decrease indicating that the springs in this area supply relatively clean water. One possible explanation for the difference between high-flow and low-flow is that there

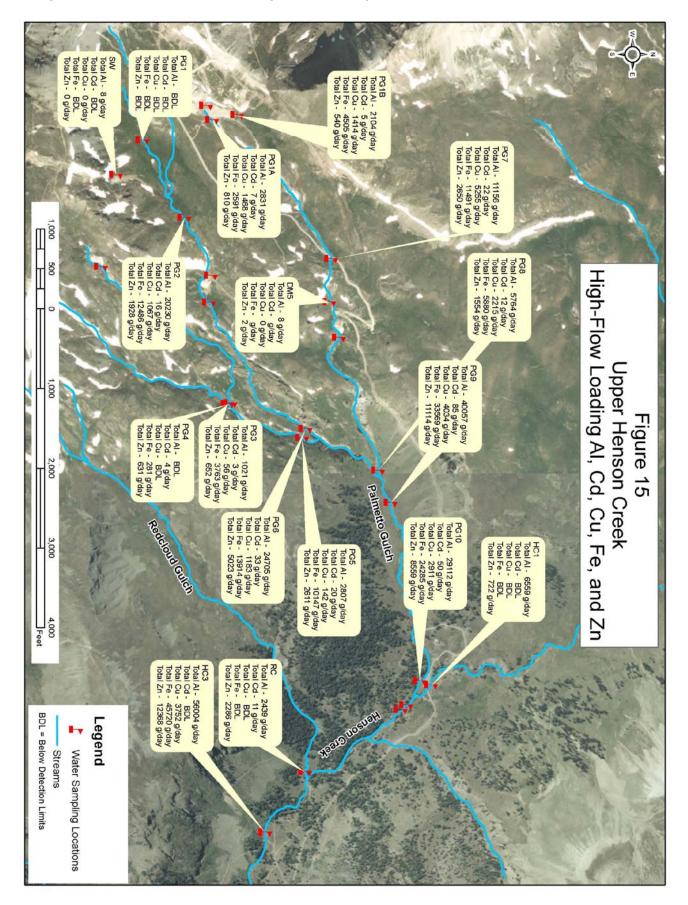



Figure 15. Upper Henson Creek-High-flow Loading AI, Cd, Cu, Fe and Zn

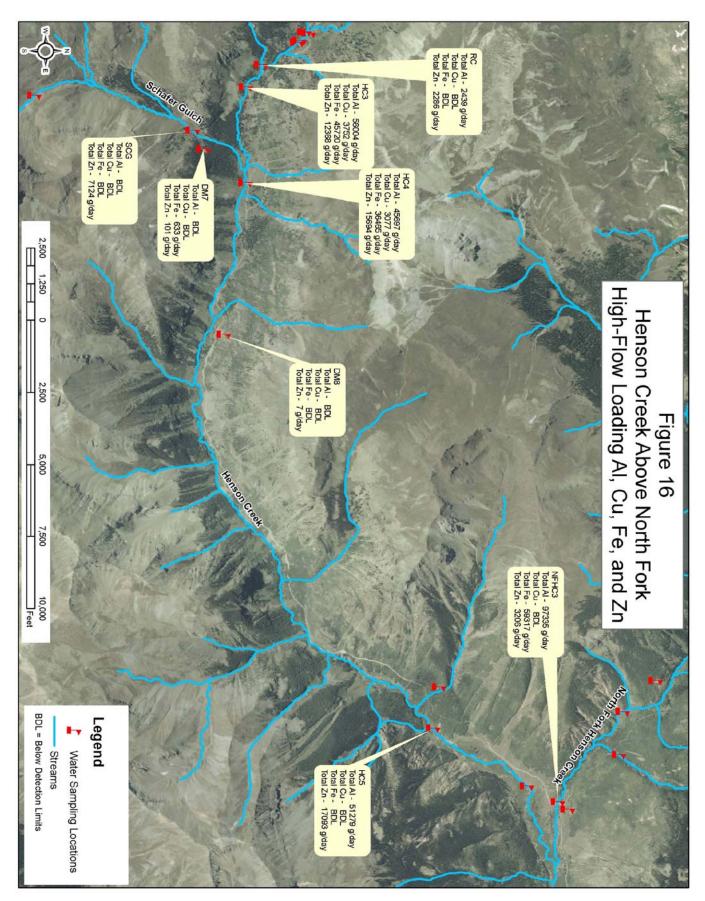
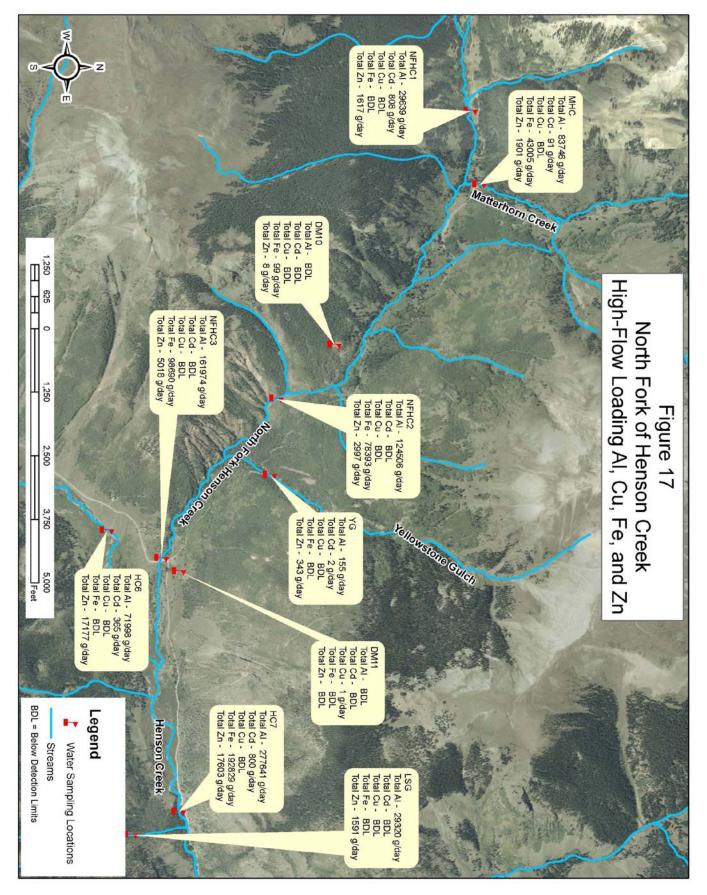
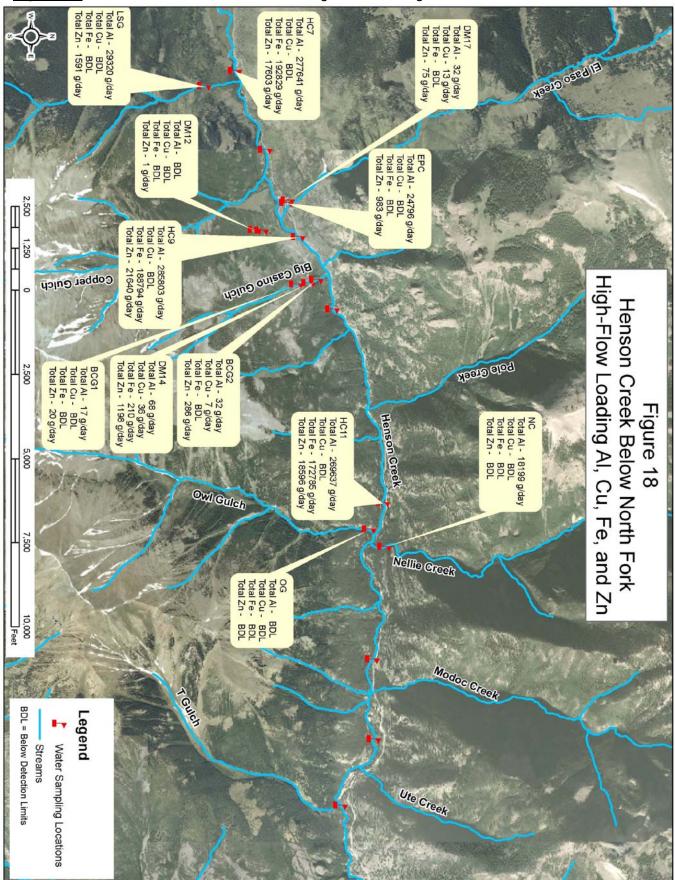





Figure 16. Henson Creek Above North Fork-High-flow Loading AI, Cu, Fe and Zn







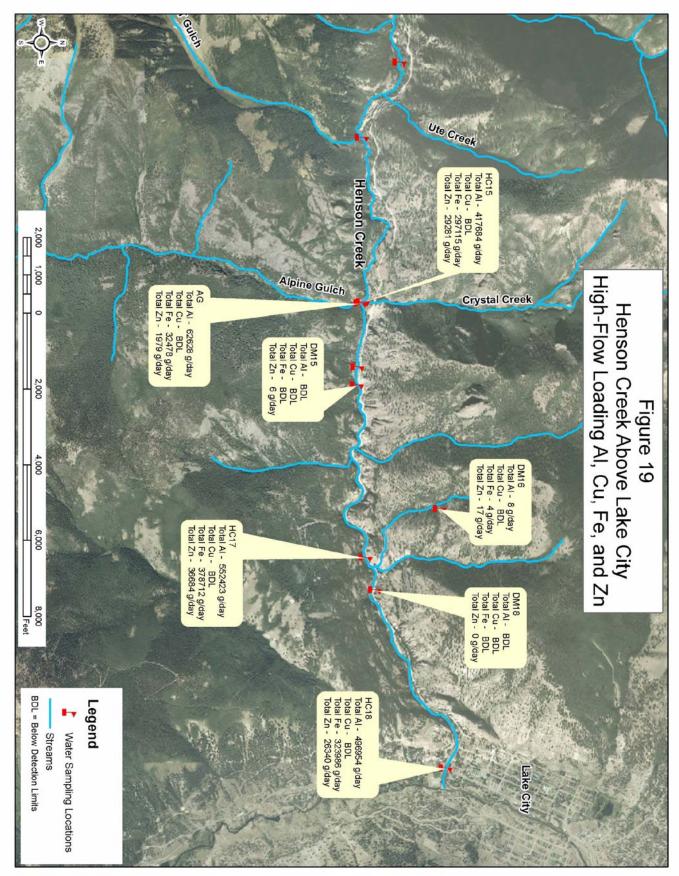



Figure 19. Henson Creek Above Lake City-High-flow Loading AI, Cu, Fe and Zn

are springs that produce metal laden water during snowmelt that dry up by the end of the summer.

### North Fork of Henson Chemistry

<u>High-Flow</u> – During high-flow, dissolved zinc, aluminum and iron are below detection limits. Virtually all the zinc, aluminum and iron are in suspension (**Figure 17**). The largest measured source of total zinc, aluminum and iron in the North Fork of Henson Creek is Matterhorn Creek. Between sampling sites NFHC-2 and NFHC-3, there is an increased total zinc, aluminum, and iron loading of over 20%. A small part of this increase comes from Yellowstone Gulch, but the remainder most likely comes from natural sources in the mineralized zone of Sunshine Mountain.

<u>Low-Flow</u> – During low-flow, zinc, aluminum and iron concentrations and loading are relatively similar as found during high-flow (**Figure 21**). The major differences are that dissolved iron and zinc were measured in the mainstem. Matterhorn Creek continues to be the largest source of zinc, aluminum and iron. The large unmeasured increase in load between NFHC-2 and NFHC-3 found during high-flow was not present during low-flow. This indicates that the load is seasonal leaching of the naturally mineralized portion of Sunshine Mountain. During low-flow, there is a large increase in total zinc and iron loading that can be attributed to Yellowstone Gulch.

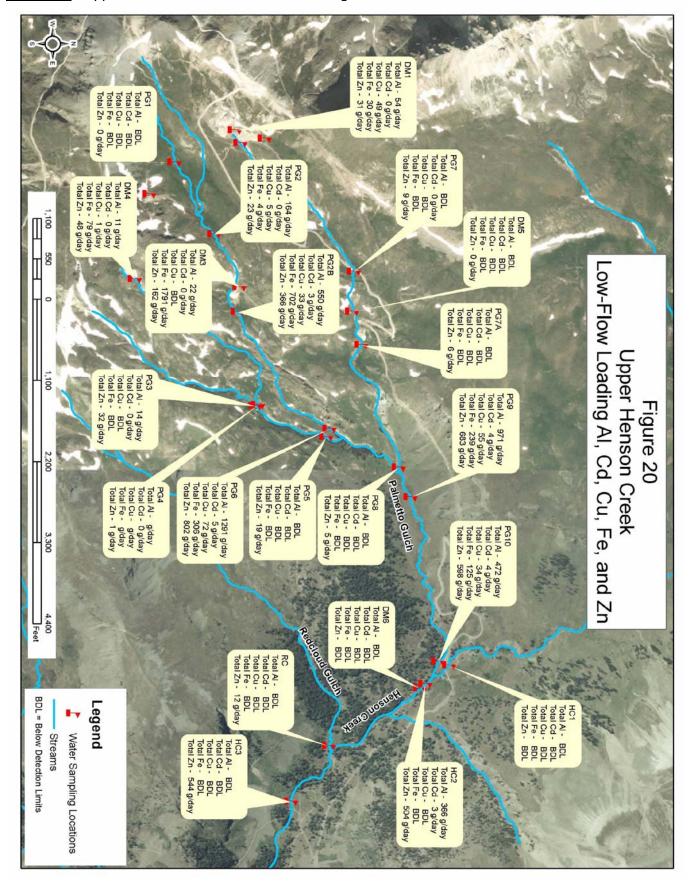
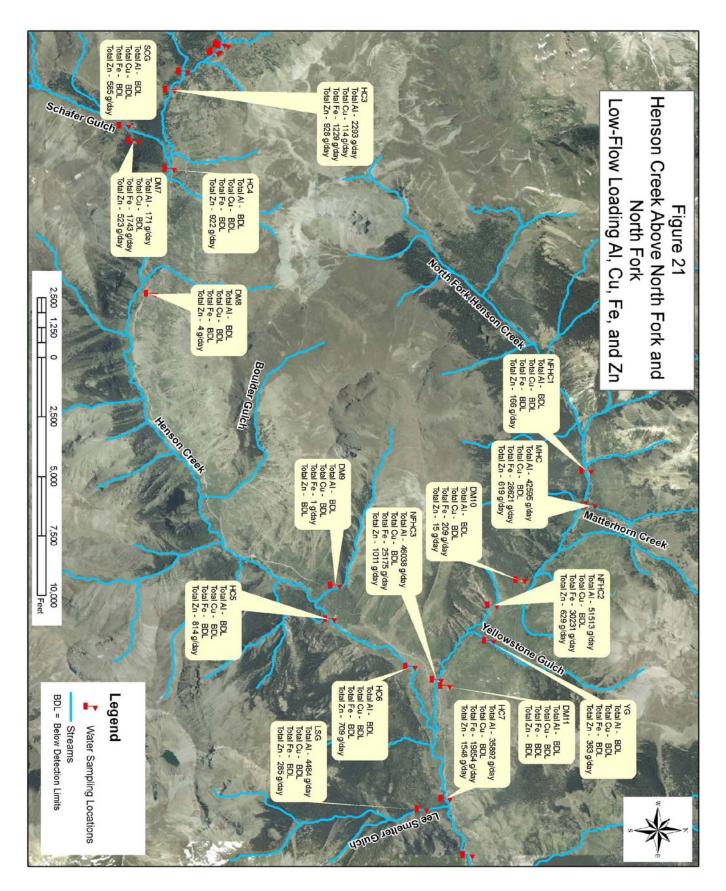
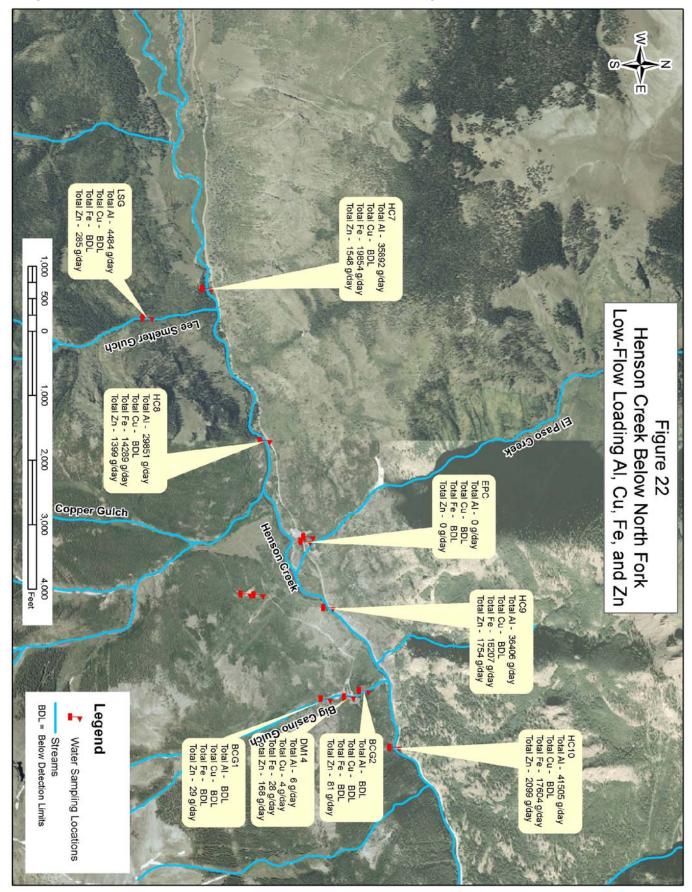
### Henson Creek Mainstem Chemistry

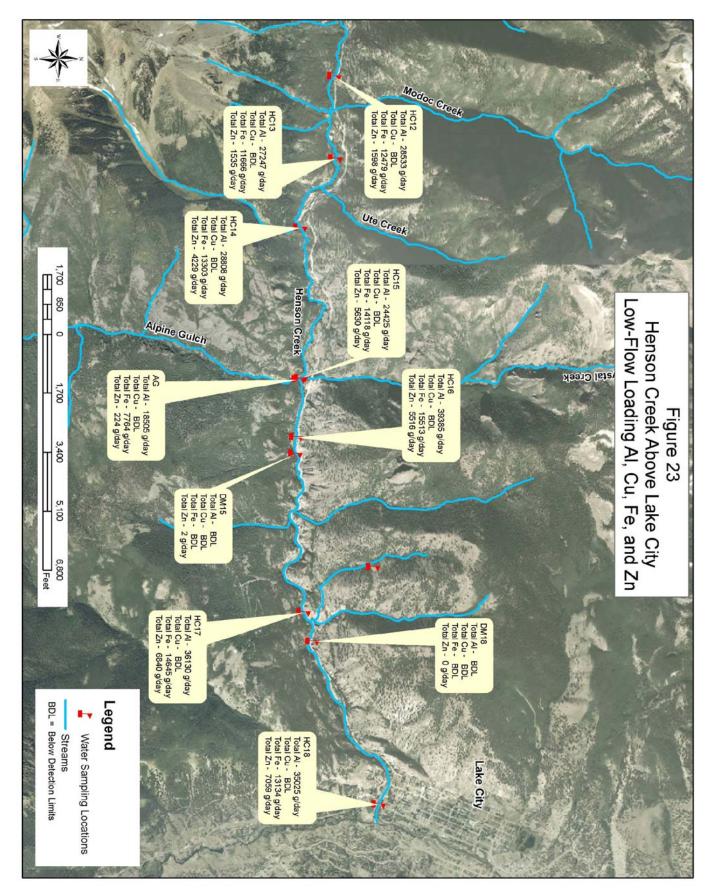
Aluminum, zinc, iron and copper are the principal metals impacting aquatic life in the mainstem of Henson Creek.

Iron plays a minor role in the water chemistry of the Henson Creek watershed, with the exception of Palmetto Gulch and the North Fork of Henson Creek. Iron may, however, play a significant role in removal of zinc. The lack of iron in most of the drainages means that there is very little zinc sorbed to precipitated iron. The majority of the iron in the Henson Creek watershed comes from Palmetto Gulch and Matterhorn Creek. The maximum in-stream iron concentration was found in Matterhorn Creek, while the highest iron concentration in a mine drainage was from the Roy Pray Mine.

<u>High-Flow</u> – During high-flow, most of the heavy metals progressively decrease in concentration downstream from the headwaters to below the no effect concentration by Capitol City (**Figure 16**). Total and dissolved zinc is the one exception. Zinc concentration increases below the confluence with Palmetto Gulch and continues to increase to sampling site HC-4 as Redcloud Gulch and Schafer Gulch join the mainstem. Manganese also increases when Redcloud Gulch enters the mainstem. Below Capitol City, there were no exceedances of the no effect concentration.

<u>Low-Flow</u> – Low-flow chemistry is much different than high-flow. During low-flow, heavy metal concentrations generally decline from the confluence with Palmetto Gulch to the Ute-Ule Mine, then increase to the confluence with the Lake Fork (**Figures 20 - 23**). Heavy metal loading generally remains constant from the confluence with Palmetto Gulch to the confluence with the North Fork (**Figure 20 - 21**). Below the North Fork, heavy metal loading generally remains steady to the Ute-Ule Mine. At the Ute-Ule, there is a large increase in dissolved and total zinc and manganese. The zinc loading nearly triples and the manganese increases by approximately 50%. The zinc loading continues to increase to the confluence with the Lake Fork. Aluminum and iron loading increases when Alpine Gulch flows into Henson Creek.



Figure 20. Upper Henson Creek - Low-flow Loading Al, Cd, Cu, Fe and Zn



**Figure 21.** Henson Creek Above North Fork and North Fork - Low-flow Loading Al, Cu, Fe and Zn







# **RECLAMATION OPTIONS**

There are many different types of mining related disturbances in the Henson Creek watershed that affect water quality. A thorough understanding of the hydrologic system is necessary to determine which reclamation options would be best at a particular site. Reclamation of the watershed will be complicated and several reclamation options may be required at some sites to provide the most cost-effective cleanup.

One of the most complex alternatives involves the reclamation of adit discharges. These situations may involve collection and treatment of the mine drainage. In many cases, there is more water leaving the mine site than is measured at the mine adit. Some of the water flows underground through fracture systems into the stream. A groundwater-minepool interaction commonly exists because of the complex geology and extensive mining that has occurred. If a treatment system is contemplated to address a mine discharge, it will be necessary not only to understand the chemistry and hydrology of the adit discharge, but also to determine any potential groundwater loadings that leave the site through fractures or other geologic structures. The fractured, jointed, highly altered nature of the bedrock could be allowing seepage from the mine workings to enter the groundwater system. A treatment system could work well on the adit discharge, but would fail to meet metals removal goals in the stream due to unidentified groundwater pathways to the stream. In that case, simply sticking pipes into the adits would not be adequate to collect all the water that needs to be treated. It may be necessary to re-enter the adit to the point where contaminated flows can be collected and intercepted before they are lost to the groundwater system.

Reclamation and treatment methods considered in this feasibility investigation include:

1) <u>Surface Hydrologic Controls</u> (Preventative Measures); diversion ditches, mine waste removal and consolidation, stream diversion, revegetation.

2) <u>Passive Treatment</u> anoxic limestone drains, settling ponds, sulfate reducing wetlands, aqueous lime injection, limestone water jet, oxidation wetlands, aeration, powered mechanical neutralization systems, dilution, electro-kinetics, and land application.

3) <u>Subsurface Hydrologic Controls</u> (Preventive Measures); in-mine diversions of clean flows, bulkhead seals, pre-treatment of ore bodies or mined out areas, preventing subsurface flows from entering mine workings through mine openings, faults, and other geologic structures.

A short description of each method is given below.

# SURFACE HYDROLOGIC CONTROLS

Most hydrologic controls are preventative measures in that they inhibit or prevent the process of acid formation and/or heavy metal dissolution. If it is possible to prevent water from entering a mine, or coming into contact with sulfide ores or wastes, this can be the best, most cost effective reclamation approach.

<u>Diversion ditches</u> are effective where run-on water is degraded by flowing over or through mine waste, or into mine workings. Diversion ditches can also be used to intercept shallow ground water that may enter mine waste. In some cases, mine discharge can be improved by flowing through the waste rock. Mine drainage must be sampled above and below a waste rock pile to determine whether the waste rock is actually degrading the water quality.

<u>Mine waste removal and consolidation</u> is effective where there are several small mining waste piles in an area, or where there is a large pile in direct contact with flowing water. The method is simply to move reactive material away from water sources.

<u>Stream sealing or diversion</u> involves moving the water sources away from reactive materials, or sealing/lining streams to prevent surface inflows into shallow mine workings through stopes, shafts, or fracture systems. It may include lining or grouting/sealing the stream bed or bedrock.

<u>Revegetation</u> is often used in combination with other hydrologic controls above. Revegetation by itself can be a very effective method of reducing heavy metals concentrations, particularly where much of the metals come from erosion of mining waste into a stream. Revegetation also reduces the amount of water that infiltrates a waste pile, thereby reducing leachate production. The roots of growing plants also have been shown to produce carbonates through respiration.

# PASSIVE TREATMENT

<u>Anoxic limestone drains</u> are the simplest method of introducing alkalinity into mine discharges. Anoxic limestone drains (ALD) are constructed by placing coarse limestone (3/4" - 3") inside an adit or in a fully sealed trench outside a discharging mine. In order for an ALD to function properly, the mine discharge must be devoid of oxygen. In the absence of oxygen, limestone will not become coated by iron and other metal hydroxides, which can shorten the useful life of limestone. In addition, the mine drainage should be relatively low in dissolved aluminum. Aluminum has been shown to precipitate in ALDs, causing plugging. It is theorized that very coarse limestone (4-6") should provide large enough pore spaces to minimize or prevent clogging by aluminum. The disadvantage of using larger limestone is the reduced surface area to react with the mine drainage. After the mine drainage exits the ALD, aeration causes precipitation of metals. The increase in pH due to ALDs is site specific, but generally does not exceed two standard units.

<u>Settling ponds</u> are often overlooked as an effective treatment method. Settling ponds are particularly effective for treating near neutral mine drainages high in total suspended solids (TSS). Aeration of a near neutral pH mine drainage by means of a series of drops, followed by a settling pond can effectively remove iron and other metals that co-precipitate with the iron. Settling ponds should be designed for a 24-hour or greater retention time wherever possible.

<u>Sulfate reducing wetlands</u> are often called bioreactors. These systems treat water through bacterial reduction of heavy metals. Sulfate reducing bacteria (SRBs) utilize the oxygen in sulfates for respiration, producing sulfides. The sulfides then combine with heavy metals to form relatively insoluble metal sulfides. The bacteria derive their energy from a carbon source such as cow manure or mushroom compost. There are many other substrates that are an acceptable source of carbon, but most have a low hydraulic conductivity that can result in short circuiting of the system by the formation of preferential flow paths. Sulfate reducing bacteria cannot survive in a drainage with pH below 4.5. Highly acidic drainages will require a pH increase before the effluent enters the bioreactor.

Sulfate reducing wetlands should generally not be constructed near population centers. These systems commonly produce excess hydrogen sulfide, which can cause undesirable odors up to three miles from the system. When initially started, organics in the substrate discolor the treated water for several months, making water quality appear, to the layman, to be worse than that entering the system.

<u>Aqueous lime injection</u> is a passive method to introduce neutralizing agents into mine drainage. This system requires a clean water source. Clean water is passed through a pond containing neutralizing agent, then the high pH effluent is mixed with the mine drainage before it enters a settling pond. This system can be cost effective if alkaline wastes such as kiln dusts or fly ash are available. Although still in the experimental phase, the method holds promise for some mine sites. Neutralizing materials may also be injected into stopes and drifts, to prevent ARD.

<u>Oxidation wetlands</u> are what most people think of as "wetlands." They differ from sulfate reducing systems in that metals are precipitated through oxidation, and aquatic plants must be established. This treatment method is applicable where the pH of a mine drainage is approximately 6.5 or higher, and where metals concentrations in the drainage are primarily a problem during summer months. Aeration is an important part of this system. The plant materials provide aeration and, when they die, provide adsorption surfaces, along with sites for algal growth.

<u>Aeration</u> is best used where the mine drainage pH is about 6.5 or above. Aeration promotes metal precipitation through oxidation processes. Aeration can be accomplished by mechanical means, or simply by channeling the drainage over rough slopes. Mechanical methods require some source of power, which may be generated through wind, solar cells, or hydro-power. Aeration methods normally include a settling pond below the aeration component.

<u>Mechanical injection of neutralizing agents</u> involves a powered mechanical feeder/dosing system for dispensing neutralizing agents. This type of system requires frequent maintenance, may produce significant quantities of metal sludges, and should be considered "semi-passive." Power for the feeder can come from wind, solar, or hydro-power. At the Pennsylvania Mine in Summit County, a turbine running in the adit discharge stream demonstrated that hydro power is practical in some situations. Mechanical systems are generally considered only where there are no options for truly passive alternatives. Any high pH material can be used in this type of system. Because of cost effectiveness and sludge characteristics, the most common neutralizing agent used is finely ground limestone.

<u>Dilution</u> is often overlooked as a treatment method. It can be a cost effective method of treatment, because the neutralizing agent is simply uncontaminated water. Clean water is mixed with the mine drainage in a settling pond, and the resultant pH increase initiates precipitation of metals. A drawback to this method is that the percentage of metals precipitated is significantly less than most other methods. Metals removal is site specific, but generally less than 50%. This method is most effective in removing iron, aluminum, copper, cadmium, and lead, but has only slight effectiveness for zinc and manganese.

<u>Electro-Kinetics</u> is a newer semi-passive method to remove metals from mine drainage. There are several forms of this treatment currently being developed. The electro-kinetic method discussed in this report uses a low-maintenance, self-regenerating resin to remove metals from mine discharge. Different metals can be separated by using ion specific resins. Electricity is used to strip metals from the resins, producing a sludge, and allowing re-use of the resin.

Land Application is a method designed to use natural metals attenuation processes in soils and subsoils to remove metals. Plant uptake, evaporation and transpiration, and soil exchange capacity act to tie up and remove metals. This method is most effective where mine discharge can be spread over a large area to infiltrate into relatively thick soils or unconsolidated deposits. Drainage should be neutral or near neutral to avoid plant toxicity. This alternative is also effective for discharges with high iron and/or aluminum, and where pH is approximately 4.5 or above.

# SUBSURFACE HYDROLOGIC CONTROLS

Subsurface Hydrologic Controls are in-mine measures that inhibit or prevent the process of acid formation and/or heavy metal dissolution into the ground or surface water system. If it is possible to prevent water from entering a mine, or from coming into contact with sulfide ores or wastes, or mixing with contaminated water plumes in the workings, this can be the best, most cost effective remediation approach, because it helps prevent the problem, rather than treating its symptoms in perpetuity. The success of most hydrologic controls depends on developing a geochemical and hydrologic understanding of the mine-groundwater interactions. Chemical characterization of inflows, and Isotopic and dye-tracer studies can be used to separate mine impacted waters from unimpacted water inflows; to determine travel times and pathways of infiltrated snowmelt and rainfall through ground-water flow systems; and to help develop conceptual understandings of geochemical processes which control the transport and fate of metals in the subsurface. These studies enhance the understanding of the sources and hydrologic pathways of waters that enter the mine workings and discharge from the mine workings through groundwater and surface pathways, and help determine how best to segregate or seal off particular water sources in the workings.

<u>In-Mine Diversions</u> are effective where clean groundwater inflows are degraded by flowing through drifts (veins) and stopes in the mine workings. The concept is to intercept the inflows before they come in contact with metals loading source areas in the mine, thus circumventing metals contaminant production in the mine workings/ore body. The "clean" inflows are then diverted to the surface stream through a collection and piping system. Though in many cases it may not be possible to intercept all inflows before they become contaminated through contact with the ore body, it is often possible to segregate and divert much of the groundwater inflow before it mixes with the contaminated plume. This can greatly reduce the overall quantity of polluted outflow. By significantly reducing mine discharge, it may then become cost-effective and feasible to treat the segregated contaminate plume through passive or semi-passive techniques; the effluent flow is minimized, and concentration may be adjusted for optimum system performance through dilution with part of the diverted clean flows.

<u>Grout-sealing a fracture inflow zone</u> at a discrete location can prevent groundwater from entering the workings, using proven, existing "ring-grouting" methods and technology. The concept for this technique is to seal water inflows through a grouting program, similar to those used to seal dam foundations, and control water inflows to active underground mining operations. Chemical or cement grout is pumped under pressure into an array of holes drilled radially out from the drift in and along the plane of the water bearing fracture or fracture zones. The grout enters and seals the fracture pathways that communicate with the mine opening. If engineered and executed correctly, the water is prevented from entering the excavation, and is forced far enough back into the rock away from the mine workings so that it resumes its premining course, flowing around the grout "curtain." Depending on conditions and the layout of the workings, care must be taken to ensure the inflows are not simply diverted to a point where they enter another part of the ore body. Ideally, the grout curtain would be in a position where no other lower or upper levels are nearby, and where numerous small fractures or one discrete structure is draining groundwater into the workings along a relatively short section of drift.

<u>Bulkhead Seals</u> are another type of preventive or "source control" measure. The concept is that geochemical and flow equilibrium will be reached in the groundwater, whereupon anoxic conditions in the flooded workings will prevent or reduce dissolution and transport of heavy metals. Bulkhead seals are designed to prevent discharge to surface water through the adit opening by blocking the flow with an engineered hydrologic plug, flooding the mine. For most inactive mines, bulkhead seals are expensive and require considerable geologic and

engineering investigation and characterization. Sites that have simple geology, sound rock, and limited subsurface workings may be amenable to this approach.

# MINE SITE CHARACTERIZATION

# PALMETTO GULCH SITE DESCRIPTIONS

All the major mines in Palmetto Gulch were investigated. There are numerous prospects in Palmetto Gulch that were not investigated. The only prospect investigated that will not be discussed in detail is a small prospect above the Horsethief Trail, sampled as site #7. Leachate analysis shows that the waste rock pile has very little mineralization and is low in metal concentrations. All other sites investigated will be discussed in detail below.

### Geologic Setting

The majority of surficial outcrop within Palmetto Gulch is composed of the Burns Member and Andesite Porphyry Member of the Silverton Volcanic Series. Outcrops of Fish Canyon Tuff, Sunshine Peak Tuff, and volcaniclastic sandstones from the Silverton Volcanic Series are also evident along the ridge bounding the western reach of the gulch. Several intrusions of porphyritic quartz latite are also exposed along the western ridge and may be associated with a zone of hydrothermal intrusion referred to as a breccia pipe near Engineer Mountain.

Structurally, Palmetto Gulch lies at the northeastern margin of the Eureka Graben and contains an extensive framework of northeasterly trending, steeply dipping normal faults. The majority of these faults resulted in little noticeable movement, but appears to have provided pathways for hydrothermal fluids. Foliations and bedding planes within the volcaniclastic sediments and lavas indicate a general northeast strike and low angle dip, 10° to 20°, to the northwest. The orientation of beds within the gulch is consistent with resurgence of the San Juan-Uncompander Caldera.

Widespread alteration within Palmetto Gulch is propylitic in nature and not solfataric, but characteristic red and yellow staining along the western and southern ridges indicate that some pyritic enrichment has occurred. Generally, the intense alteration is localized along geologic structures forming "halos" around faults and fractures. Many of the hydrothermally altered structures within the gulch were economically mineralized, and referred to as veins. The most prominent veins are the Polar Star/Miners Bank, Flower of San Juan, Emporer Wilhelm and Hoffman. The mineralization typically filled open fractures with minor wall rock alteration due to migration of ore fluids into the surrounding country rock. The breccia pipe located on Engineer Mountain is extensively altered but does not appear to have been economically mineralized.

Groundwater flow along mineralized veins may represent a large component of loading within Palmetto Gulch. Discharge from portals on the Hough, Roy Pray and Wyoming indicate that mineral laden water is currently flowing along many of the major veins. It is reasonable to assume that since many of the structures provided pathways for circulation of hydrothermal fluids in the past, those same pathways may still exist today for migration of meteoric waters. Groundwater flow within the gulch is most likely controlled by fractures and geologic contacts and not overall rock permeability, due to the lack thereof. Numerous springs outcrop within the watershed and in some locations appear to be consistent with the Burns-Andesite contact. Groundwater flow within the Andesite Member may be less restricted until encountering the lithologically different Burns Member resulting in discharge along the contact. Geologic mapping of the Roy Pray workings by Stover indicated a thick section (approximately 50 feet) of highly fractured and water-filled Andesite Porphyry at the surface. If this fracturing is regional and consistent, it may indicate an upper regime of groundwater flow isolated from deeper vein

controlled flow. The complex nature of groundwater flow within Palmetto Gulch will require additional and more thorough investigations to determine its influence on loading to the watershed.

Surficial geology within Palmetto Gulch is dominated by glacially abraded bedrock outcrops. Soils are typically poorly developed or non-existent, with large areas of talus and scree in the upper reaches. Most of the veins outcrop to surface and are traceable by their distinct limonitic staining within the bedrock. Areas of exposed hydrothermally altered rock provide a highly leachable source of metals to Palmetto Gulch.

### Hough Mine – Frank Hough Lode MS. #549

The Frank Hough Mine is located near the top of Engineer Pass at the headwaters of Palmetto Gulch. The elevation of the site is 12,680 feet. Access is via Engineer Pass road and the site is approximately 500 feet from the road with a well-traveled four-wheel drive access road. This site was bracketed by stream sampling site PG-1, background sample of Palmetto Gulch, PG-1a - the runoff from the Hough dump, PG-1b - downstream of the Hough Adit (mostly contained mine waste water, very little mine drainage), DM-1 - the Hough Mine drainage, and PG-7 – Palmetto Gulch below the Hough Mine. There are numerous sampling locations for the Hough Mine because during high-flow sampling the site was still buried under snow. Samples were taken from new locations that were exposed. Sampling site DM-1 was not sampled during high-flow because it was buried under snow. DM-1 may not have been contributing any mine drainage to the site during high-flow sampling, depending on whether the workings were frozen solid. The Hough Mine is located at N37° 58' 22.6", W107° 34' 58.1". The Hough Mine site contains a small standing log cabin near the access road, the remains of a loadout, and the remains of a shafthouse. The loadout and shafthouse are located on the Upper Hough Mine Waste Pile.

#### Geology and Mine Workings

The Frank Hough Mine develops a northeasterly trending, steeply dipping vein most likely associated with faulting of the Eureka Graben resulting from caldera resurgence. The mine is located in the Henson Member of the Silverton Volcanics (Ths), but some of the workings may also have developed ore within the Andesite Porphyry member (Tap). The mineralization appears to have been localized along the vein, which is common for many of the veins within the region.

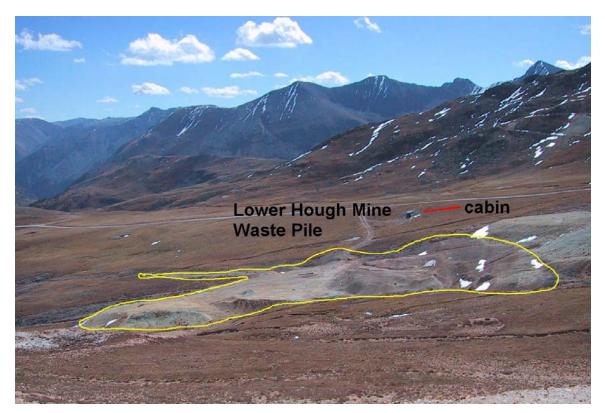
The mine was the most productive mine in Palmetto Gulch with the richest ore. The shaft is 425 feet deep and has four short levels driven off of it, but is now partially collapsed. There is also an adit that connects to the shaft's workings. The mine may connect with the Frank Hough Tunnel, on the west side of Engineer Pass, which would have provided haulage of ore to the Silverton area and to railroad transportation. The Hough ore was high in copper, gold, and silver. Other ores in the area were also high in gold and silver, but usually had much more lead and zinc and proportionately less copper in comparison. The ore at the Hough mainly consisted of copper, copper pyrites, and iron pyrites.

#### Mine Waste

It is estimated that there are 21,000 cubic yards of mine waste at the Hough Mine Site. The waste rock sits near the top of Engineer Pass and has several small ephemeral drainages that run directly through or to the side of the mine waste piles. There is significant erosion at the site from the drainages that run through and past the mine waste pile. Leachate results showed that the Hough site, both the Upper and the Lower Hough piles ranked first and second in regards to heavy metals. Leachate results show the Hough pile to be high in aluminum, arsenic, cadmium, copper, iron, manganese, sulfur, and zinc. The only major heavy metal that the Hough Mine

waste pile did not contain in large amounts was lead. Selected results from the leachate analysis are given below for the Lower and Upper Hough Mine waste pile.

Lower Hough Mine (Site #2)


| pН   | Acidity | Diss    | Diss   | Diss | Diss    | Diss    | Diss   | Diss  | Diss   |
|------|---------|---------|--------|------|---------|---------|--------|-------|--------|
| s.u. | mg/l    | Al      | As     | Cd   | Cu      | Fe      | Mn     | Pb    | Zn     |
|      |         | ug/l    | ug/l   | ug/l | ug/l    | ug/l    | ug/l   | ug/l  | ug/l   |
| 2.4  | 3,750   | 148,703 | 26,698 | 528  | 102,097 | 688,856 | 11,961 | 619.2 | 63,968 |

Upper Hough Mine (Site #1)

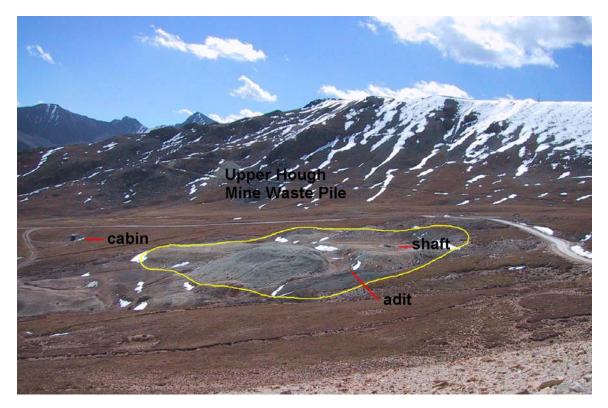
| pН   | Acidity | Diss   | Diss  | Diss | Diss   | Diss    | Diss  | Diss | Diss   |
|------|---------|--------|-------|------|--------|---------|-------|------|--------|
| s.u. | mg/l    | AI     | As    | Cd   | Cu     | Fe      | Mn    | Pb   | Zn     |
|      |         | ug/l   | ug/l  | ug/l | ug/l   | ug/l    | ug/l  | ug/l | ug/l   |
| 2.64 | 1,590   | 63,019 | 6,994 | 284  | 49,826 | 256,511 | 4,091 | 338  | 34,863 |

The location of the mine waste piles allows snow cover to build up consistently on the mine waste and then leach into the waste slowly over the course of the spring and summer months. The leaching from the mine waste pile is a more significant source of metals than the mine drainage from the Hough Adit. The Hough Adit drainage flows into a stream channel which bypasses the majority of the Hough dump, so the major source for leaching waters comes from snow melt and runoff. The Hough waste rock piles had the highest concentrations of aluminum, arsenic, copper, and iron and had the highest total acidity of all the piles sampled. Overall, the Hough waste rock piles ranked first and second out of the 66 dumps sampled.

# Figure 24. Lower Hough Mine Waste Pile



### Water Quality Impacts


The water quality impacts from this site are from the waste pile and mine drainage combined. Sampling site PG-1 – the headwaters of Palmetto Gulch is the sampling site for background water quality data. During high flow sampling, PG-1a and PG-1b were sampled. PG-1a captured the runoff from the Hough dump and sampling site PG-1b was downstream of the Hough Adit. Sampling site PG-7 – Palmetto below the Hough, was also sampled during high flow sampling. Between the Hough and sampling site PG-7 there is an un-mineralized and un-Mined stretch of Palmetto Gulch, hence almost all the loading at site PG-7 can be attributed to the Hough Mine site. During high flow, the Hough Mine's impact is primarily attributed to the leaching of the mine waste pile. The mine drainage contributes relatively little metals loading in comparison to the impacts from the waste pile. The Hough Mine was the only major source for total arsenic during high flow sampling, present at sampling sites PG-1a, 1b, 7, and 8. The arsenic attenuated by the confluence with the mainstem of Palmetto Gulch at sampling site PG-9. During the low flow sampling event, the arsenic values for the entire Henson Creek watershed were below detection limits, indicating that the arsenic from the Hough Mine is due to the leaching of the mine waste pile, and not from the underground mine drainage.

A maximum of 26% of the total cadmium load seen at PG-9 can be attributed to the Hough Mine during high flow. During low flow, less than 5% of the total cadmium load can be attributed to the Hough Mine drainage. The Hough Mine drainage during low flow and the Hough Mine waste runoff during high flow had the highest concentrations of cadmium. The minimal flow from the Hough site rendered it a less significant contributor of total cadmium load to Palmetto Gulch, in comparison to other mine sites within the gulch during low-flow.

The Hough Mine area is the largest source of total copper during high flow, with 55% of the total copper load at sampling site PG-9 attributable to the Hough Mine waste pile during high flow, and roughly 40% of the total copper attributable to the Hough Mine drainage during low flow. The in-stream total copper in Palmetto Gulch attenuates rapidly as it progresses downstream. During high flow sampling, the Hough Mine drainage was not sampled, so it is difficult to determine the contribution of the mine drainage during high flow to the total copper load. The concentrations of copper during high flow are two orders of magnitude greater than the acute and chronic toxicity values. The high flow total copper concentration from the Hough dump runoff was 6740 ug/L and the runoff downstream of the adit was 1720 ug/L. During low flow, the Hough Mine drainage contributes a load of 49.3g/day of total copper, but all of the flow is attenuated to below detection limits of 10ug/L before reaching sampling site PG-7, approximately one half mile downstream of the adit.

The Hough Mine contributes a large portion of the total zinc loading to Palmetto Gulch with a maximum of 21% of the zinc load during high flow. Conversely, during low flow, the Hough Mine contributes less than 5% of the total zinc load seen at sampling site PG-10, the last sampling site before the confluence with Henson Creek. This switch in zinc loading from high flow to low flow indicates again that the leaching of the mine waste pile is a larger source of contamination than the mine drainage. The Hough Mine drainage does have the second highest zinc concentration in Palmetto Gulch, after the Roy Pray, but contributes relatively little to the total zinc loading.

# Figure 25. Upper Hough Mine Waste Pile



After reviewing the metals loading it is apparent that the Hough Mine waste contributes significantly more metals during high flow, while the mine drainage impacts Palmetto Gulch more significantly during low flow. The Hough Mine site is the most significant source of metals during high flow in all of Palmetto Gulch.

#### **Reclamation Options**

The Hough Mine waste pile is the key source of several metals during high flow. The Hough Mine drainage does not contribute as high a load of metals as the mine waste pile, but does have extremely high concentrations of metals and plays a larger role during low flow. The Hough Mine waste pile is one of the most visible mine sites in Palmetto Gulch, and is located near the summit of Engineer Pass. The Hough Mine waste pile cannot be both historically preserved and reclaimed due to the characteristics and location of the mine waste. Since the mine waste pile is the largest source of metals loading at the Hough Mine site, the mine waste pile should be reclaimed first, then the mine drainage should be addressed. Reclamation options for the Hough Mine waste pile include: (1) to cap the Hough Mine waste pile in place with a geosynthetic liner and cover with soil and revegetate or other material such as tallus or; (2) completely remove the Hough Mine waste pile to a repository: (3) on-site amendment of the wastes through a paste technology. Capping of the waste pile would require consolidation of the piles into a minimal sloped mounded pile which could then either be capped with a geosynthetic liner or HDPE liner. Bedding material above the liner may have to come from an off-site source. Precautions for impacts from any sub-surface water flows will have to be undertaken. The other reclamation option for the mine waste pile is removal and re-location to the ridge near the Roy Pray Mine or to another possible repository location. On-site waste amendment could be achieved through a thorough acid-base testing program to determine quantities of cementatious mixing required. Final reclamation of the amended waste could include on-site burial or capping. Depending on the dissolved oxygen content of the mine

water, an option for the underground mine drainage would be the construction of an anoxic limestone drain to increase the pH of the mine drainage, allowing for precipitation of metals once the drainage reaches the surface and becomes enriched with oxygen. Metals could then precipitate in a series of settling ponds. The settling ponds would have to be periodically cleaned out to remain effective.

### Sarah Woods Mine (Polar Star MS. #289)

The Sarah Woods Mine is located near the headwaters of Palmetto Gulch, on the north-facing slope of the Palmetto Gulch amphitheater. This site is believed to be on the Polar Star Claim MS. #289 or on the Polar Star Extension MS. #7865. The elevation of the lowest Sarah Woods Mine workings is 12,800 feet and the highest working level of the Sarah Woods is 13,100 feet. Access is via Engineer Pass, which is a well-maintained four-wheel drive road. There is no access road from Engineer Pass to the Sarah Woods Mine site. The site is approximately 1,000 feet. off Engineer Pass. The Sarah Woods site is bracketed by sampling sites PG-1, Palmetto Gulch Headwaters and PG-2, Palmetto Below Sarah Woods. The SW (Sarah Woods dump drainage) sampling site was only sampled during high flow because the site was not flowing during low flow. The Lower Sarah Woods Mine waste pile is located at N37° 58' 18.4", W107° 34' 47.6". The Upper Sarah Woods Mine waste pile is located at N37° 58' 14.8", W107° 34' 47.7". The dump to the east of the Sarah Woods is located at N37° 58' 19.2", W107° 34' 45.1". Although the mine waste pile to the east of the lower Sarah Woods is not part of the same mine complex, it will be discussed with the Sarah Woods because of its proximity. Any reclamation of the lower Sarah Woods should include the mine waste pile to the east. The upper Sarah Woods Mine waste pile was sampled as site #4. The lower Sarah Woods was sampled as site #5 and the mine waste pile to the east of the Sarah Woods sampled as site #6.

### Geology and Mine Workings

The Sarah Woods developed the northeasterly trending, steeply dipping Polar Star/Miners Bank vein, which is an extensively mineralized and mined vein system resulting from faulting related to caldera resurgence. All levels of the mine were driven in the Tertiary Andesite Porphyry member (Tap) of the Silverton Volcanics. Ore mineralization was generally confined to the vein, but extensive hydrothermal alteration is visible along the adjacent ridge. The Miners Bank is a typical quartz-sulfide fissure type vein with the chief gangue Mineral being massive white quartz with pyrite, spahlerite, galena and minor silver mineralization. Little is known of the exact ore material mined.

Three levels were mined along a vein outcrop that extends to the top of the ridge near Engineer Mountain. This mine is also known as the Polar Star Extension. The lowest working level is an adit. There is a spring located on the side of the lowest Sarah Woods Mine waste pile. The spring was sampled as site SW – Sarah Woods Mine waste pile drainage. The source of this water is not known. It may be drainage from the mine workings or surface flow from snowmelt immediately above the lower Sarah Woods. The mine workings extend through Engineer Mountain to the Mineral Creek drainage in Ouray and San Juan Counties. There is mine drainage from the workings into Mineral Creek. The Sarah Woods Mine was the second most productive mine in Palmetto Gulch after the Frank Hough Mine.

### Mine Waste

There are three mine waste piles that comprise the Sarah Woods area and all three could be contributing to the metals load seen at sampling site PG-2. The upper Sarah Woods Mine waste pile contains approximately 1,900 cubic yards, the lower Sarah Woods Mine waste pile contains 2,700 cubic yards, and the mine waste pile east of the Sarah Woods contains 200 cubic yards of material. The upper Sarah Woods Mine waste pile has two working levels associated, but the two separate piles run together because of the steep slopes of the ridge.

The Sarah Woods Mine sits within the trace of the Miners Bank Vein. The vein runs up the side of the ridge and extends over the top into Ouray and San Juan Counties. There are three mine waste piles along the vein within the Palmetto Gulch drainage.

There is major erosion of the mine waste pile due to the steep terrain of the intermittent drainage from snowfields and the propensity for avalanches. Leachate results show this pile to be high in aluminum, arsenic, copper, iron, and sulfate. The mine waste pile to the east of the Sarah Woods is high in iron only. Based upon the metals concentration in the leachate, the lower Sarah Woods Mine ranked third out of 66 sites sampled. The dump east of the Sarah Woods ranked 21<sup>st</sup> out of the 66 sites sampled. Selected results from the leachate analysis are given below. The Upper Sarah Woods ranked 31<sup>st</sup> out of 66.

Lower Sarah Woods Mine Waste Pile (Site #5)

| PH   | Acidity | Diss   | Diss  | Diss | Diss  | Diss    | Diss  | Diss | Diss  |
|------|---------|--------|-------|------|-------|---------|-------|------|-------|
| s.u. | mg/l    | AI     | As    | Cd   | Cu    | Fe      | Mn    | Pb   | Zn    |
|      |         | ug/l   | ug/l  | ug/l | ug/l  | ug/l    | ug/l  | ug/l | ug/l  |
| 2.49 | 1,204   | 34,537 | 4,473 | 21.5 | 5,693 | 493,957 | 1,331 | 181  | 1,296 |

East of Sarah Woods Mine Waste Pile (Site #6)

| PH   | Acidity | Diss | Diss | Diss | Diss | Diss Fe | Diss    | Diss | Diss |
|------|---------|------|------|------|------|---------|---------|------|------|
| s.u. | mg/l    | AI   | As   | Cd   | Cu   | ug/l    | Mn ug/l | Pb   | Zn   |
|      |         | ug/l | ug/l | ug/l | ug/l | _       | _       | ug/l | ug/l |
| 3.2  | 34      | 124  | BDL  | BDL  | 81   | 829     | 138     | BDL  | 137  |

Upper Sarah Woods Mine Waste Pile (Site #4)

| PH   | Acidity | Diss | Diss | Diss | Diss | Diss | Diss  | Diss | Diss |
|------|---------|------|------|------|------|------|-------|------|------|
| s.u. | mg/l    | Al   | As   | Cd   | Cu   | Fe   | Mn    | Pb   | Zn   |
|      |         | ug/l | ug/l | ug/l | ug/l | ug/l | ug/l  | ug/l | ug/l |
| 4.26 | 20      | 45.8 | BDL  | BDL  | 11   | 19.5 | 149.7 | BDL  | 22.9 |

# Water Quality Impacts

The water quality impacts from this site are seen at sampling site PG-2, in upper Palmetto Gulch northeast of the Sarah Woods. Sampling site SW has a distinct lack of high metals concentrations, which suggests that the near surface flow is not highly impacted by the waste rock pile or mine workings. The high metals concentrations at PG-2, indicate that the Sarah Woods Mine waste pile, or possible mine drainage, or combination infiltrates into the shallow groundwater system that exits just upstream of PG-2.

Within Palmetto Gulch, the Sarah Woods Mine area is the third largest contributor of mining related contamination. The Sarah Woods site contributes a higher percentage of the overall contamination during high flow, and is relatively unimportant during low flow. The contaminating metals of interest at the Sarah Woods Mine site are copper, zinc, and cadmium. There are also high concentrations of aluminum, arsenic, and cadmium. When the drainage from the Sarah Woods Mine area converges with Palmetto Gulch, an aluminum oxide precipitate becomes visible along the streambed, indicating that a pH change occurs with an associated precipitation of metals due to the mixing with cleaner waters. Immediately downstream from the aluminum oxide occurrence is the inflow of a spring which further mixes with the drainage and exhibits an iron oxide staining. (See **Figure 26** under the Miners Bank.)

The Sarah Woods Mine's total copper load at sampling site PG-2 during high flow is equal to the total copper load at PG-6, indicating that the Sarah Woods site exhibits significant copper loading during high flow. During low flow the Sarah Woods Mine area contributes a small portion of the total copper load, in comparison to the Roy Pray Mine area. The Sarah Woods contribution to total copper loading during low flow is also much less than the Hough Mine drainage. The concentration of total copper at sampling site SW during high flow is 11 ug/L, and jumps to 270 ug/L at sampling site PG-2, indicating that the impacts of the Sarah Woods Mine area are not seen in the surface runoff but are seen in the near surface groundwater. The water from the Sarah Woods Mine site as measured at station PG-2 is above the acute and chronic toxicity values for aquatic life with respect to copper. With respect to total copper, the Sarah Woods Mine area is the second most concentrated after the Hough Mine during high flow.

The total zinc contribution of the Sarah Woods Mine area is important during the high flow sampling event, and is contributing 4.25 pounds (1,928 g) per day, which is roughly 15% of the total zinc loading in Palmetto Gulch. During low flow the Sarah Woods Mine area contributes 5% or less of the total zinc found in Palmetto Gulch. The concentration of total zinc during low flow was 716 ug/L, a higher concentration than during high flow, which is expected due to the lower amount of flow and less dilution of the mining related pollution. The dissolved and total zinc concentrations at PG-2 are above the acute and chronic toxicity values for aquatic life.

The Sarah Woods Mine area is also a contributor of cadmium during high flow. The mine contributes 16 g/day of total cadmium during high flow and 0.2 g/day during low flow. The total and dissolved cadmium concentration during high flow was 4 ug/L, which is above the acute and chronic toxicity values standards for aquatic life. During low flow, the Sarah Woods Mine area does not contribute significantly to total cadmium. The Roy Pray contributes almost all of

the total cadmium in Palmetto Gulch. The concentration of cadmium in Palmetto Gulch stays above the standards for aquatic life all the way to station PG-10 during high flow. The effects of cadmium are not seen in Henson Creek where the cadmium concentrations are below detection limits.

Sampling station SW does not show significant metals loading, indicating that it may be a shallow groundwater spring or cleaner mine drainage. Sampling site PG-2 does show significant metals loading of Cu, Zn, and Cd during high flow, indicating that it receives the bulk of the mining impacted waters. The water quality of PG-2 is contaminated either by the leaching of the Lower Sarah Woods Mine waste pile or through contamination of the groundwater by the mine workings. The high flow metals contribution of the Sarah Woods Mine site is much greater than the low flow metals contribution of the site. The high flow impact of the site indicates that most of the contamination is probably originating from the leaching of the Lower Sarah Woods Mine waste pile and not from underground mine drainage.

# **Reclamation Options**

The data at this site suggests that the main contributor of contamination to Palmetto Gulch from the Sarah Woods Mine, is the lower Sarah Woods Mine waste pile. The constraints to reclamation at this site, are the steep slopes of the upper Sarah Woods Mine workings and the lack of an access road from Engineer Pass to the site. Access to the upper Sarah Woods site is from Ouray County, on the other side of the ridge extending from Engineer Mountain. There is a four-wheel drive road to within 100 feet of the upper mine waste pile. The most appropriate reclamation at this site would be the removal and relocation of the lower Sarah Woods Mine waste pile from the drainage to a repository location near the mine waste pile to the east. The repository would then be amended with limestone, capped with suitable topsoil or tallus material scavenged from nearby sources, and revegetated if possible. Capping material could also be imported from another area if suitable material was not available near the site. The mine waste leachate analysis of the upper Sarah Woods indicates that it is less of a heavy metal source than the lower waste pile. Before making a final decision on whether the upper Sarah Woods should be reclaimed, it is recommended that mine waste samples below the surface be analyzed, to make certain that preferential accumulation of metals on the surface of the lower waste pile is not taking place. Furthermore, it is recommended that the presence or absence of mine drainage be investigated. This can be accomplished through research and excavation of the collapsed portal at the Lower Sarah Woods Mine waste pile.

# Miners Bank Mine

The Miners Bank Mine is located on the Miners Bank MS. #309 patented mining claim approximately 17.5 miles west of Lake City, Colorado in Hinsdale County. Located in the Galena Mining District at N37° 58' 20.900", W107° 34' 36.300", the elevation of the Mine site is 12,550 feet immediately southwest of the Roy Pray Mine site. Waste sample #8 is from the mine waste associated with the shaft. The shaft was backfilled within the Hinsdale AML hazard abatement project in 2002. The feature has since then settled to create a partial re-opening of the feature. Station DM-2 is a seep or spring flow which is immediately adjacent and south of the stream and is located on the Miners Bank vein.

# Geology and Mine Workings

As mentioned under the Roy Pray section, a fairly exhaustive underground and surficial sitespecific geologic investigative report of the Roy Pray site was prepared for the BLM by Bruce Stover of Hayward Baker in 2001. The Roy Pray crosscut intersects the Miners Bank vein at +232' from the portal. The Miners Bank Vein strikes roughly N20°E, dipping from 80° to 84° east where it is surficially exposed. The mine is developed in the Tertiary Andesite Porphyry member of the Silverton Volcanics (Tap), with the vein trending generally parallel to the Andesite Porphyry-Burns member (Tbb) contact. The Miners Bank Vein likely intersects the Burns member at a relatively shallow depth (150 feet), which may play a crucial role in groundwater hydrology. The Miners Bank is a typical quartz-sulfide fissure type vein with the chief gangue mineral being massive white quartz with pyrite, sphalerite, galena and minor silver mineralization. The vein width reportedly varies from three to 20 feet.

# Mine Waste

The waste pile associated with the Miners Bank shaft was mostly eliminated for fill material during the 2002 AML shaft closure. The remnant pile contains less than 50 cubic yards of un-oxidized pyrite, galena and sphalerite. The historic impact from the pile however has created an approximate 2,000 square feet kill zone devoid of vegetation in an equal area to the previous pile footprint. Leachate results from dump sample #8 follow. The Miners Bank waste rock ranked 7<sup>th</sup> out of 66 dumps sampled.

Miners Bank Waste Pile (Site #8)

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    |
| 3.05 | 148     | 3217.2  | 96.7    | 31.4    | 1151.6  | 5942.2  | 235.0   | BDL     | 5494.7  |

# Water Quality Impacts

The Miners Bank Mine was not sufficiently bracketed during high flow to make any detectable conclusions. The Miners Bank vein complicates interpretations made between PG-2, down stream impact monitoring station of the Sarah Woods, and PG-2B, down stream impact monitoring station of the Roy Pray site. Along the Miners Bank vein, spring DM-2 is located, which enters Palmetto Gulch immediately above PG-2. DM-2 could be associated with either the Roy Pray Mine workings or the Miners Bank Mine workings, both of which are along the vein. Due to insufficient flows, DM-2 was never sampled but was observed to contribute small amounts of flow to Palmetto Gulch. It is in this stretch that very visual evidence indicates a stream pH change as shown by the aluminum staining and partial iron staining on the stream bed adjacent to DM-2. During storm events or high flows, impacts from the Miners Bank dump could flow along vein towards where the change in staining appears. Additional sampling is needed to determine if there are impacts from the Miners Bank waste pile along the vein which could be related to DM-2.

# **Reclamation Options**

Reclamation of the denuded area as well as limestone amendments to the remaining small mine waste could be performed. Measuring the improvement to water quality by reclaiming the Miners Bank waste rock pile would be difficult because most impacts occur during snowmelt, when the area is inaccessible. The re-opened shaft needs to be re-sealed and the remaining waste material could be utilized as backfill and mixed with cement to act as a neutralizing and strengthening agent or by applying limestone to reduce the acidity of the waste rock.



Figure 26. Palmetto Gulch crossing Miners Bank Vein – DM-2 area.

# Roy Pray Mine

The Roy Pray Mine is located at N37° 58' 25.794", W107° 34' 31.940" on public lands approximately 17 miles west of Lake City, Colorado in Hinsdale County. Elevation of the site is 12,450 feet in the Galena Mining District. The adit was sealed with a grated door closure within the Henson Creek AML hazard abatement project in 2000.

# Geology and Mine Workings

A fairly thorough underground and surficial site-specific geologic investigative report of the Roy Pray site was prepared for the Bureau of Land Management by Bruce Stover of Hayward Baker in 2001. The Roy Pray workings lie entirely within the Tertiary Porphyry Andesite (Tap) member of the Silverton Volcanics (Tap), and develop the Miners Bank Vein. The Miners Bank Vein strikes roughly N20°E, dipping from 80° to 84° east where it is surficially exposed. The Miners Bank is a typical quartz-sulfide fault vein with chief gangue mineral being massive white quartz with pyrite, spahlerite, galena and minor silver mineralization. The vein width reportedly varies from three to 20 feet. The Miners Bank Vein likely intersects the Burns member (Tbb) at a relatively shallow depth (<150'), which may play a crucial role in groundwater hydrology.

The Roy Pray crosscut is driven entirely in andesite-porphyry rock on a N45°W heading. The crosscut intersects the Miners Bank Vein at +232 feet from the portal. The workings along the Miners Bank Vein extend S30°W off the crosscut for a distance of 970'. Amounts of sludge as a result of historic oxidation of vein material slowly increase as the back is approached to reach a maximum depth of over 48 inches.

# Mine Waste

The waste pile associated with the Roy Pray adit was relocated in 2005 to prevent any hydrological impacts to the pile and to prevent the leaching of metals from the waste into the adjacent perennial stream. During removal, the sub-surface material proved to contain a large amount of suspected rock outcropping. What also was revealed was an indication of the original creek bed prior to the diversion created by the deposition of mine waste. A series of seeps were also encountered on the southern perimeter area after the mine waste was excavated. It is certain that the pre-mine flow path of the creek flowed to the north through the break in the outcrop. What remains uncertain is whether the creek flowed further to the north or where it currently has been redirected to the east. Subsurface material was not excavated in the buffer area between the relocated stream and the slope which leads to the existing sediment pond. Excavation would have allowed for the entire stream flow to be redirected to the sediment pond which is not desired at this point. Flows from spring snowmelt will show further indications of the original flow path of the creek.

### Water Quality Impacts

The Roy Pray adit was further sealed with a concrete bulkhead to provide hydrologic collection and prevention of acid mine drainage at a location +140'. Seven days after the final grouting the valve was closed (October 22, 2003). Prior to construction, during the summers of 2001 and 2002, two separate engineering and geological investigative studies were performed. The Miners Bank Lode, MS. #309 is situated above the bulkhead location.

During the 2005 project, interim flows between the portal and the bulkhead required the installation of a permanent collection and diversion structure prior to the removal of the mine waste. An NDS system and HDPE apron is still being used to collect the adit flow and distinct inflow which is connected to 6' Schedule 40 PVC pipe to an outflow location 80' to the southeast of the portal. Sampling site DM-3 represents these collected in-flows.

#### Sampling Station DM-3 Concentrations

| Flow     | Diss Al | Diss Cd | Diss Cu | Diss Fe | Diss Pb | Diss Mn | Diss Zn |
|----------|---------|---------|---------|---------|---------|---------|---------|
| Regime   | ug/l    |
| Low-Flow | 927     | 15      | <20     | 76800   | 13      | 27700   | 7110    |

None of the metals measured exceed aquatic life standards with respect to a measured total alkalinity of 81.8 mg/l.

Sampling Station DM-3 Loading - Low-flow

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | 20.024   | 0.324    | BDL      | 1658.959 | 0.281    | 598.349  | 153.583  |
| Total     | 22.033   | 0.302    | BDL      | 1790.726 | 0.281    | 611.309  | 161.576  |



Figure 27. Roy Pray Bulkhead - 137' location

Stream stations PG-2 and PG-2B bracket the Roy Pray site including other seeps which have developed since the waste piles were removed from the drainage and relocated to the east. These seeps could be indicative of historic flows prior to the deposition of the mine waste into the hydrologic regime. Station PG-6 is located approximately 2,000 feet further downstream and further assesses the impact of the Roy Pray area.

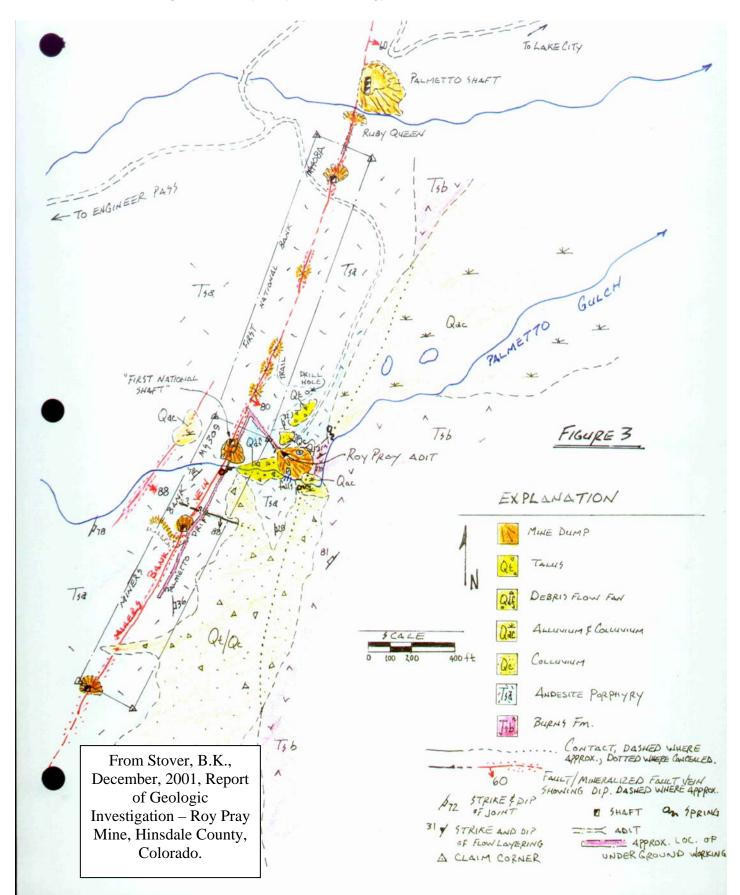
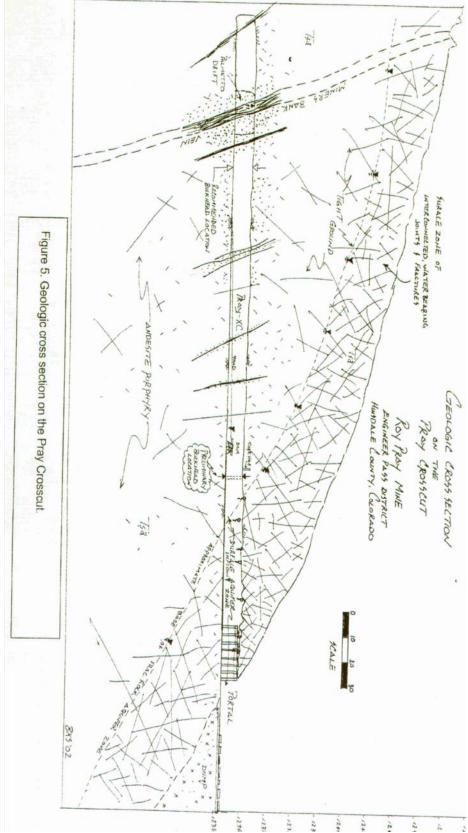




Figure 28. Roy Pray Mine Geology and Miners Bank Vein Location



<u>Figure 29.</u> Roy Pray Cross-section map - From Stover, B.K., December, 2001. Report of Geologic Investigation – Roy Pray Mine, Hinsdale County, Colorado

The low-flow loading shown during mine waste removal work at station PG-2b is not surprising considering that the short term liberation of metals as a result of waste removal is expected. Of note is that at station PG-2b there is very little difference between dissolved and total metal loading. One would expect a larger suspended or total load due to the recent reclamation work.

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | BDL      | 0.194    | 2.042    | BDL      | BDL      | 60.611   | 23.758   |
| Total     | 163.683  | 0.194    | 5.218    | 3.987    | BDL      | 53.481   | 23.207   |

Sample PG-2 – Loading - Low-flow

Sample PG-2B - Loading - Low-flow

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | 342.459  | 2.283    | 32.757   | 662.087  | 1.390    | 657.124  | 352.385  |
| Total     | 549.920  | 2.581    | 33.154   | 701.793  | 1.290    | 734.550  | 366.282  |

During low flow sampling, water quality measured at PG-6 indicates tremendous loading that occurs between station PG-2b and PG-6. There is a two to three times increase in aluminum, cadmium, copper, manganese and zinc loading in this reach. Not surprisingly, lead and iron are attenuating in this reach. There is notable rock outcropping which occurs in this section. The question that these observations raise is if there are impacts beyond the inflow drainage from DM-3 and the effects of post mine waste removal. One theory is that the Roy Pray reservoir behind the bulkhead is creating diffuse flows down gradient. It could be argued that the andesite porphyry is too tight at the reservoir and bulkhead location to allow diffuse flows to occur. On the other hand contact with the Burns formation down gradient could be providing a conduit for outflows.

Low flow Loading Difference Dissolved – PG-2 and PG-6

| Station | Diss Al  | Diss Cd | Diss Cu | Diss Fe  | Diss Pb | Diss Mn  | Diss Zn |
|---------|----------|---------|---------|----------|---------|----------|---------|
|         | g/day    | g/day   | g/day   | g/day    | g/day   | g/day    | g/day   |
| PG2     | BDL      | 0.194   | 2.042   | BDL      | BDL     | 60.611   | 23.758  |
| DM3     | 20.024   | 0.324   | BDL     | 1658.959 | 0.281   | 598.349  | 153.583 |
| PG2b    | 342.459  | 2.283   | 32.757  | 662.087  | 1.390   | 657.124  | 352.385 |
| PG6     | 1190.417 | 4.914   | 73.033  | 236.743  | BDL     | 1462.895 | 795.100 |

Low flow Loading Difference Total - PG-2 and PG-6

| Station | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|---------|----------|----------|----------|----------|----------|----------|----------|
| PG2     | 163.683  | 0.194    | 5.218    | 3.987    | BDL      | 53.481   | 23.207   |
| DM3     | 22.033   | 0.302    | BDL      | 1790.726 | 0.281    | 611.309  | 161.576  |
| PG2b    | 549.920  | 2.581    | 33.154   | 701.793  | 1.290    | 734.550  | 366.282  |
| PG6     | 1290.921 | 5.360    | 72.363   | 305.980  | BDL      | 1514.264 | 801.801  |

# **Reclamation Options**

The next phase of the project will be the covering of the mine waste material with a liner. Since a 3:1 (horozontal:vertical) slope was achieved, it is likely that a geosynthetic liner will be used. Additionally, the fracture in-flows between the bulkhead and Roy Pray portal and the upflow in front of the portal will be re-evaluated to determine which outflow path should be retained with the possibility of routing the outflows to the sediment pond. Discussions have also taken place regarding whether to leave or remove the sediment pond. If the pond is removed, a diversion will have to be constructed to collect the seeps which flow into the sediment pond and re-route them around the sediment pond. The sediment pond would then be dried up with the sediments being removed and enveloped into the relocated mine waste pile and covered with the chosen liner. Work is anticipated to be completed during the 2006 construction season.

To ascertain whether loading increases are potentially tied to the Roy Pray Mine reservoir behind the bulkhead seal, one method would be to drill into the reservoir from the top and add a tracer followed by intense monitoring down gradient from the portal within and below the Burns formation. It is recommended not to perform this until any effects from the mine waste reclamation can be eliminated as being accountable for the increases in loading within this stretch of stream.

# Prospects Between the Roy Pray and Palmetto Mines

These sites are located between the Roy Pray Mine and the Palmetto Mine at an elevation range of 12,300 to 12,450 feet. There are three distinct prospects along the Mine's Bank Vein that are included in this grouping. The uppermost waste rock pile, sampled as site #14, is located west of the access road to the Roy Pray Mine at N37° 58' 31.6", W107° 34' 30.5". The middle prospect sampled as waste site #15 is located southwest of the Palmetto Mine at N37° 58' 37.5" W107° 34' 28.0". The lowermost prospect was not sampled, but is located immediately southwest of the Palmetto Mine above the draining mine sampled as water quality site DM-5. The lowermost site is located at N37° 58' 39.0", W107° 34' 27.2".

All three prospect sites are accessible to heavy equipment although the lower prospect site is on a steep slope that will make any reclamation difficult.

# Geology and Mine Workings

All three prospect adits are developed along the Miners Bank vein system within the Andesite Porphyry (Tap) member of the Silverton Volcanics. The prospect adits are all collapsed. Based upon the size of the waste rock piles, the upper prospect has less than 100 linear feet of workings, the middle prospect has less than 45 feet of workings, and the lower prospect has less than 350 feet of workings.

# Mine Wastes

Two of the three waste rock piles were sampled. Photos of the waste piles are shown in **Figures 30, 31**, and **32**. The upper pile was sampled as site #14 and the middle pile was sampled as site #15. The lower pile was similar to the middle pile. The upper and lower piles appeared to have seasonal drainage from the collapsed adits or there is leaching of the waste rock during snowmelt that has resulted in iron staining of the rock below the waste piles. There is a large kill zone below the upper and lower piles. Runoff from the middle pile flows to the lower pile. The middle pile blocks a small drainage. The blockage has resulted in erosion of the waste rock and increases leaching of heavy metals from the pile. Selected results from the waste rock leachate testing are given below.

Upper Prospect (Site #14)

| pН   | Acidity | Diss |
|------|---------|------|------|------|------|------|------|------|------|
| s.u. | mg/l    | AI   | As   | Cd   | Cu   | Fe   | Mn   | Pb   | Zn   |
|      |         | ug/l |
| 3.77 | 54      | 76   | BDL  | BDL  | 28   | 329  | 103  | BDL  | 211  |

Middle Prospect (Site #15)

| pН   | Acidity | Diss |
|------|---------|------|------|------|------|------|------|------|------|
| s.u. | mg/l    | AI   | As   | Cd   | Cu   | Fe   | Mn   | Pb   | Zn   |
|      |         | ug/l |
| 3.32 | 38      | 124  | BDL  | 1.3  | 45   | 562  | 75   | BDL  | 466  |

# Water Quality Impacts

Water quality impacts from these sites are seasonal. There were no measurable in-stream impacts from these sites, although these sites were not bracketed. Visual evidence shows that there is probably some seasonal drainage from the collapsed adits at the upper and lower sites. This is probably water that enters the near surface mine workings during spring snowmelt. The middle waste rock pile blocks a small stream channel, which intuitively would result in water quality degradation and definitely results in erosion of waste rock into Palmetto Gulch. The upper waste rock pile is not in a stream channel, so there is no impact from erosion, but leachate and/or seasonal mine drainage does enter a small ephemeral channel. The toe of the lower waste rock pile is in the same small ephemeral channel that flows through and over the middle waste rock pile. There is some erosion of the lower waste rock into Palmetto Gulch.

Figure 30. Upper Prospect on Miners Bank Vein



Figure <u>31.</u>



Figure 32. Lower Prospect on Miners Bank Vein



# **Reclamation Options**

Degradation of water quality from the waste rock piles and possible mine drainages is seasonal. The upper waste rock pile probably has the least effect on in-stream water quality although it has the largest vegetation kill zone. The middle waste pile probably has the largest effect on water quality because of leaching of the waste rock where the pile blocks the drainage. The lower waste pile is the closest to the perennial receiving stream, so any leachate or eroded material will readily enter Palmetto Gulch.

At a minimum, the waste rock at the middle and lower piles should be pulled away from the stream channel. Eventually, the lower and middle piles should be removed and disposed of in a relatively high and dry location. The upper waste rock pile and the vegetation kill zone should have ground limestone applied to neutralize the acidity and reduce heavy metal mobilization.

# Wyoming Mine

The Wyoming Mine is in the Galena Mining District located on public lands approximately 17 miles west of Lake City, Colorado in Hinsdale County. Elevation of the site is 12,900 feet in a hanging basin southeast of the top of Engineer Pass. Waste sample #9, located at N37° 58' 9.623", W107° 34' 32.881", was from the upper pile which has had hydrological run-on control ditch work completed. Sample DM4 is from the draining adit. There are two shafts related to the upper workings which contain a large amount of debris from a collapsed shaft building. There is evidence of a collapsed adit immediately to the south of the shaft surface level. The shafts were sealed with a polyurethane closure within the Henson Creek AML hazard abatement project in 2000. There was also a related small mine building to the west of the site which was totally knocked over by an avalanche in 2004.

### Geology and Mine Workings

The Wyoming Mine develops a fissure type vein, the Emperor Wilhelm, that strikes N40°E, and dips 72°SE. The shafts and adit all lie within the Burns member (Tbb) of the Silverton Volcanics, but underground workings may intersect the Andesite Porphyry member at depth due to the proximity of the contact. The Emperor Wilhelm vein within the Wyoming Mine was reported to have a five foot wide fissure with an eighteen inch "paystreak" composed of solid galena and iron pyrites. During the 1883 Mining Directory report (A. Von Schulz), after sorting, ore grade showed 200 ounces per ton from one ninety-foot shaft. Since the report, another shaft and adit were put into development with very little information available as to connections, drift lengths or maps.

# Mine Waste

Two waste piles exist at the Wyoming Mine. As a result of reclamation efforts, the lower pile was removed out of the drainage and was surficially amended with limestone. The results below (#9) are from the upper waste pile which has had hydrological control work performed to route run-on flows around the west side of the pile. Additionally, a sediment pond was retained immediately below the pile which catches any precipitates from any high flows which may occur. The mine flow from station DM-4 which is located between the two waste piles at present flows to the east and does not come in contact with the lower pile. Leachate results show the waste to have a slightly elevated level of aluminum. Overall, the Wyoming waste rock pile ranked 11<sup>th</sup> out of 66 sites sampled.

Wyoming Mine Waste Pile (Site #9)

| рΗ   | Total Acidity | AI    | Cd   | Cu    | Fe    | Mn    | Pb   | Zn     |
|------|---------------|-------|------|-------|-------|-------|------|--------|
| s.u. | mg/l          | ug/l  | ug/l | ug/l  | ug/l  | ug/l  | ug/l | ug/l   |
| 3.23 | 78            | 583.1 | 40.4 | 179.5 | 302.3 | 138.9 | BDL  | 6613.9 |

# Water Quality Impacts

An attempt was made to reopen the draining adit to assess the potential for hydrologic collection and prevention of acid mine drainage. The project was initiated during the fall 2002 and was completed in 2004. The adit was shown to have been completely packed with cementitious sludge which was impossible to excavate even with the combination of hydro-jetting. One theory proposed which could explain the tightness of the waste or sludge material was that the feature could have been the recipient of mine waste from the upper level workings. The adit was sealed with a grated HDPE culvert closure with a door to provide future access. Two sediment control ponds remain within the drainage. Seasonal flows from the upper level collapsed adit have been collected and are re-routed to the run-on diversion ditch to the northwest around the upper waste pile.

The adit was inaccessible after an attempt was made to locate the feature during the high-flow sampling event due to snow conditions. Water quality impacts from this site are hard to assess due to the disappearance of most of the annual flows into the channel material.

| S | Sample DM-4 - Concentration - Low-flow |         |         |         |         |         |  |  |  |
|---|----------------------------------------|---------|---------|---------|---------|---------|--|--|--|
|   | Flow                                   | Diss Al | Diss Cd | Diss Cu | Diss Fe | Diss Pb |  |  |  |

| Flow     | Diss Al | Diss Cd | Diss Cu | Diss Fe | Diss Pb | Diss Mn | Diss Zn |
|----------|---------|---------|---------|---------|---------|---------|---------|
| Regime   | ug/l    |
| Low-Flow | 320     | 10      | 43      | 1270    | 10      | 551     | 2060    |

Sample DM-4 - Loading - Low-flow

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | 7.67     | 0.24     | 1.03     | 30.45    | 0.24     | 13.21    | 49.39    |
| Total     | 11.10    | 0.24     | 1.24     | 79.36    | 2.32     | 12.85    | 48.43    |

At station PG-4, which is the measurable outflow from the Wyoming drainage, all metals from DM=4 are shown to have decreased significantly if not entirely.

Sample PG-4 - Loading - Low-flow

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | BDL      | BDL      | BDL      | BDL      | BDL      | BDL      | 1.499    |
| Totals    | BDL      | 0.006    | BDL      | BDL      | BDL      | BDL      | 1.481    |

During high flow, there are considerably more impacts from the Wyoming and Emperor Wilhelm waste rock piles. It is assumed that the majority of the metals measured at sampling site PG-4 come from leaching of the waste rock piles. Concentrations and loading from this area are shown below. The data shows that the waste rock in this area is principally a source of zinc, although cadmium concentrations are elevated. Approximately 5% of the zinc loading in Palmetto Gulch occurs in this area.

Sample PG-4 - Concentration - High-flow

| Flow<br>Regime | Diss Al<br>ug/l | Diss Cd<br>ug/l | Diss Cu<br>ug/l | Diss Fe<br>ug/l | Diss Pb<br>ug/l | Diss Mn<br>ug/l | Diss Zn<br>ug/l |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| High-          | וחס             | 2               | וחס             | וחס             | וחם             | 00              | 507             |
| Flow           | BDL             | 3               | BDL             | BDL             | BDL             | 88              | 537             |

Sample PG-4 - Loading - High-flow

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | BDL      | 3.6      | BDL      | BDL      | BDL      | 107.0    | 653.0    |
| Total     | BDL      | 3.6      | BDL      | 280.9    | BDL      | 109.4    | 631.1    |

# Reclamation Options

The reclamation at the Wyoming site has been completed. There is still an interest in accessing the mine workings related to the draining adit from above. The thought is that mine working voids could be determined with investigatory drilling.

# Emperor Wilhelm MS. #1309

The Emperor Wilhelm Mine is located on the Emperor Wilhelm MS. #1309 patented mining claim in Palmetto Gulch approximately 17.5 miles west of Lake City, Colorado in Hinsdale County. Located at N37° 58' 17.538", W 107° 34' 23.658", the elevation of the mine site is 12,400 feet east of the Roy Pray Mine in the Galena Mining District. Both upper and lower mine features were sealed within the Hinsdale County AML hazard abatement project in 2002.

# Geology and Mine Workings

The Emperor Wilhelm lies on the same vein (Emperor Wilhelm) as the Wyoming and has been referenced as an extension of the Wyoming Mine. The five foot wide fissure vein contains galena and iron pyrites in a quartz gangue. The tunnel in 1883 was reported to be over 160 feet deep with an associated 20 feet deep shaft (A. Von Schulz).

# Mine Waste

Mine waste sample #12 is from the upper workings while sample #13 is from the lower workings. An approximate 500 feet distance separates the portals. A small width denuded drainage path from the upper pile extends downslope most of the way towards the lower pile. The mine waste pile associated with the upper workings is approximately 750 cubic yards in size. Mineralization as seen in the field is more evident on the upper dump than the lower dump. This is also shown in the leachate results which follow. The Upper Emperor Wilhelm ranked 10<sup>th</sup> and the lower waste pile ranked 34<sup>th</sup> out of 66 sites sampled.

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    |
| 3.0  | 106     | 593.1   | BDL     | 26.6    | 246.8   | 1343.1  | 1400.4  | 88.2    | 4158.6  |

Upper Emperor Wilhelm Waste Pile (Site #12)

Lower Emperor Wilhelm Waste Pile (Site #13)

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss    | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | Mn ug/l | ug/l    | ug/l    |
| 3.85 | 22      | 45.0    | BDL     | 3.6     | 56.5    | 12.0    | 320.6   | BDL     | 555.1   |

## Water Quality Impacts

Water quality impacts from the vein related to the Emperor Wilhelm workings are difficult to establish. A large wetland area exists at the base of the slope that contains the mine. Any impacts from storm events or spring snowmelt is ameliorated within these wetlands. Storm water impacts from the dumps would flow along the vein towards PG-4. Results of PG-4 also shown under the Wyoming Mine narrative show evidence of negligible impacts during low flow.

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | BDL      | BDL      | BDL      | BDL      | BDL      | BDL      | 1.499    |
| Total     | BDL      | 0.006    | BDL      | BDL      | BDL      | BDL      | 1.481    |

Sample PG-4 - Loading - Low-flow

During high flow, there are considerably more impacts from the Wyoming and Emperor Wilhelm waste rock piles. It is assumed that the majority of the metals measured at sampling site PG-4 come from leaching of the waste rock piles. Concentrations and loading from this area are shown below. The data shows that the waste rock in this area is principally a source of zinc, although cadmium concentrations are elevated. Approximately 5% of the zinc loading in Palmetto Gulch occurs in this area.

## Sample PG-4 - Concentration - High-flow

| Flow<br>Regime | Diss Al<br>ug/l | Diss Cd<br>ug/l | Diss Cu<br>ug/l | Diss Fe<br>ug/l | Diss Pb<br>ug/l | Diss Mn<br>ug/l | Diss Zn<br>ug/l |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| High-          |                 |                 |                 |                 |                 |                 |                 |
| Flow           | BDL             | 3               | BDL             | BDL             | BDL             | 88              | 537             |

Sample PG-4 - Loading - High-flow

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | BDL      | 3.6      | BDL      | BDL      | BDL      | 107.0    | 653.0    |
| Total     | BDL      | 3.6      | BDL      | 280.9    | BDL      | 109.4    | 631.1    |

#### **Reclamation Options**

Reclamation of the upper waste pile is possible with limestone amendments and/or sub-surface burial. Any attempts to reclaim the lower pile would be costly due to the steep slope and machine access restrictions. The measurability of water quality improvement from this endeavor would probably not be cost effective.

## Hoffman MS. #538 and Engineer MS. #860

The Hoffman Mine is located on the Hoffman MS. #538 patented mining claim within the furthest east tributary of Palmetto Gulch. The Engineer Mine is located on the Engineer MS. #860 patented mining claim at the top of the ridge headwater area to the same tributary. Both mines are approximately 16.5 miles west of Lake City, Colorado in Hinsdale County. The Hoffman is located at N 37° 58' 7.000", W 107° 34' 23.000", at an elevation of 12,650 feet. The Engineer is located at N37° 58' 1.461", W 107° 34' 28.713" at an elevation of 12,900 feet. All mine features related to both mines are collapsed.

## Geology and Mine Workings

The Hoffman and Engineer Mines develop the Hoffman vein which strikes N30°E and dips nearly vertically. The Hoffman vein is likely associated with the caldera resurgence and development of the Eureka Graben. Both mines are located within the Burns member (Tbb) of the Silverton Volcanics. Extensive hydrothermal alteration along the ridge top near the Engineer Mine is likely associated with ore deposition.

The Hoffman Mine reportedly contains two fissure veins one to two feet in width accessed by a 55 foot shaft and a 40 foot drift. The vein accessed by the Engineer Mine contains quartz carrying native, brittle, and ruby silver with assay reports from 59 to 137 ounces silver per ton. In 1883 a 32 foot shaft was reported (A. Von Schulz).

#### Mine Waste

Mine waste sample #11 is from the Hoffman Mine while sample #10 is from the Engineer. The mines are approximately 900' apart. A small width denuded drainage path from the upper pile extends downslope most of the way towards the lower pile. The mine waste pile associated with the Hoffman Mine is approximately 1,200 cubic yards in size. The waste pile at the Engineer site is estimated to be 3,000 cubic yards. Mineralization as seen in the field is more evident on the upper dump than the lower dump. This is also shown in the leachate results which follow.

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    |
| 3.3  | 38      | 152.4   | BDL     | 1.6     | 16.7    | 213.8   | 1023.5  | BDL     | 372.0   |

Engineer Mine Waste Pile (Site #10)

### Hoffman Mine Waste Pile (Site #11)

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    |
| 6.58 | 100     | 16.8    | 44.4    | BDL     | 11.9    | BDL     | 14.7    | BDL     | 46.9    |

The sample from the Engineer Mine is questionable in its true representation of the overall dump. Visually the dump shows similarities with the other highly mineralized mine dumps in the Palmetto area. Regardless, the potential of remediating any impacts from the dump is very low due to its location and inaccessibility. Overall, the Engineer waste rock pile ranked 39<sup>th</sup> and the Hoffman ranked 14<sup>th</sup> out of 66 sites sampled.

#### Water Quality Impacts

The first sampling station measuring impacts from this tributary is PG-3. Many outcrops exist between the mines and PG-3 including mineralized zones which cross the drainage. During the low flow sampling, station PG-3 is a short distance down from where water flows were even measurable. There is visual evidence of iron staining up drainage from this location in the area where the drainage crosses the cliff outcrop. Results of PG-3 are shown below.

# Sample PG-3 - Loading Dissolved

| Flow<br>Regime | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|----------------|----------|----------|----------|----------|----------|----------|----------|
| Low-Flow       | BDL      | 0.11     | BDL      | BDL      | BDL      | 20.88    | 31.99    |
| High-          |          |          |          |          |          |          |          |
| Flow           | BDL      | 3.1      | BDL      | BDL      | BDL      | 157.1    | 672.1    |

Sample PG-3 - Loading Total

| Flow     | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Regime   |          |          |          |          |          |          |          |
| Low-Flow | 14.026   | 0.11     | BDL      | BDL      | BDL      | 20.88    | 32.153   |
| High-    |          |          |          |          |          |          |          |
| Flow     | 1020.6   | 3.1      | 55.8     | 3763.3   | BDL      | 1657.1   | 652.0    |

During High flow, these sites are a source of principally zinc and cadmium. Approximately 5% of the total zinc loading in Palmetto Gulch comes from this area. Most of the impact is probably due to leaching of the waste rock piles, but there is considerable mineralization in the area. Additional water sampling below these sites is needed to ascertain the actual amount of loading attributable to the waste rock piles.

## **Reclamation Options**

Due to the inaccessibility of both dumps relative to road access, reclamation of the two waste piles is questionable. The Hoffman site would require crossing an expanse of tundra while the Engineer site could be accessed from above. Both dumps could be reclaimed with limestone amendments and or sub-surface burial. The Engineer dump would require extensive up-slope handling with a dragline. The measurability on water quality from this endeavor would not be cost effective.

## Palmetto Mine MS. #233

The Palmetto Mine is located on both the Palmetto MS. #233 patented mining claim and public lands managed by the BLM. The mine is immediately adjacent to CR-20, the Engineer Pass road, approximately 17 miles west of Lake City, Colorado in Hinsdale County. Located at N37° 58' 41.387", W 107° 34' 23.491", the elevation of the mine site is 12,160 feet in the Galena Mining District. A shaft feature exists on-site with related shaft house debris and a boiler. The shaft is filled with trash and standing water.

## Geology and Mine Workings

The Palmetto Mine exploits the northern extension of the Miners Bank Vein which strikes N10°E and dips to the east at 76° in the vicinity of the mine. Most, if not all of the workings are developed in Tertiary Andesite Porphyry (Tap) of the Silverton Volcanics, with the possibility of intersection with the Burns member (Tbb) at depth. The fissure type vein is located in a fine-grained porphyry between two to five feet in width containing sulphides of iron, zinc, and copper mixed with ruby and native silver. The main shaft is located off the vein to the east, intersecting and developing the vein at depth. The main twin compartment shaft was reported to be over 350 feet in depth with drifts aggregating over 1,650 feet in development. Production reported in the 1883 report was 15 tons per day (A. Von Schulz).

## Mine Waste

Mine waste sample #17 is from the mine site. The dump is situated immediately adjacent to perennial water flows in Palmetto Gulch with portions of the pile actively eroding into the drainage. Sloughed material is aggrading in the flatter portion of the drainage approximately 300' down stream. The central portion of the dump exhibits a fair amount of alpine grass species wherever a small veneer of cover material is present. The mine waste pile is approximately 3,500 cubic yards in size. The Palmetto waste rock pile ranked 19<sup>th</sup> out of 66 sites sampled. The leachate results follow.

Palmetto Mine Waste Pile (Sample #17)

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    |
| 4.8  | 38      | 393.9   | BDL     | 5.7     | 96.6    | 47.6    | 1597.0  | BDL     | 879.1   |

Water Quality Impacts

Sampling stations PG-7 and PG-7a, less the impacts from DM-5, bracket the impacts to Palmetto gulch from the mine site during low-flow sampling. During high-flow sampling, sampling stations PG-7 and PG-8, less the impacts from DM-5, bracket the mine site. As shown below with the data tables, water quality is not impacted from the Palmetto site even though there is active erosion on the mine dump. The trend still shows with the high flow total values. Metal fallout may be happening within the aggrading section between the sampling stations. More importantly, during low flows a significant dilution source occurs from seeps and small flows from the northeast area of the mine.

Low-flow - Loading - PG-7 and PG-7a - Dissolved

| Station | Diss Al | Diss Cd | Diss Cu | Diss Fe | Diss Pb | Diss Mn | Diss Zn |
|---------|---------|---------|---------|---------|---------|---------|---------|
|         | g/day   |
| PG7     | BDL     | 0.099   | BDL     | BDL     | BDL     | 8.040   | 10.125  |
| PG7a    | BDL     | BDL     | BDL     | BDL     | BDL     | 6.077   | 6.280   |

Low-flow - Loading – PG-7 and PG-7a - Total

| Station | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|---------|----------|----------|----------|----------|----------|----------|----------|
| PG7     | BDL      | 0.099    | BDL      | BDL      | BDL      | 8.437    | 8.834    |
| PG7a    | BDL      | BDL      | BDL      | BDL      | BDL      | 5.875    | 6.483    |

High-flow - Loading – PG-7 and PG-8 - Dissolved

| Station | Diss Al | Diss Cd | Diss Cu | Diss Fe | Diss Pb | Diss Mn | Diss Zn |
|---------|---------|---------|---------|---------|---------|---------|---------|
|         | g/day   |
| PG7     | BDL     | BDL     | 3469.7  | 1896.6  | BDL     | 1857.6  | 2755.7  |
| PG8     | BDL     | BDL     | 661.0   | BDL     | BDL     | 1252.5  | 1403.2  |

High-flow - Loading – PG-7 and PG-8 - Total

| Station | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|---------|----------|----------|----------|----------|----------|----------|----------|
| PG7     | 11156.5  | 22.3     | 5254.7   | 11491.2  | BDL      | 1846.4   | 2649.7   |
| PG8     | 5763.7   | 11.6     | 2215.0   | 5879.6   | BDL      | 1322.0   | 1554.0   |

# **Reclamation Options**

The BLM currently has a task order for reclamation of the Palmetto site with DMG. The alternatives for reclamation include the removal and placement of the waste at either the Roy Pray site, the upper BLM tailings location above the Ute-Ule, or reclamation on-site. Reclamation on-site is the preferred alternative. The mine waste would be excavated from the high water mark of the perennial stream flow. The final excavated grade would not impact the shaft. Permanent up-slope run-on diversions would need to be constructed to route perennial flows diverted from CR-20 around the site further to the northeast. The area for the relocated mine waste currently exhibits saturated soils. The vegetation and soils would be excavated and separately stockpiled for later re-distribution. After the up-slope diversions and placement area was excavated, mine waste would be placed, contoured, amended with limestone pending acid/base test results, and capped with the stockpiled soils and vegetation. If more mineralized material was encountered during the mine waste excavation, options could include isolating the mine waste with geofabric or capping the waste with a geotextile liner.

# HENSON CREEK ABOVE CAPITOL CITY SITE DESCRIPTIONS

Mine sites in this area chosen for reclamation feasibility studies include: the Golconda Mine, the Chicago Tunnel, and the Hanna mill tailings. Smaller sites discussed below include: DM-6 - unnamed mine below the confluence with Palmetto Gulch, the Highland Chief Mine, the Moro Tunnel, the Mill across from Thoreau's Cabin, two small mines in Redcloud Gulch, six mines in Schafer Gulch, two mines on Dolly Varden Mountain, one mine in Horseshoe Basin, three mines in Schafer Basin, and one mine in Henson Creek. These smaller sites were not researched to determine the name of the mine, so they will be briefly discussed according to their descriptive location name below (see **Figures 6 -13** for locations).

## BLM Adit Below the Confluence of Palmetto Gulch

DM-6 is located along Henson Creek at creek level, at an elevation of 11,320 feet. This adit was not sampled during high flow sampling because the flow was not consistent enough to sample. The site was sampled during low flow, and had a flow of .001 cfs. All of the major metals concentrations (Zn, Cu, Cd, Mn) were below detection limits from this site, and the sulfate concentration at this site was less than the Henson Creek Headwaters sampling site HC-1. The mine drainage from this site is in general cleaner than the water in Henson Creek at HC-2. No reclamation action is recommended at this site, other than a safety closure, to prevent access to the workings.

## Mill Across from Thoreau's Cabin

This site is located near the confluence of Palmetto Gulch and Henson Creek at an elevation of 11,450 feet at N37° 58' 54.8" W107° 33' 34.7". The volume of tailings at this site is estimated to be less than 50 cubic yards. The mill tailings at this site were sampled as site #18. Overall, the mill tailings ranked 28<sup>th</sup> out of 66 waste rock piles sampled.

# Mine Near Stream in Redcloud

This site is located in Redcloud Gulch at an elevation of 11,950 feet at N37° 58' 54.8" W107° 33' 34.7". The waste rock pile at this site is estimated to contain 150 cubic yards. The waste rock pile was sampled as site #19. This waste rock pile had very low concentrations of heavy metals. Overall, this waste rock pile ranked 49<sup>th</sup> out of 66 waste rock piles sampled. The heavy metals from Redcloud Gulch are principally from natural sources.

# Mine on Southwest side of Redcloud

This site is located in Redcloud Gulch at an elevation of 12,050 feet at N37° 58' 12.7" W107° 33' 50.3". The waste rock pile at this site is estimated to contain 150 cubic yards. The waste rock pile was sampled as site #20. This waste rock pile had very low concentrations of heavy metals and is far above any receiving stream. Overall, this waste rock pile ranked 58<sup>th</sup> out of 66 waste rock piles sampled. The heavy metals from Redcloud gulch are though to be principally from natural sources.

## Mine on South Side of Henson Between Redcloud and Schafer

This site is located at an elevation of 11,400 feet at N37° 58' 28.7" W107° 33' 9.5". The waste rock pile at this site is estimated to contain 500 cubic yards. The waste rock pile was sampled as site #25. This waste rock pile had moderately high concentrations of heavy metals. This mine site is located on a talus slope near the Schafer Gulch access road crossing of Henson Creek. The talus provides a pathway to Henson Creek for any leachate, but impacts from this site are thought to be minimal. Overall, this waste rock pile ranked 26<sup>th</sup> out of 66 waste rock piles sampled.

## Mine Near Ridge on North Side of Schafer

This site is located in Schafer Gulch at an elevation of 12,300 feet at N37° 58' 8.1" W107° 33' 32.4". The waste rock pile at this site is estimated to contain 700 cubic yards. The waste rock pile was sampled as site #21. This waste rock pile had very low concentrations of heavy metals. Overall, this waste rock pile ranked 55<sup>th</sup> out of 66 waste rock piles sampled.

## North Mine at Headwaters of Northwest Schafer Trib

This site is located in Schafer Gulch at an elevation of 12,240 feet at N37° 57' 55.1" W107° 33' 49.9". The waste rock pile at this site is estimated to contain 500 cubic yards. The waste rock pile was sampled as site #22. This waste rock pile had very low concentrations of heavy metals. Overall, this waste rock pile ranked 56<sup>th</sup> out of 66 waste rock piles sampled.

#### South Mine on Southwest side of Northwest Schafer Trib

This site is located in Schafer Gulch at an elevation of 12,360 feet at N37° 57' 46.2" W107° 33' 44.5". The waste rock pile at this site is estimated to contain 1,000 cubic yards. The waste rock pile was sampled as site #23. This waste rock pile had relatively low concentrations of heavy metals but exhibited severe erosion and a large vegetation kill zone below the waste pile. However, the waste pile is distant from any stream to transport eroded or leached metals. In addition the entire basin between the site and the main stem of Schafer Gulch contains significant wetlands to ameliorate any further affects. Overall, this waste rock pile ranked 37<sup>th</sup> out of 66 waste rock piles sampled.

## Golconda Mine

The Golconda Mine is located near the headwaters of Schafer Gulch in Hurricane Basin. The mine is located on public lands managed by BLM. The mine is approximately 17 miles west of Lake City, Colorado in Hinsdale County via CR20 for 15 miles turning onto the Schafer Gulch road just past Rose's Cabin. At an elevation of 12,360 feet, the Golconda site (mine dump sample #26) is located at N37° 57' 19.615", W107° 32' 50.826". The site has a collapsed adit

with related collapsing structures immediately in front of the feature. A well preserved unique boarding house is a short distance to the north. The BLM performed a stabilization project on this structure several years ago. Mine dump sample #27 is located at N37° 57' 15.000", W107° 32' 48.900" approximately 600 feet to the south of sample #26 at an elevation of 12,400 feet. The upper site mine feature was sealed with a grate within the Henson Creek AML hazard abatement project in 2000. The adit was draining approximately 10 gpm during the September reconnaissance. Sample station BGO picks up the water quality impacts from the site.

### Geology and Mine Workings

The Golconda Mine lies within an area of highly faulted and hydrothermally altered Eureka member (Tse) rocks of the Sapinero Mesa Tuff. The mine appears to develop a set of veins consistent with the northern extension of the Denver Fault. The Denver Fault is a normal fault, striking northeast and dipping to the northwest, and is one of the major faults within the Eureka Graben.

The Golconda Mine appears to consist of two separate levels, one associated with older workings closer to the vein, and the other level being a cross-cut drift. Based on mine inspector reports from the 1920's, the Golconda Tunnel (cross-cut drift) was driven below the old workings and intercepted the main vein at 1,000 feet. Drifts totaling at least 2,000 feet were driven both east and west along the vein, with two raises driven nearly 500 feet upward to intersect the old workings. The cross-cut drift was continued another 700 feet but does not appear to have intercepted any additional veins. Inspector reports indicated that the vein was approximately 18 inches wide and was mined for both gold and silver within a quartz gangue. Work in the early 1980's was conducted to intercept the Golconda Tunnel through another cross-cut due to impassable ice within the main tunnel.

### Mine Waste

The Mine waste pile associated with sample #26 is fairly extensive exhibiting a large amount of country rock and/or tallus material. The country rock or and or tallus is hard to differentiate within the approximate 5,000 cubic yards of Mine waste.

| Γ | рΗ   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|---|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|   | s.u. | mg/l    | ug/l    |
|   | 4.16 | 28      | 12.3    | BDL     | 1.4     | 14.7    | 13.7    | 221.0   | 29.3    | 290.5   |

Lower Goldonda Waste Pile (Site #26)

The upper Golconda site (#27) exhibits significantly elevated levels of cadmium, copper, lead, manganese and zinc. In addition to sulfur concentrations, all these metals exhibit concentrations that rank in the top ten dumps of the entire Henson watershed. The site has more recently been worked which could contribute to these high concentrations. This could be related to relatively newer unoxidized vein material encountered during the movement of waste material. The size of the upper waste pile is scattered and has been thinly bladed. Color differentiation is evident between the tallus and relatively un-oxidized mine waste. Leachate results from sample #27 follow.

Lower Golconda Waste Pile (Site #27)

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss    | Diss Pb | Diss Zn  |
|------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| s.u. | mg/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | Mn ug/l | ug/l    | ug/l     |
| 4.87 | 20      | 808.1   | BDL     | 826.9   | 10925.2 | 69.2    | 3297.3  | 2935.9  | 120377.2 |

Overall, the lower waste rock pile ranked 46<sup>th</sup> and the upper waste pile ranked 21<sup>st</sup> out of the 66 sites sampled.

## Water Quality Impacts

The first sampling station measuring impacts from the Golconda site is station BGO. Even though the upper Golconda waste pile has considerable elevated metals, stations BGO and SCG exhibit insignificant loading. By the time flows reach lower Schafer Gulch, much dilution occurs from side tributaries and from the Chicago Tunnel (DM-7). In addition to dilution, significant oxidation occurs from water falls between the stations BGO and SCG.

### Reclamation Options

Access to the Golconda site is fairly treacherous although there does exist a passable fourwheel drive road to the site. The lower dump does not justify any reclamation work to be completed. The upper dump however should be prioritized for reclamation. An acid/base accounting should be completed to determine what neutralization amounts will be required to ameliorate the acid production over time. Once the calcium carbonate equivalence amounts have been determined, the entire dump should be excavated, amended with limestone, placed higher out of the drainage and capped with on-site tallus. Shorter downstream distance water quality sampling should show impacts from the site which station SCG does not. Even though longer distance impacts are not seen, reclamation should be justified with closer examination. In addition to the mine waste reclamation, the draining adit should be sampled.

## Mine Below Siegel Mountain in Schafer Gulch

This site is located in Schafer Gulch at an elevation of 12,420 feet at N37° 57' 28.3" W107° 33' 9.5". The small waste rock pile at this site is estimated to contain 250 cubic yards. The waste rock pile was sampled as site #24. This waste rock pile had very low concentrations of heavy metals. Overall, this waste rock pile ranked 52 out of 66 waste rock piles sampled.

#### Lower Mine on Northwest Side of Gravel Mountain

This site is located in Schafer Gulch at an elevation of 12,900 feet at N37° 57' 26.6" W107° 33' 29.1". The waste rock pile at this site is estimated to contain 700 cubic yards. The waste rock pile was sampled as site #28. This waste rock pile had very low concentrations of heavy metals. Overall, this waste rock pile ranked 64 out of 66 waste rock piles sampled.

### Upper Mine on Northwest Side of Gravel Mountain

This site is located in Schafer Gulch at an elevation of 13,000 feet at N37° 57' 28.6" W107° 33' 28.3". The waste rock pile at this site is estimated to contain 500 cubic yards. The waste rock pile was sampled as site #29. This waste rock pile had very low concentrations of heavy metals. Overall, this waste rock pile ranked 59<sup>th</sup> out of 66 waste rock piles sampled.

## Chicago Tunnel

The Chicago Mine site is located to the southeast where Schafer Gulch enters Henson Creek. The mine is located on the Dorchester MS. #20145 patented mining claim. The site is approximately 16.5 miles west of Lake City, Colorado in Hinsdale County via CR-20 for 15 miles turning onto the Schafer Gulch road just past Rose's Cabin. The Chicago site (dump sample #30) is located at N 37° 58' 19.233", W 107° 32' 39.119", at an elevation of 11,200 feet. The site has a draining adit (station DM-7) with flows that range from 95.15 gpm during the high flow sampling to 128 gpm during the low flow sampling. This lower flow measured during the high

flow event compared to the higher flow during the low flow sampling event could indicate that the source of the drainage is deeper ground water. The adit was sealed with a grate within the Henson Creek AML hazard abatement project in 2000.

### Geology and Mine Workings

The Chicago Tunnel lies within the Burns member (Tbb) of the Silverton Volcanic series at the northeastern extent of the Eureka Graben. No obvious surficial expressions of a vein have been documented by previous field mapping, so the exact feature mined is unclear. Most likely the Chicago Tunnel was driven as a cross-cut to intersect a northeasterly trending mineralized structural feature associated with the Eureka Graben. No mapping or description of the underground workings was discovered during completion of this report.

### Mine Waste

The mine waste pile associated with sample #30 is fairly extensive exhibiting a large amount of country rock and/or tallus material. The Chicago tunnel was a cross-cut tunnel accessing the Chicago patented mining claims to the south. The entire mine bench in front of the adit consists of this country rock excavated for the tunnel. The total volume is estimated to be approximately 3,500 cubic yards of material. As would be expected, the high content of country rock resulted in low metal concentrations from the waste rock leachate as shown below. The Chicago Tunnel waste rock pile ranked 53<sup>rd</sup> out of 66 sites sampled.

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    |
| 5.58 | 18      | 27.6    | BDL     | BDL     | BDL     | 54.5    | 8.7     | BDL     | 35.1    |

### Chicago Tunnel Waste Rock (Site #30)

### Water Quality Impacts

The Chicago tunnel drainage is station DM-7. The mine drainage flows over the mine dump and shows visual armoring of dark oxides assumed to be manganese and iron. The flow continues into the forest creating significant marshy vegetation and substrate conditions prior to entering into Schafer Gulch and beaver ponds in and along Henson Creek. Sampling site SCG on Schafer Gulch is above the mine drainage and the mine drainage and Schafer Gulch are bracketed by sampling sites HC-3 and HC-4. Between HC-3 and HC-4 metal concentration and loading decreases for all constituents except for zinc during low flow and high flow. Virtually all the increase in zinc load between HC-3 and HC-4 can be accounted for by the Chicago Tunnel Mine drainage and Schafer Gulch. The natural bog and beaver ponds apparently removes most of the metals from Schafer Gulch and the Chicago Tunnel. Loading results from DM-7 follows.

| Flow     | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Regime   |          |          |          |          |          |          |          |
| Low-Flow | BDL      | 3.486    | BDL      | 381.413  | BDL      | 1255.106 | 573.862  |
| High-    |          |          |          |          |          |          |          |
| Flow     | BDL      | BDL      | BDL      | BDL      | BDL      | 278.5    | 101.1    |

Sample DM-7 - Loading - Dissolved

Sample DM-7 - Loading - Totals

| Flow     | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Regime   |          |          |          |          |          |          |          |
| Low-Flow | 170.834  | 3.486    | BDL      | 1743.203 | BDL      | 1262.079 | 522.961  |
| High-    |          |          |          |          |          |          |          |
| Flow     | BDL      | BDL      | BDL      | 632.7    | BDL      | 340.7    | 101.1    |

## **Reclamation Options**

Because of the natural amelioration which occurs from DM-7, no reclamation or treatment of water draining from the Chicago tunnel is recommended at this time. Zinc removal could be increased through the addition of limestone to the bog/beaver pond area. Because of poor access, this would have to be done by hand or by helicopter. The potential negative impacts to the biology of the bog area outweigh any potential benefits to water quality.

# Upper Dolly Varden

This site is located on Dolly Varden Mountain at an elevation of 12,500 feet at N37° 59' 21.7" W107° 32' 14.6". The waste rock pile at this site was split into two separate samples due to color. The waste rock pile was sampled as sites #31 and #32. The pile is estimated to contain 700 cubic yards. This waste rock pile had very low concentrations of heavy metals. Overall, this waste rock pile ranked  $64^{th}$  and  $66^{th}$  out of 66 waste rock piles sampled. No reclamation is recommended at this time.

## Lower Dolly Varden

This site is located on Dolly Varden Mountain at an elevation of 12,220 feet at N37° 59' 13.8" W107° 32' 7.7". The waste rock pile at this site is estimated to contain 500 cubic yards. The waste rock pile was sampled as site #33. This waste rock pile had low to moderate concentrations of heavy metals. Overall, this waste rock pile ranked 45<sup>th</sup> out of 66 waste rock piles sampled. No reclamation is recommended at this time.

## Highland Chief Mine

This draining adit is located above Engineer Pass Road to the north of Henson Creek. The dump has a large mill building located on it and the waste pile is estimated to be 5,500 cubic yards in size. The adit is driven into the cliffs behind the building and has a DMG mine closure on it. The coordinates of the Highland Chief Mine are N 37° 58' 35.0", W 107° 31' 18.8".

The mine drainage is contributing generally cleaner water to Henson Creek and the mine waste pile ranked 31<sup>st</sup> out of 66 mine waste piles sampled, making the site a low priority.

## Horseshoe Basin Mine West

This site is located in Horseshoe Basin at an elevation of 12,450 feet at N37° 57' 30.7" W107° 31' 41.9". The waste rock pile at this site is estimated to contain 450 cubic yards. The waste rock pile was sampled as site #34. This waste rock pile had low concentrations of heavy metals. Overall, this waste rock pile ranked 56<sup>th</sup> out of 66 waste rock piles sampled. No reclamation is recommended.

# Schafer Basin Mine West Side

This site is located in Schafer Basin at an elevation of 12,300 feet at N37° 57' 39.9" W107° 30' 28.3". The waste rock pile at this site is estimated to contain 250 cubic yards. The waste rock pile was sampled as site #36. This waste rock pile had high concentrations of heavy metals, particularly copper and lead. The waste rock had a chemical rank of 12 and an overall rank of 37<sup>th</sup> out of 66 waste rock piles sampled. Access to this site is by foot only, so any remediation of the waste pile would be costly. No reclamation is recommended.

### Schafer Basin Mine East Side Upper

This site is located in Schafer Basin at an elevation of 12,400 feet at N37° 57' 31.6" W107° 30' 18.6". The small waste rock pile at this site is estimated to contain 200 cubic yards. The waste rock pile was sampled as site #37. This waste rock pile had the lowest overall concentrations of heavy metals of all the dumps sampled. Overall, this waste rock pile ranked 60<sup>th</sup> out of 66 waste rock piles sampled. No reclamation is recommended

### Schafer Basin Mine East Side Lower

This site is located in Schafer Basin at an elevation of 12,100 feet at N37° 57' 50.3" W107° 30' 6.5". The waste rock pile at this site is estimated to contain 1,000 cubic yards. The waste rock pile was sampled as site #38. This waste rock pile had low to moderate concentrations of heavy metals. Overall, this waste rock pile ranked 47<sup>th</sup> out of 66 waste rock piles sampled. No reclamation is recommended

### Moro Tunnel

This draining adit (DM-9) is located along the mainstem of Henson Creek, approximately 1.5 miles from Capitol City, and the North Fork of Henson Creek. The access to the site is along Engineer Pass, and then up an abandoned four-wheel drive road. The site is 2/10 of a mile off of Engineer Pass Road. The coordinates of this location are N 37° 59' 50.9", W 107° 28' 48.2"

The flow during both high and low-flow sampling events was .001 cfs, a very small amount of flow. Along with minimal flow, the site also had generally low metals concentrations in the mine drainage. The waste rock pile was sampled as site #39. The leachate results show that the waste rock has very low concentrations of heavy metals. The waste rock pile ranked 51<sup>st</sup> out of 66 sites sampled.

The minimal flow combined with the low metals concentrations from the Moro Tunnel, make this site an insignificant draining mine impact to Henson Creek. In general the mine drainage from the Moro Tunnel is less contaminated than the Henson Creek water just downstream of the site. The recommended reclamation at this site is no action.

#### Hanna Mill Tailings

This site is located west of Capitol City, along the mainstem of Henson Creek, about one mile upstream of the North Fork of Henson Creek confluence. The elevation of the site is 9,700 feet, and the coordinates are N 37° 59' 55.3", W 107° 28' 25.0". There is an access road to the site off of Engineer Pass, which is passable by four-wheel drive vehicles. The road is blocked by wooden barriers part way, where the land changes from public land to private land. This site was sampled as waste rock sampling site #40, and was bracketed by water quality sites HC-5 and HC-6. The historic Hanna Mill building is located adjacent to the tailings spill site. The

building is mainly a foundation, with few standing walls. The mill building ran from the 1890's through the 1920's, and was used to mill the ore from the Moro Mine. The remnants of a tramway from the Moro Mine to the mill is still visible from the site. Presently, the landowner is planning to remove the historic structure and use the site as a building platform for a cabin. The reclamation on the Hanna Mill Tailings Spill did not affect any historic structures.

### Geology and Mine Workings

There are no mine workings associated with the Hanna Mill Tailings, because the site was used as a milling location only. There is a small prospect shaft immediately above the mill building, which was approximately 50 feet deep, based upon the amount of waste rock. The ore that was milled at this site came primarily from the Moro Mine, which is located to the north of the Hanna Mill.

The site sits in a wide section of the Henson Creek Valley, the underlying material is a combination of alluvial and glacial material. Henson Creek becomes very sinuous in the area and has multiple flow channels.

## Mine Waste

The waste at this site is comprised of mill tailings and waste rock, processed from the Moro Mine. The mill tailings are about 1/8 of a mile from the mill building to the east. The mill building is privately owned and the mill tailings spill is on BLM land. The tailings material is sand sized particles of crushed ore. There is some waste rock material underneath the mill building along with a small prospect with approximately 500 cubic yards of material located to the north of the mill building.

The tailings spill was thought to have occurred during operation of the mill in the 1920's, but after reclamation of the site in 2005, and the discovery of plastic materials within the spilled tailings, the spill is now thought to have occurred after 1950, and may have been caused by a large storm event. The estimated amount of spilled mine waste was 1,500 cubic yards.

The mill tailings spill was sampled as waste rock sampling site #13. The Hanna mill tailings sit above Henson Creek along the flood plain of the river. The tailings are never submerged in the stream, but are subject to erosion during storm events. The mill tailings ranked 23<sup>rd</sup> out of the 66 mine waste piles sampled. Selected results from the waste rock leachate testing are given below.

| pН   | Acidity | Diss | Diss | Diss | Diss   | Diss | Diss  | Diss | Diss   |
|------|---------|------|------|------|--------|------|-------|------|--------|
| s.u. | mg/l    | AI   | As   | Cd   | Cu     | Fe   | Mn    | Pb   | Zn     |
|      |         | ug/l | ug/l | ug/l | ug/l   | ug/l | ug/l  | ug/l | ug/l   |
| 5.58 | 44      | 59.7 | BDL  | 56.5 | 1594.9 | 38.3 | 153.5 | 1071 | 8919.4 |

Hanna Mill Tailings Spill (Site #13)

The largest concern for the Hanna Mill Tailings spill was the ability of the tailings to wash into the stream during storm events. The sand-size particles along with the location near Henson Creek and within the floodplain made the Hanna Tailings a priority for the BLM and DMG when they reclaimed the site in September of 2005 (see **Figure 33** below).

This site is located in a flat valley near the confluence with the North Fork of Henson Creek. This site is subject to flooding during storm events. The waste rock beneath the Hanna Mill building sits well above the creek level, but the spilled tailings sat right near Henson Creek, and were partially in Henson Creek during high-flow storm events. During the summer of 2005, the same year as the Hanna Mill Tailings Spill Removal Project, a portion of the spilled tailings within Henson Creek were washed away, along with some of the other spilled tailings material that sat higher above the creek. It is estimated that approximately 200 cubic yards of material may have been lost during this storm event, mostly from the main spill area. Below the mill tailings and the spill is alluvial material consisting of large boulders and cobbles. There is plenty of topsoil material in this broad valley and reclamation and revegetation was simple, because of the broad flat nature of the valley and ease of access.



Figure 33. Hanna Mill Tailings during reclamation in September 2005

## Water Quality Impacts

The only areas of concern at this site are the mill tailings spill and the small waste rock pile. There was no vegetation growing on the mill tailings spill, or the small prospect's mine waste. The site was bracketed by sample sites HC-5 and HC-6. The effects of the tailings spill were not detected in Henson Creek during high or low-flow sampling events. The Hanna Mill Tailings most likely played a larger role in contaminating Henson Creek during extremely high flows and storm events, due to the leaching and sheet washing of the sand-sized particles. The reclamation at the Hanna Mill Tailings Spill began after the low-flow sampling event in September of 2005.

#### **Reclamation Options**

The Hanna Mill Tailings site is mixed ownership between a private landowner and the BLM. The private landowner controls most of the Hanna Mill Tailings site along with the mill building. The BLM owns the tailings spill and the small prospect shaft above the mill building. In 2005 the BLM funded the Hanna Mill Tailings Spill Removal Project located on BLM land and the DMG designed and managed the project. The project started in September of 2005 and was completed at the end of October 2005. The project consisted of relocating the spilled tailings material and revegetation. The spilled tailings material was moved to the BLM's Ute-Ule repository site, approximately four miles down Engineer Pass from the Hanna Mill site. After the material was removed, the site was regraded to a stable configuration and straw wattles were placed along contour. The site was also mulched with straw, but was not crimped due to time constraints and inclement weather. Most of the spilled tailings were relocated, but there were several small pockets of material that were not reclaimed, due to the difficulty of access through large stands of willows. The original estimate of spilled tailings material was 1,500 cubic yards, but during the project in 2005, only 500 cubic yards of tailings were found and relocated to the repository. It is estimated that another 50 cubic yards of spilled tailings were left in place.

The Hanna Mill site has not been reclaimed because it is on private land. The current landowner has chosen not to reclaim the site because the site is slated to be the location of a mountain cabin. The landowner plans to use the flat area of the mill building foundation and associated waste rock as a foundation. The foundation will be poured concrete, which should help to immobilize some of the metals in the waste rock pile. If land ownership changes, recommended reclamation for this site would either be to remove the waste rock to the Ute-Ule repository or to create an on-site repository and revegetate.

In 2006 the BLM plans to fund the relocation of the small prospect shaft's mine waste pile to the Ute-Ule repository and then revegetate the disturbed area. The recommended course of reclamation for this site, is to continue with the plans to remove the prospect shaft's mine waste pile to the Ute-Ule Repository and revegetate. For the mill tailings spill site, reclaimed in 2005, the recommended course of reclamation is to monitor the vegetation growth at the site and possibly fertilize the site again and crimp the mulch if necessary in the Spring of 2006. For the waste rock below the Hanna Mill Building, the recommendation for reclamation is no action, due to the private landowners plans to cap the site with a concrete foundation.

## NORTH FORK OF HENSON CREEK SITE DESCRIPTIONS

Mine sites in this area chosen for reclamation feasibility studies include: The Vulcan Mine, Broker Lode, the Excelsior Lode, Yellow Medicine Mine, Mountain Belle Lode, and a mill tailings site in Yellowstone Gulch referred to as the Yellowstone Mill Tailings. The Capitol City Mine, the Czar, and the Czarina Mine were investigated and determined to be insignificant sources. Each of the sites chosen for reclamation feasibility studies will be discussed below. The Czar, Czarina and Capitol City Mines are discussed briefly.

## North Fork Henson Creek

## Geologic Setting

North Fork Henson Creek drains two distinct geologic areas, outside the San Juan-Uncompany caldera and intracaldera. Within the caldera outcrops are generally from the Silverton Volcanic series with numerous tertiary intrusives of Oligocene and Miocene age. Lavas and volcaniclastics of early Oligocene age and Ute Ridge Tuff dominate the bedrock outcrops outside the caldera margin. Intrusives are rhyolitic to monzonitic in composition and confined to the intracaldera zone, specifically Capitol City and Broken Hill. The sharp contact between older Oligocene Tuffs and lavas with younger volcanics highlights the thickness of volcaniclastic and extrusive accumulations within the down-dropped intracaldera zone.

No major mapped faults are noted within the North Fork area, but some minor faulting and fracturing has been observed. Faulting along the caldera margin appears confined to the actual ring fault resulting from collapse, with little visible propagation into the surrounding rock. Lamination and bedding planes within the volcaniclastics are erratically oriented probably due to proximity to the caldera margin. Near the caldera margin volcaniclastics, specifically Henson Formation, strike tangential to the margin and dip inward from the caldera walls.

Alteration within the North Fork Henson Creek is isolated to Yellowstone Gulch, Matterhorn Creek and Broken Hill. These areas of hydrothermal alteration exhibit extensive limonitic staining indicative of hydrothermal pyrite mineralization resulting from solfataric processes. Along with pyritic mineralization, hydrothermal processes have altered much of the feldspathic minerals within the rock mass to sericite and kaolinite. The areas of most intense hydrothermal alteration appear to be associated with intrusions of monzonite in Yellowstone Gulch and rhyolite on Broken Hill. This association is tenuously based on proximity and not actual geochemical analysis. Numerous iron springs outcrop within upper Matterhorn Creek and are assumed to be a product of the extensive limonitic alteration within upper Matterhorn Creek and Broken Hill.

Mineralization of economic importance is confined to areas surrounding Yellowstone Gulch and Capitol City. The veins are simple fissure type, composed mainly of quartz, galena and sphalerite. When compared with other mineralized areas of Henson Creek, the Capitol City assemblage is distinct suggesting a unique source or mineralization process. There is no known economically valuable mineralization associated with the hydrothermal alteration in Matterhorn Creek and Broken Hill. High concentrations of aluminum and iron within Matterhorn Creek can be correlated to leaching of hydrothermally altered rock within the drainage.

# Vulcan Mine

The Vulcan Mine is located to the northwest of Capitol City along the North Fork of Henson Creek. The mine is located on the public lands boundary between USFS and BLM managed land. The site is approximately 10.5 miles west of Lake City, Colorado in Hinsdale County via CR20 for 9.5 miles turning onto the forward North Fork of Henson Creek road in Capitol City. An abandoned road accesses the site from the four-wheel drive North Fork of Henson Creek road. There is a multiple story loadout-milling structure on site which is deteriorating from the lack of a roof. Concrete foundations also exist to the east of the loadout-milling structure. The Vulcan site (dump sample #41) is located at N 38° 0' 57.086", W 107° 28' 51.215", at an elevation of 10,300 feet. The collapsed adit is draining with flows that range from 17.9 gpm during the high flow sampling to 40 gpm during the low flow sampling. There are a series of ponds that intercept the adit flow prior to its confluence with the North Fork of Henson Creek.

## Geology and Mine Workings

The Vulcan Mine is located within the Eureka Member (Tse) of the Sapinero Mesa Tuff, but appears to intersect both the Andesite Porphyry Member of the Silverton Volcanic series (Tap) and Monzonite Porphyry (Tmp) at depth. The mine developed a vein striking N7°-15°W and dipping between 50° and 80° to the southwest. The vein appears to trend roughly perpendicular to the Lake City caldera, and lies at the northern margin of an extensively hydrothermally altered region associated with monzonitic intrusions to the Capitol City area.

The vein is accessed by an 800 foot crosscut, with about 1,000 feet of development along the vein. Reports indicated that the vein is a simple fissure type, with some evidence of movement along the dip. The vein is irregular in width, and is composed of mostly quartz, galena, sphalerite and pyrite, with minor amounts of chalcopyrite, gray copper, hessite, sylvanite, native silver, native tellurium and native gold (Irving and Bancroft, 1911). Extensive oxidation within the ore body was observed to a depth of 400 feet by Irving and Bancroft.

## Mine Waste

The mine waste pile associated with sample #41 is fairly extensive exhibiting a large amount of country rock and/or tallus material. The Vulcan tunnel was a cross-cut tunnel accessing the Vulcan patented mining claims to the west. The total volume is estimated to be approximately 4,000 cubic yards of material. A small amount of tailings exists under the loadout-milling

structure. The isolated tailings pile was not part of this sampling effort. The Vulcan waste rock pile exhibits relatively low metal concentrations. The waste rock ranked 42<sup>nd</sup> out of 66 sites sampled.

Vulcan Mine Waste Rock (Site #41)

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss    | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | Mn ug/l | ug/l    | ug/l    |
| 4.87 | 20      | 173.2   | BDL     | 13.1    | 128.0   | 47.7    | 24.0    | 539.6   | 888.4   |

## Water Quality Impacts

The Vulcan drainage is station DM-10. The drainage exhibits a dense moss community along the immediate exit pathway from the adit along with algae growth within the drainage. Any impacts from the site enter into the North Fork of Henson Creek and were measured at station NFHC-2. The drainage from the adit flows over the mine dump then continues into a series of ponds. These ponds could be effectively removing much of the metal loading, particularly iron. There is a significant increase in metal loading from sampling site NFHC-1 to NFHC-2. Virtually all this increase can be accounted for from Materhorn Creek. When taking the upper North Fork chemistry into consideration, during low flow it appears that manganese potentially is passing through any amelioration that the settling ponds may have. In comparison to the Vulcan Mine drainage, the impacts from Matterhorn Creek are magnitudes higher in concentrations and in loading on station NFHC-2. Loading results from both DM-10 and NFHC-2 follow.

### Sample DM-10 - Loading - Totals

| Flow     | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Regime   |          |          |          |          |          |          |          |
| Low-Flow | BDL      | BDL      | BDL      | 209.160  | BDL      | 164.688  | 14.824   |
| High-    |          |          |          |          |          |          |          |
| Flow     | BDL      | BDL      | BDL      | 98.8     | BDL      | 77.1     | 7.7      |

## Sample NFHC-2 - Loading - Totals

| Flow   | Al g/day  | Cd g/day | Cu g/day | Fe g/day  | Pb g/day | Mn g/day | Zn g/day |
|--------|-----------|----------|----------|-----------|----------|----------|----------|
| Regime |           |          |          |           |          |          |          |
| Low-   |           |          |          |           |          |          |          |
| Flow   | 34513.901 | BDL      | BDL      | 20254.637 | BDL      | 2965.279 | 421.296  |
| High-  |           |          |          |           |          |          |          |
| Flow   | 124506.5  | BDL      | BDL      | 78393.0   | BDL      | 10375.5  | 2997.4   |

#### Reclamation Options

Except for manganese, natural amelioration appears to be cleaning any impacts the site may have from iron and zinc. Due to the complex treatment necessary for manganese removal and due to the fairly remote access restrictions which the site has, treatment options are extremely limited. The flows could be routed within a more defined channel around the waste piles for a more permanent route towards the settling ponds.

# **Capitol City Mine**

The Capitol City Mine is located on the west side of Yellowstone Gulch at an elevation of 10,650 feet at N38° 01' 6.6" W107° 28' 14.2". The Capitol City Mine waste rock was sampled as site #44. There is no mine drainage from the site, and there is no indication of water quality impacts from the waste rock pile. The waste rock pile at this site is estimated to contain 3,700 cubic yards. This waste rock pile had moderate concentrations of heavy metals. Overall, this waste rock pile ranked 29<sup>th</sup> out of 66 waste rock piles sampled.

### Yellow Medicine Mine

This site is located at N38° 1' 10.786", W107° 28' 7.793" along the southern flanks of Broken Hill in the Yellowstone Gulch drainage, approximately 3,100 feet. northeast of the confluence with the North Fork of Henson Creek. The Yellow Medicine Mine lies on two privately held lode mining claims, Yellow Medicine and Mountain Belle, and consists of at least two distinct mine waste piles. A four-wheel drive road from the North Fork Henson Creek road provides access to the lower waste pile located at approximately 10,700 feet. The two waste piles were sampled as waste rock sampling sites #45 (Yellow Medicine), and #46 (Mountain Belle). Both sites #45 and #46 have various amounts of historic debris including wood, metal and glass. Historical records indicate that structures existed on both the upper and lower dumps during periods of mining prior to 1900, and during the early 1940's. The upper dump, site #45, has foundations and collapsed structure debris indicating that some type of structure was associated with the upper portal. Little historical evidence, other than portions of a loadout, remain intact on the lower dump, site #46, probably due to construction of the existing residence.

### Geology and Mine Workings

The Yellow Medicine Mine developed a "simple fissure" type vein that strikes N13°W, and dips 79°NE. Investigations of the vein in a 1911 report by Irving and Bancroft indicate that the vein lays in contact with pyroxene andesite flows (Tap) and a monzonite porphyry intrusion (Tmp). More recent surficial geologic mapping of the area by Lipman in 1976, appear to indicate that the vein may lie in contact with the biotite quartz latites of the Burns (Tbb) formation instead of pyroxene andesite flows. Regardless, substantial hydrothermal alteration, both propylitic and solfataric, has rendered much of the rock surrounding the vein undistinguishable.

The vein is developed on three levels, each separated by approximately 150 feet vertically. At the time of site inspections, both the lowest level (1<sup>st</sup>) and middle level (2<sup>nd</sup>) were inaccessible due to collapsed portals. The upper level (3<sup>rd</sup>) was open, but no underground investigations were conducted. No map of the workings was available for the mine. Mine inspection reports between 1948 and 1951 indicate that most of the stoping was conducted on the 2<sup>nd</sup> and 3<sup>rd</sup> levels, Mountain Belle and Yellow Medicine respectively. The vein on levels one and three was 1-4 feet wide and consisted of galena, sphalerite, pyrite, chalcopyrite and quartz.

#### Mine Wastes

The mine waste associated with the Yellow Medicine Mine is located at two discreet waste piles associated with two different levels of mining at the site. The upper waste pile, sampled as site #45, is located on a steep slope directly below the upper mine portal. This waste pile is approximately 40 feet wide and 150 feet long, with an estimated volume of 1,300 cubic yards. Much of the waste pile is moderately cemented and aggrades from fine to coarse material from top to bottom. Few erosional features are located on the pile, but the lower portion of the pile lies within the high water channel of Yellowstone Gulch. There is some vegetation located on the waste pile, and no kill zone was noticed below the site. The lower waste pile, sampled as site #46, is composed of two lobes. The eastern lobe extends eastward from the adit toward Yellowstone Gulch. This lobe is relatively steep, well cemented, with few erosional features,

and has an estimated volume of 8,300 cubic yards. The upper lobe is located directly above a private residence, and appears to have been graded relatively flat to provide additional storage space. The volume associated with the upper lobe is estimated to be 3,000 cubic yards, bringing the total volume of mine waste for site #46 to 11,300 cubic yards. Aspen trees and other vegetation cover portions of both lobes. Site #45 ranked 33<sup>rd</sup> out of 66 waste rock sites sampled, and site #46 ranked 36<sup>th</sup> out of 66 waste rock sites sampled.

Mineralogy of both sites #45 and #46 were very similar in composition and consisted of pyrite, sphalerite and galena. Selected leachate results from the mine waste piles are shown below, and indicate elevated levels of zinc and lead. Much of the waste is heavily oxidized with extensive limonitic staining. Observed Mineralogy of the Yellow Medicine Mine is consistent with the quartz-galena-sphalerite grouping of Mines within the Capitol City area.

| pН   | Acidity | Diss Al | Diss | Diss | Diss | Diss | Diss | Diss  |
|------|---------|---------|------|------|------|------|------|-------|
| s.u. | mg/l    | ug/l    | As   | Cd   | Cu   | Fe   | Mn   | Pb    |
|      |         |         | ug/l | ug/l | ug/l | ug/l | ug/l | ug/l  |
| 4.32 | 20      | 117     | 8    | 156  | 74   | 138  | 720  | 1,657 |

Yellow Medicine - Yellow Medicine Mine 3<sup>rd</sup> Level (Site #45)

| Mountain Belle - Yellow Medicine Mine | 2 <sup>nd</sup> Level | (Site #46) |
|---------------------------------------|-----------------------|------------|
|---------------------------------------|-----------------------|------------|

| pН   | Acidity | Diss Al | Diss | Diss | Diss | Diss | Diss | Diss  |
|------|---------|---------|------|------|------|------|------|-------|
| s.u. | mg/l    | ug/l    | As   | Cd   | Cu   | Fe   | Mn   | Pb    |
|      |         | _       | ug/l | ug/l | ug/l | ug/l | ug/l | ug/l  |
| 5.2  | 54      | 158     | 49   | 156  | 74   | 573  | 138  | 6,029 |

# Water Quality Impacts

Water quality impacts related to the Yellow Medicine Mine are difficult to quantify due to the lack of bracketing along Yellowstone Gulch, but it is a possible source based on mineralogy, physical characteristics and proximity to the stream. Portions of both the upper and lower waste dumps, site #45 and #46 respectively, lay within the stream channel of Yellowstone Gulch. In-field testing of pH during field reconnaissance above and below the mine sites indicated no pH change across the waste piles though. Both waste piles have elevated levels of leachable zinc, but are not ranked very high when compared to other dumps in the area. Regardless, the possibility exists that some waste is being leached during high flow events along the toe of both waste piles, and can account for some of the elevated zinc and other trace metal loading in Yellowstone Gulch.



Figure 34. Yellow Medicine Mine, Upper Dump (Site #45)

# . Reclamation Options

Construction of surface hydrologic controls is the recommended method for reclamation at both sites. The lower dump, site #46, is easily accessible for heavy equipment and poses the least difficulty for reclamation. The eastern lobe of the waste pile should be pulled back from the stream channel and consolidated onto the upper lobe of the pile near the collapsed portal. Some minor road building onsite will be required to accomplish the waste removal and consolidation. The lack of erosional features on the waste dump indicate that overland flow is probably not a major water quality problem, but the construction of diversion channels above the site would be relatively inexpensive, and could prove beneficial in the long run.

The upper waste pile, site #45, poses a much greater challenge to reclamation due to the inaccessibility of the site. The access road was heavily overgrown and probably too narrow in some locations for heavy equipment to travel. Additionally, access to the toe of the dump would be extremely difficult for heavy equipment due to the steepness of the hill. Some work to move waste away from the stream channel could be accomplished by hand or with the assistance of a slusher/dragline type device, but probably at a very high cost. The limited water quality impact, coupled with the high potential cost suggests that reclamation on the site should not be a priority.

Due to the low total acidities of both sites a minimal amount of limestone amendment would be necessary for reclamation. Both waste piles appear to be naturally revegetating where slopes are stable enough for plants to establish. Specific topsoil addition and seeding could be helpful in accelerating vegetative coverage if desired, but does not appear necessary to address water quality concerns.



Figure 35. Yellow Medicine Mine, Lower Dump (Site #46)

# .<u>Yellowstone Mill</u>

This site is located along the southern flanks of Broken Hill in the Yellowstone Gulch drainage, approximately 1,600 feet. northeast of the confluence with North Fork Henson Creek. The site consists of two distinct mill tailings piles located on BLM administered land at an elevation of 10,320 feet. A four-wheel drive road from the North Fork Henson Creek road provides access to the mill. The sites were sampled as waste rock sampling sites #42 (eastern pile) and #43 (western pile). Site #42 is located at N38° 0' 53.963", W107° 28' 17.568", while site #43 is located at N38° 0' 53.054", W107° 28' 19.299". The Yellowstone Mill began operation in 1897. "It contained a boiler, engine, crusher, three sets of rolls, revolving screen from each roll, set of revolving screens which went to four Harz jigs, and three buddle tables" (Irving and Bancroft, 1911). Most of the structures mentioned above have long since collapsed, been dismantled and hauled off. One Harz jig remains mostly intact (**Figure 36** below), with portions of a buddle table below it. Foundations for much of the milling equipment still remain, with wood and metal debris scattered throughout the site.

## Mine Waste

The mill tailings, consisting of both the east and west piles, cover an area of approximately 1½ acres. The eastern pile is oval in shape and covers approximately 26,000 square feet, at an average estimated depth of one foot. Portions of the pile near the millsite foundations are thicker and consist of unprocessed ore material/mine waste. Below the foundation a mixture of tailings and mine waste persist for approximately 200 feet, and appear to be a product of primary ore crushing. The western pile covers an area of approximately 38,000 square feet at an average estimated depth of one foot. The tailings extend in a narrow "tongue" over 1,000 feet down the hillside from the processing point. The particle size is small and relatively homogeneous due to the milling process. Both piles exhibit extensive salt formation and moderate cementation due to evaporation and leaching.



**Figure 36.** Remains of a Harz jig at Yellowstone Mill (above western pile).

The Yellowstone Mill processed ores from the Yellowstone Gulch area, specifically the Yellow Medicine Mine, which was predominately a quartz-galena-sphalerite vein. The mill tailings in each pile are very high in leachable cadmium, copper, lead and zinc. The mill tailings from site #42 ranked 7<sup>th</sup> and the mill tailings from site #43 ranked 5<sup>th</sup> out of 66 sites sampled. Selected leachate results for both piles are listed below.

Yellowstone Mill – Eastern Pile (Site #42)

| pН   | Total Acidity | AI   | Cd   | Cu   | Fe   | Mn   | Pb   | Zn     |
|------|---------------|------|------|------|------|------|------|--------|
| s.u. | mg/l          | ug/l   |
| 5.19 | 94            | 169  | 309  | 3362 | 394  | 1151 | 5029 | 49,854 |

Yellowstone Mill - Western Pile (Site #43)

| pН   | Total Acidity | Al   | Cd   | Cu   | Fe   | Mn   | Pb   | Zn     |
|------|---------------|------|------|------|------|------|------|--------|
| s.u. | mg/l          | ug/l   |
| 3.69 | 90            | 582  | 181  | 4105 | 312  | 346  | 4676 | 30,490 |

#### Water Quality Impacts

Water quality impacts of the Yellowstone Mill tailings to adjacent streams are difficult to determine due to its location. Yellowstone Gulch flows within 150 feet of the lower end of the western tailings pile, but no bracketing of Yellowstone Gulch was done to determine possible impacts. It is likely that during spring melt and storm events, runoff from the site reaches Yellowstone Gulch. Tailings appear to be migrating downhill as evidenced by recent tree and vegetation kills. Some small areas of vegetation exist on the eastern pile, while both piles are covered with extensive deadfall. Few erosional features were noted on either tailing piles. Due to the small particle size and high concentrations of numerous leachable metals the Yellowstone Mill tailings have the potential for impacting the water quality within Yellowstone Gulch.

# Figure 37. Yellowstone Mill looking down western pile



## **Reclamation Options**

Reclamation of the Yellowstone Mill tailings could be most easily accomplished through the use of hydrologic controls. Some combination of run-on diversion ditches, mine waste consolidation, capping and revegetation could be implemented at the site. The large aerial extent of the tailings lends itself to consolidation at one or two locations which would reduce erosion and leaching. Tailings could be consolidated at the top of each pile (east and west), or at the top of the eastern pile with the use of a bulldozer. Once consolidated, the piles and the historic location of the piles could be amended, capped and revegetated to reduce leaching and establish a vegetation cover. A small amount of limestone would probably be needed based upon the low acidity of the waste material. Finally, run-on diversion ditches could be placed above the consolidated piles to divert overland flow away from the sites. Complete removal of the mill tailings is an option, but does not appear necessary based on the potential water quality impacts of the site.

## Broker Lode

The Broker Lode is located on the east side of Yellowstone Gulch at N38° 00' 45.9" W107° 27' 57.7" at an elevation of 10,340 feet. The mine is accessed off the road to the Czar Mine immediately below the locked gate. The waste rock pile was samples as site #47.

#### Geology and Mine Workings

The Broker Lode is located in the Eureka Member (Tse) of the Sapinero Mesa Tuff. The vein developed by the mine strikes generally N10°W, and dips to the east between 60° and 80°. The vein appears to run perpendicular to the Lake City caldera, and is located well within an area of extensively hydrothermally altered rock associated with monzonitic intrusion. The vein as observed within the Excelsior Mine averages nine inches in width and is composed mainly of quartz, sphalerite, chalcopyrite and some galena.

The Broker Lode was mined through a shaft on vein. The mine workings connect with the Excelsior located downhill from the Broker. The connection was evidently done to allow ventilation of both contiguous mines. The size of the waste rock pile indicates that there are approximately 500 feet of drift and shaft workings. Records show that the connection with the Excelsior was at the main level of the Excelsior approximately 100-130 feet below the Broker. It is unknown whether the shaft extended below that level.

### Mine Wastes

The waste rock pile contains approximately 1,000 cubic yards of waste rock. The toe of the waste rock pile is directly in an ephemeral drainage. There is minor erosion on the pile. Leachate results show this pile to be high in aluminum, cadmium, copper, manganese, lead, and zinc. Based upon the metals concentration in the leachate, the Broker ranked seventh out of 66 sites sampled and ranked 17<sup>th</sup> overall. The lower overall ranking was due to the lack of erosion by runoff and by the ephemeral stream channel. Installation of the shaft grate in 2002 may have resulted in repair of any historic erosion. Selected results from the leachate analysis are given below.

| pH<br>s.u. | Total<br>Acidity<br>mg/l | Al<br>ug/l | Cd<br>ug/l | Cu<br>ug/l | Fe<br>ug/l | Mn<br>ug/l | Pb<br>ug/l | Zn<br>ug/l |
|------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|
| 3.80       | 46                       | 767        | 87.6       | 3,854      | 85         | 10,311     | 2,331      | 13,620     |

Broker Lode Waste Rock (Site #47)

# Water Quality Impacts

Water quality impacts from this site are thought to be minor. There is very little water from the slopes above that enters this site. The access road effectively acts as a run-on control. The major potential impact is from erosion of the waste by the ephemeral stream. However, there has been only minor erosion of the toe of the waste pile over the 100+ years since mining started.

## **Reclamation Options**

The Broker waste rock pile is thought to be a minor source of metals. There are no signs of erosion into the ephemeral channel adjacent to the waste rock pile. However, if the Excelsior is reclaimed, it is recommended that the toe of the waste rock pile be removed and riprap armoring be placed at the toe of the pile.

## Excelsior Lode MS. #5184

The Excelsior Lode is located on the east side of Yellowstone Gulch at N38° 00' 43.2" W107° 27' 58.3" at an elevation of 10,220 feet. The mine is accessed off the road to the Czar Mine. A spur road leads directly to the mine. The waste rock pile was sampled as site #48. The water quality of drainage from this site was planned to be sampled as site #CZ. However, there was no visible flow during the high-flow sampling. There had been flow two weeks prior to the sampling, but the all drainage was subsurface at the time of the first high-flow sampling. The remains of one structure is located near the backfilled mine adit.

## Geology and Mine Workings

The geology associated with the Broker Lode is the same as that of the Excelsior Mine. The Excelsior was mined through a 100 foot crosscut to the vein. The mine workings connect with the Broker located uphill from the Excelsior. The connection was evidently done to allow ventilation of both contiguous mines. In 1911, the Excelsior had approximately 500 feet of workings along vein, including 160 vertical feet of stoping. The ore minerals are reported to be sphalerite with a good showing of chalcopyrite, some galena, and much pyrite.

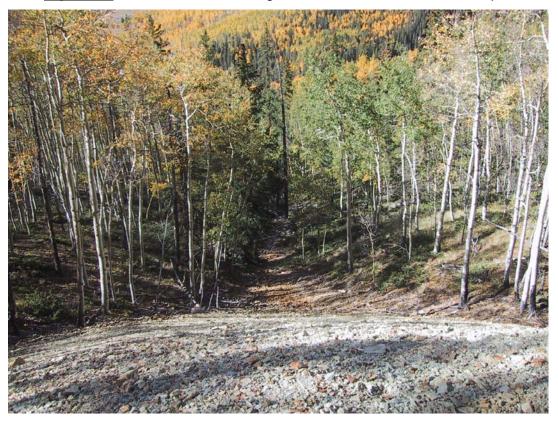



Figure 38. View down the drainage below the Excelsior waste rock pile

## Mine Wastes

The waste rock pile contains approximately 2,000 cubic yards of waste rock directly in an ephemeral stream channel (**Figures 38, 39**). The volume of the waste rock pile is difficult to estimate because of the irregular surface. The waste rock pile is directly in an ephemeral drainage. There is minor erosion of the pile, but this is likely from regrading of the pile during closure of the mine adit in 2002. Leachate results show this pile to be high in aluminum, cadmium, copper and zinc. Based upon the metals concentration in the leachate, the Excelsior ranked 4<sup>th</sup> out of 66 sites sampled. Selected results from the leachate analysis are given below.

Excelsior Lode Waste Rock (Site #48)

| pH<br>s.u. | Total<br>Acidity<br>mg/l | Al<br>ug/l | Cd<br>ug/l | Cu<br>ug/l | Fe<br>ug/l | Mn<br>ug/l | Pb<br>ug/l | Zn<br>ug/l |
|------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|
| 2.84       | 81                       | 3,337      | 153        | 10,694     | 1,952      | 426        | 1,386      | 29,081     |



**Figure 39.** View of Ephemeral drainage above Excelsior with Broker waste rock pile in the background

Based upon the amount of sulfur in the leachate, the total acidity would be expected to be much higher than measured. This indicates that there is some buffering mineral such as calcite in the waste rock pile. Blockage of the ephemeral drainage has resulted in a large vegetation kill zone below the pile. The ephemeral drainage is devoid of any vegetation for over 1,000 feet and can be seen down to near the junction with Henson Creek near the Lucky Strike Mine.

## Water Quality Impacts

There is no apparent mine drainage from the backfilled adit, although there may be a minor amount of seepage of water through fractures in the bedrock during spring snowmelt. Water quality impacts from this site are seasonal, occurring principally during spring snowmelt and summer thunderstorms. The small watershed that drains to the ephemeral channel blocked by the waste rock is well vegetated, so runoff during thunderstorms is probably minimal. However, it is evident that at some times of the year, water flows to Henson Creek as evidenced by the vegetation kill zone. Snowmelt on this south facing slope occurs early in the spring, before the peak flow in Henson Creek. This site may have a measureable effect on Henson Creek water quality during snowmelt. It is recommended that a water quality sample be collected during snowmelt in May to determine whether leaching of the waste pile is a significant problem.

#### Reclamation Options

The Excelsior waste rock pile is a seasonal source of heavy metals to Henson Creek. The recommended site reclamation is to remove the waste from the drainage, and dispose of the material in an excavated area on the slope west of the mine. As an alternative, the ephemeral

stream channel can be routed around the mine waste pile. However, there will probably continue to be some leaching of the waste rock by subsurface water following the old flow path.

The stream channel below the waste rock pile probably contains considerable precipitated heavy metals that can be flushed by seasonal drainage and secondary sulfides that will lower the pH and dissolve heavy metals. To minimize the amount of dissolved metals entering Henson Creek, it is recommended that the vegetation kill zone be amended with ground limestone and revegetated.

## **Czar and Czarina Mines**

The Czar Mine is located on the east side of Yellowstone Gulch. The site consists of two adits. The lower adit is located at N38° 00' 53.6" W107° 27' 53.3" at an elevation of 10,750 feet. The upper adit is located at N38° 00' 56.5" W107° 27' 51.8" at an elevation of 10,920 feet. The Czarina Mine is located on the east side of Yellowstone Gulch southwest of the Czar Mine. The site consists of two shafts. The lower shaft is located at N38° 00' 50.3" W107° 27' 58.9" at an elevation of 10,580 feet. The main or upper shaft is located at N38° 00' 52.4" W107° 28' 0.1" at an elevation of 10,550 feet. The Czar and Czarina waste piles were not sampled because they exhibited very few signs of water quality impacts.

#### Lucky Strike Mine

The Lucky Strike Mine is located north of the confluence of the North Fork of Henson Creek with the mainstem of Henson Creek, just to the north of the bridge that crosses over the North Fork of Henson Creek, within the historic town of Capitol City. The Lucky Strike Mine is visible from Engineer Pass Road where the road forks at the North Fork. The elevation of the Lucky Strike Mine is 9,720 feet. The coordinates of this location are N39° 0' 35.4", W107° 27' 56.9".

In general the water coming from the Lucky Strike Mine (DM-11) is less contaminated than the water in Henson Creek and the North Fork of Henson Creek. The flow from the site is also minimal, rendering the load as insignificant. The flow during both sampling events was .03 cfs. During high flow, the mine drainage had higher concentrations of copper, manganese, and sulfate, with a higher conductivity than the Henson Creek water at HC-6. The pH of the mine drainage was slightly less than Henson Creek but the alkalinity of the mine drainage was also higher, allowing for more buffering capacity. The aluminum, iron, and zinc of the mine drainage were all below detections limits during high flow.

During the low flow sampling event, the Lucky Strike Mine drainage had higher manganese and sulfate concentrations, along with higher conductivity and a slightly lower pH than Henson Creek. The alkalinity of the mine drainage was also higher, allowing for a greater buffering capacity. The iron, aluminum, copper, and zinc concentrations were all below detection limits.

The mine waste pile at this site ranked 56<sup>th</sup> out of 68 mine waste piles sampled. Hence, the recommended reclamation plan for this site is no action, due to the minimal amount of flow, generally clean nature of the water, and minimal impact of the mine waste pile.

## HENSON CREEK BELOW CAPITOL CITY SITE DESCRIPTIONS

Mine sites in this area chosen for reclamation feasibility studies include: the Ocean Wave, the Red Rover Tunnel, the Four Aces Mine, the Pride of America Mine, the Risorgimento Mine, the Hidden Treasure mill tailings, and the Pelican Mine. Those mine sites will be discussed below.

The Vermont Mine, Little Casino Mine, Yellow Jacket Mine, Unnamed Owl Gulch Mine and Mountain Chief Mine were investigated and found to be minor sources of heavy metals. Those mine sites plus the Ute-Ule will be briefly discussed below.

# Vermont Mine

This site is located in El Paso Creek at an elevation of 10,290 feet at N38° 0' 57.5" W107° 26' 21.7". The waste rock pile at this site is estimated to contain 9,000 cubic yards. The waste rock pile was sampled as site #50. This waste rock pile had moderate concentrations of heavy metals. The waste rock pile extends approximately 600 feet down a steep slope to El Paso Creek. There are undoubtedly impacts from erosion and leaching of the waste rock pile, but access to the site is by foot only. There are very few options for reclaiming this site. Overall, this waste rock pile ranked 26<sup>th</sup> out of 66 waste rock piles sampled.

# Vermont Tunnel Draining Mine

The Vermont Tunnel is located in El Paso Creek, approximately 750 feet from the confluence of El Paso Creek and Henson Creek. Access is along Engineer Pass Road. The mine is located 250 feet off the road on the north side. The elevation of the site is 9,600 feet. The coordinate location is N38° 0' 53.1", W107° 26' 10.3".

The mine was sampled during the high flow sampling event on June 2, 2005, and due to lack of flow during the low flow sampling event, it was not sampled. The site is not bracketed within El Paso Creek. The El Paso Creek sampling location is downstream of the mine drainage input. El Paso Creek is bracketed by Henson Creek sampling sites HC-8 and HC-9. The flow out of the mine during high flow was .012 cfs.

The mine drainage from this mine does contain high levels of aluminum, cadmium, copper, lead, manganese, and zinc. The lead concentration of the mine drainage is 62 ug/L, and the El Paso Creek lead concentrations are below detections limits. The pH of the mine drainage is higher, with a value of 7.7, than the pH of the water in El Paso Creek. Although the concentrations of metals are high in the mine drainage, the minimal flow lessens the impacts seen in El Paso Creek, and lessens the impacts seen in Henson Creek. Since the site was not bracketed within El Paso Creek, it is difficult to determine whether the site is impacting the water quality within the tributary, but the minimal flow once again suggests that the impacts from the mine drainage are not great. The flow in El Paso Creek was 30.9 cfs in June, which is 2,500 times greater than the flow out of the draining mine.

The mine waste pile at this site was not sampled because it had been recently disturbed by the landowner. The mine workings at this site connect the Vermont shaft with the Vermont tunnel with approximately 2,000 horizontal feet of mine workings to the shaft and approximately 500 vertical feet. Although the mine waste was not sampled, the Henson Creek data at sites HC-8 and HC-9 suggest that the mine waste pile is not affecting Henson Creek. The recommended reclamation for this site is no action.

# Little Casino Mine

This site is located between Big Casino and Copper Gulches on the south side of Henson Creek at an elevation of 9,700 feet at N38° 0' 38.0" W107° 25' 51.9". The waste rock pile at this site is estimated to contain 900 cubic yards. The waste rock pile was sampled as site #52. This waste rock pile had the highest lead concentration of all the waste piles sampled. Overall, this waste rock pile ranked 29<sup>th</sup> out of 66 waste rock piles sampled.

# Four Aces Mine

The Four Aces Mine is located on the south side of Henson Creek between Big Casino Gulch and Copper Gulch at N38° 00' 38.7" W107° 25' 56.2" at an elevation of 9,650 feet. A road leads directly to the mine site. The waste rock pile was sampled as site #53. The apparent mine drainage was sampled as site DM-12.

### Geology and Mine Workings

The Four Aces Mine developed a small set of fissure type veins located within the Eureka member (Tse) of the Sapinero Mesa Tuff along the margin of the collapsed Lake City caldera. The mine was accessed through a 5' x 6' adit on vein. The adit is currently open. Based upon the size of the waste rock pile, it is estimated that there are about 750 feet of mine workings. The most prevalent minerals on the waste rock pile are pyrite, galena, sphalerite and quartz.

### Mine Wastes

The waste rock pile contains approximately 1,100 cubic yards of waste rock. There is some vegetation on the outslope of the waste pile where soil was pushed over and mixed with the waste rock during construction of the access road. Leachate results show this pile too high in cadmium and lead. Based upon the metals concentration in the leachate, the Four Aces ranked 16<sup>th</sup> out of 66 sites sampled and ranked 31<sup>st</sup> overall. Selected results from the leachate analysis are given below.

|      |                 | ( ) ) |      |      |      |      |       |       |
|------|-----------------|-------|------|------|------|------|-------|-------|
| pН   | Total           | AI    | Cd   | Cu   | Fe   | Mn   | Pb    | Zn    |
| s.u. | Acidity<br>mg/l | ug/l  | ug/l | ug/l | ug/l | ug/l | ug/l  | ug/l  |
| 3.84 | 38              | 85.1  | 80.7 | 48.7 | 160  | 679  | 6,317 | 9,810 |

Four Aces Waste Rock (Site #53)

## Water Quality Impacts

The apparent mine drainage was sampled as site DM-12 during high-flow, but was not sampled during low-flow. There is a small stream of water from a spring above the adit that flows along the east side of the adit. It was unknown at the time how much of the water flowing from the collapse debris in front of the adit was from mine drainage and how much was from the spring above. Because of the collapse debris, the water flowing down the face of the adit flowed into the mine. Based upon the results of water quality analysis, it appears that most if not all of the water draining from this mine comes from the spring. All dissolved constituents except for zinc were below detection limits.

The drainage flows from the adit onto the waste rock pile, then quickly infiltrates. There are indications that the flow is larger than measured during some part of the year, because there is iron staining and an erosion channel along the flow path. The relatively clean water flowing onto the waste rock pile is probably the major impact from this site. The drainage surfaces as a seepage zone below the waste rock pile. In the absence of the drainage, the waste rock pile is thought to be a very minor source of heavy metals because it is located on a relatively dry slope far away from Henson Creek.

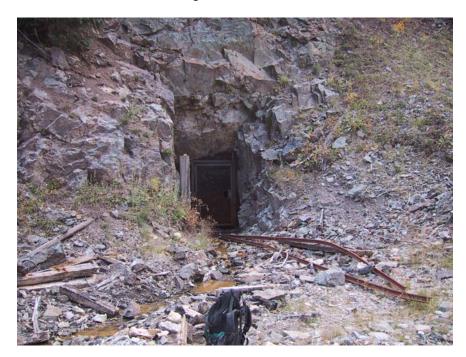
## **Reclamation Options**

The only reclamation recommended for this site is to divert the drainage from the spring above by constructing a ditch around the waste rock pile. This can probably be accomplished by hand methods.

# Pride of America Mine

The Pride of America Mine is located along the mainstem of Henson Creek, at an elevation of 9.950 feet. The mine is situated on a north-facing slope and is approximately 500 vertical feet above Henson Creek, and 1,000 horizontal feet from Henson Creek. The area consists of near vertical cliffs along the river, grading to extremely steep terrain comprised of talus and colluvium. Access is along Engineer Pass, and across the Big Casino Bridge. It is approximately three-fourths of a mile from the bridge to the mine site along a well-maintained four-wheel drive road. This site was bracketed by sampling site HC-9 and HC-10. The site was also bracketed within Big Casino Gulch, by BCG-1 and BCG-2. A sampling site was also taken at DM-14 – the Pride of America Mine drainage and the mine waste pile was sampled as site #56. Sampling sites BCG-1 and BCG-2 were difficult to obtain flows from because they flow through talus material. BCG-1 was sampled at both high and low flow, but BCG-2 was not sampled during low flow because the flow infiltrated into the talus and did not resurface until the cliffs just above Henson Creek. The flow at BCG-2 for low flow was approximated by the addition of BCG-1 and DM-14. The Pride of America Mine is located at N38° 0' 53.4. W107° 25' 37.7". The Pride of America Mine is located in an avalanche prone area that consists of steep talus slopes, vegetated slopes at the angle of repose, and bedrock cliffs. There is a lack of suitable topsoil materials on site and there is a lack of abundant space within the narrow Big Casino Gulch drainage. A small amount of space exists to the east of Big Casino Gulch, which has shallower slopes.

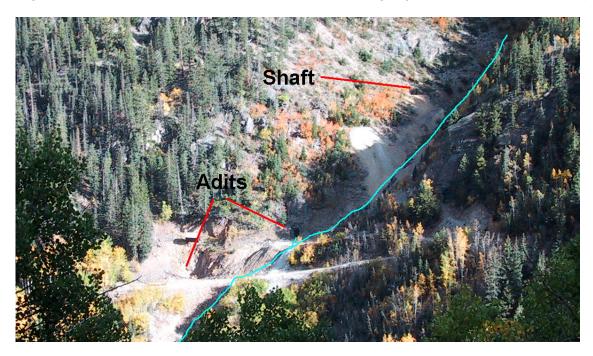
### Geology and Mine Workings


The Pride of America Mine located within the Picayune megabreccia member (Tsm) of the Sapinero Mesa Tuff lies along the margin of the Lake City caldera. The mine develops at least two major fissure type veins, one that strikes east and dips 60° to the south, while the other strikes N45°E and dips likewise. The main vein, striking east, is roughly tangential to the collapsed margin of the Lake City caldera suggesting some possible association with development or collapse of the caldera structure, yet little widespread hydrothermal alteration is visible near the mine. Reports indicate that the major vein was approximately two feet wide and consisted of galena-freibergite ores. Previous owners of the mine indicated assays ranging from 200 to 412 ounces of silver per ton.

The mine workings at the Pride of America Mine consist of one shaft and two adits. The shaft and one adit have been safeguarded by the DMG and have grated closures on them. The shaft was sunk first to at least a depth of 60 feet and the adits were driven later. The Pride of America Mine was worked in the late 1800's into the early 1900's and then was reopened in the 1960's, at which point the two adits were driven. Mining continued through the late 1960's and then ceased. The two adits are most likely not connected to the shaft, because the shaft is water-filled at a depth of four feet below the collar, and the draining adit, DM-14, is lower in elevation than the shaft. The other collapsed adit below sampling site DM-14 is not draining (**Figure 40**).

#### Mine Waste

The waste rock pile contains approximately 2,700 cubic yards of material that is situated directly in Big Casino Gulch (**Figures 41 and 42**). There is major erosion of the mine waste pile due to the steep terrain of Big Casino Gulch. The mine waste pile has also been disturbed recently by prospecting using trenching methods and by the use of the road to the mine. Leachate results show this pile to be high in cadmium, manganese, lead, sulfate, and zinc. Based upon the metals concentration in the leachate and the physical characteristics of the mine waste, the Pride of America Mine ranked seventh out of 66 sites sampled. Selected results from the leachate analysis are given below.

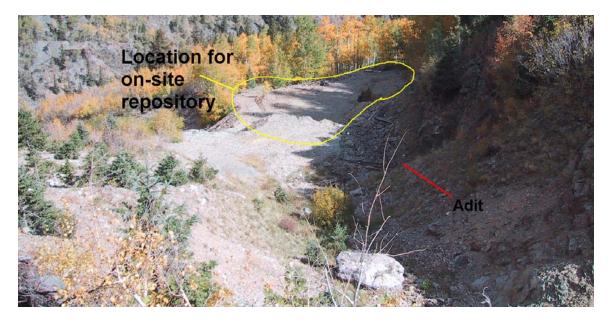

Figure 40. Pride of America Mine Drainage and DMG Closure



Pride of America Mine Waste Pile (Site #56)

| pH<br>s.u. | Total<br>Acidity<br>mg/l | Al<br>ug/l | Cd<br>ug/l | Cu<br>ug/l | Fe<br>ug/l | Mn<br>ug/l | Pb<br>ug/l | Zn<br>ug/l |
|------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|
| 2.07       | 74                       | 13         | 392        | 124        | 7          | 4,192      | 1,828      | 22,942     |

Figure 41. Pride of America Mine Waste Piles - showing Big Casino Gulch and Mine Openings




### Water Quality Impacts

The Pride of America Mine drainage has some of the highest concentrations of metals in all of the Henson Creek Watershed, but the flow is so minimal that the impacts from the drainage are not detectable within Henson Creek. The impacts of the mine drainage can be seen in Big Casino Gulch at BCG-2. Most of the metals concentrations increase from BCG-1 to BCG-2. There is a component of this increase, which can be attributed to the mine waste pile. The background water sampling location, BCG-1 does have inputs from other smaller mine workings located above DM-14.

The Pride of America Mine had the highest zinc concentration of any draining mine site during high and low flow, the second highest concentration of copper during low flow, after the Hough Mine drainage, and the highest concentration of cadmium during high and low flow sampling events.

Figure 42. Pride of America Mine Waste Pile Showing Location for an on-site repository



The total zinc concentration from the mine drainage during low flow was 21,500 ug/L, which was two orders of magnitude above the acute and chronic toxicity values for aquatic life. The zinc concentration just above the Pride of America Mine drainage at sampling site BCG-1 was 917 ug/L. Some of the total zinc seen at BCG-1 could be coming from seepage from the water-filled shaft. Because of the steep topography, sampling site BCG-1 was situated well below the shaft collar. The water quality at sampling site BCG-2, just below the DM-14 drainage, has a concentration of 2,060 ug/L. This increase in total zinc concentrations in Big Casino Gulch, but it also indicates that there is a background source for zinc above the Pride of America Mine drainage. The Henson Creek Headwaters and Palmetto Gulch Headwaters had zinc concentrations below detection limits, so we would have expected to see the Big Casino Gulch above the Pride of America Mine to have lower concentrations of metals, similar to headwaters type areas.

During high flow sampling, the total zinc concentration from BCG-1 to BCG-2 increases eight fold, and during low flow sampling, the total zinc concentration increases only two fold. The total zinc concentration increasing more during high flow sampling may indicate that the Pride of America Mine waste pile has a larger effect during high flow conditions, and the mine drainage effects Big Casino Gulch more during low flow.

#### **Reclamation Options**

The source of metals within Big Casino Gulch is the Pride of America Mine waste pile and the mine drainage. The mine drainage contributes less contamination to Big Casino Gulch than the mine waste pile. The flow from the adit is low during most of the year, so does not have a major effect on Henson Creek and should be a secondary priority after the mine waste pile.

The best reclamation option for the mine waste pile is relocation to an on-site repository out of the Big Casino Gulch drainage. There is a lack of suitable topsoil materials on site and there is a lack of abundant space within the narrow Big Casino Gulch. A small area exists to the east of the Pride of America which exhibits a more shallow slope where the mine waste could be relocated to, capped, and revegetated (**Figure 42**). The stream channel in Big Casino Gulch would then be restored and lined with riprap to slow down the turbulent flows of storm events

and prevent erosion. After the mine waste pile is moved out of the drainage and capped and revegetated, the mine drainage could then be conveyed over to Big Casino Gulch. The metals could then attenuate as they flow through Big Casino Gulch, instead of flowing through waste rock.

For the mine drainage to be addressed, further investigations will have to be completed, including the investigation of underground source controls. The mine drainage could be treated by passing the relatively clean drainage from upstream through a limestone filled pond, then mixing the mine drainage with the high pH effluent in a settling pond. The pond would have to be constructed in the waste rock pile requiring a geosynthetic liner. Another alternative would be to install an anoxic limestone drain in the adit and precipitate the metals in a settling pond. Except for the possibility of source control, these options would require continual operation and maintenance.

## Lellie Mine (Wave of the Ocean)

This site is located at N38° 0' 38.7" W107° 25' 56.2" in a steep, narrow ephemeral drainage north of Henson Creek approximately 1,800 feet east of El Paso Creek. The waste pile sampled as site #54 appears to be located on the Wave of the Ocean lode claim, but actually develops a vein located on the Lellie lode claim. A number of individual piles have coalesced to comprise the site. The waste pile is located at an elevation of 10,100 feet and can be accessed by an old mining road a few 100 yards east of El Paso Creek. The Lellie Minesite is covered with wood, metal and other mining related debris, but has no standing historic structures. The remains of a possible bunkhouse and blacksmith shop are located adjacent to the collapsed portal.

## Geology and Mine Workings

The Lellie Mine worked a northeasterly trending vein system that dipped from 65°NW near the surface to 45°N at depth. The vein is referred to as the Lellie Vein and is described as a fissure type vein that varies in width from eight inches up to four feet. The vein is located in the Picayune Megabreccia Member (Tsm) of the Sapinero Mesa Tuff, which is a chaotic assemblage of precaldera rocks most likely related to slumping and weathering of the Uncompandire-San Juan caldera walls.

As with many veins of the Henson Creek area the majority of high grade ore material was developed near the surface and died out with depth. The Lellie Mine was opened originally, by a crosscut adit (site #54) and shaft that accessed the upper portion of the vein. The crosscut adit was approximately 200 feet long and was driven N43°W, perpendicular to the strike of the vein. The Lellie Mine was also developed by a 1,140 feet crosscut located 500 feet below the upper crosscut, and is referred to as the Red Rover Tunnel. The lower and upper crosscuts are connected by a raise, which also develops at least three intermediate levels along the vein. The vein is classified as a Tetrahedrite-Rhodochrosite bearing vein, filled with quartz, rhodochrosite, barite, pyrite, galena, sphalerite and tetrahedrite, with some chalcopyrite (Irving and Bancroft, 1911). The silver was developed from argentiferous galena and tetrahedrite.

## Mine Wastes

The mine waste sampled as site #54, is an aggregate of material located below the upper crosscut of the Lellie Mine. The waste pile is moderately steep (30°), and is approximately 200 feet x 200 feet with an average depth of 15 feet. The estimated volume of the waste pile is 22,000 cubic yards of fine to medium textured waste. The waste pile has some erosional features, but is located directly adjacent to an ephemeral or intermittent drainage. Much of the pile is well cemented with some areas of less cementation.

The observed mineralogy of the waste pile consisted of sphalerite, galena. pyrite and quartz. Selected leachate results from the mine waste piles are shown below, and indicate very high levels of lead, with high levels of zinc, manganese, copper and cadmium. Much of the waste is heavily oxidized with extensive limonitic staining.

| pН   | Total Acidity | AI   | Cd   | Cu    | Fe   | Mn    | Pb    | Zn    |
|------|---------------|------|------|-------|------|-------|-------|-------|
| s.u. | mg/l          | ug/l | ug/l | ug/l  | ug/l | ug/l  | ug/l  | ug/l  |
| 3.63 | 66            | 359  | 54   | 3,235 | 119  | 2,823 | 6,343 | 6,872 |

Lellie Mine – Upper Crosscut (Site #54)



Figure 43. Lellie Mine (Site #54) and adjacent drainage

# Water Quality Impacts

Water quality impacts related to the Lellie Mine are probably limited to spring runoff and storm events. No water sampling was done above or below the mine since no water was flowing in the ephemeral drainage. Based on the waste rock leachate tests there is a high probability that during storm events and spring runoff, some metals loading to Henson Creek is occurring as a result of the Lellie Mine, but that loading is probably minimal and short in duration.

# **Reclamation Options**

Construction of surface hydrologic controls is the recommended method for reclamation at the site. Access to the site will pose the biggest challenge to performing any reclamation activities. Currently the access is by an old mining road, which is very narrow and overgrown in many locations. If access can be achieved by heavy equipment then the eastern edge of the waste pile should be pulled back from the drainage and consolidated on the existing pile. Run-on controls above the waste pile could also be implemented to direct overland flow around the pile. Additional reclamation including amendment and revegetation is not necessary for water quality purposes, but could be performed by hand for aesthetic reasons if desired.

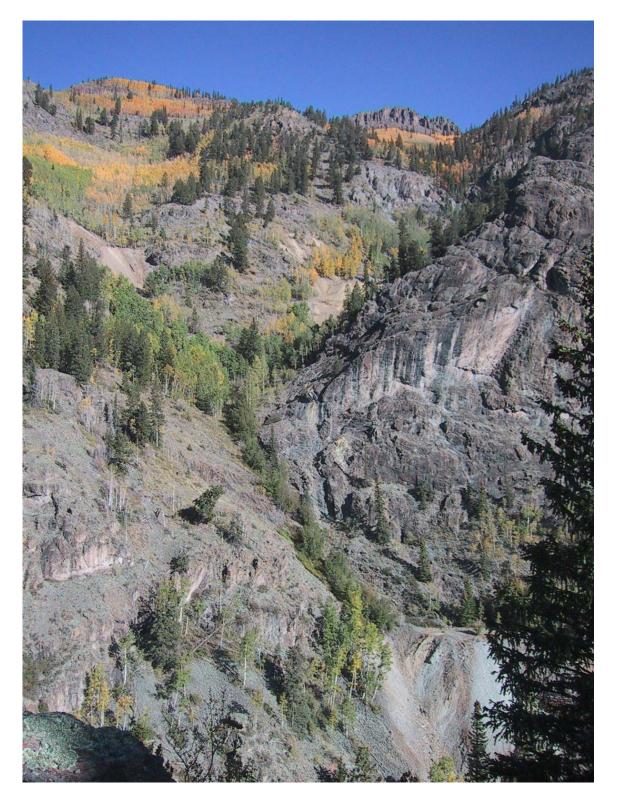
## Red Rover Tunnel

The lower Red Rover Tunnel, also known as the Lellie is located on the Little Hattie Lode on the north side of Henson Creek across from Big Casino Gulch approximately 260 feet above Henson Creek. The bulkheaded adit is located at N38° 00' 59.6" W107° 25' 45.5" at an elevation of 9,650 feet. There is no equipment access to the mine because of the steep cliffs in the area. The waste rock pile at the lower tunnel was samples as site #55. The upper tunnel was not sampled. The remains of a historic structure are located near the mine adit, and the remains of a flume or tram system are located on the cliffs above this site.

#### Geology and Mine Workings

The geology associated with the Red Rover Tunnel is very similar to that of the Lellie Mine. The lower Red Rover Tunnel is a 1,140 foot long crosscut to the Vermont-Wave of the Ocean-Ocean Wave vein and the Lellie vein. A second 200-foot long tunnel, 500 feet above the lower tunnel, accessed the Lellie vein and was connected to the lower tunnel by a 500 foot raise. There were three intermediate levels between the two crosscut tunnels. In 1911, drifts had been driven on both tunnel levels for about 700 feet. The veins contain quartz, rhodochrosite, barite, pyrite, galena, sphalerite and tetrahedrite, with some chalcopyrite.

#### Mine Wastes


The waste rock pile contains approximately 16,000 cubic yards of waste rock. The waste rock pile is mostly country rock, but does contain sulfides, including galena, pyrite, tetrahedrite, and sphalerite along with some chalcopyrite. The western portion of the waste rock pile is in an ephemeral or intermittent drainage. A gully over 20 feet in depth has been cut through the waste rock (**Figure 44**).

Leachate results show this pile to have moderate levels of heavy metals, but a high sulfate content. The high sulfate content evidently comes from gypsum, since the pH of the leachate is relatively high and calcium concentration is similar to the sulfur concentration. Based upon the metals concentration in the leachate, the Red Rover Tunnel ranked 18<sup>th</sup> out of 66 sites sampled and ranked 22<sup>nd</sup> overall. Selected results from the leachate analysis are given below.

| pН   | Total Acidity | AI   | Cd   | Cu   | Fe   | Mn    | Pb    | Zn    |
|------|---------------|------|------|------|------|-------|-------|-------|
| s.u. | mg/l          | ug/l | ug/l | ug/l | ug/l | ug/l  | ug/l  | ug/l  |
| 4.81 | 44            | 117  | 73.3 | 188  | BDL  | 2,178 | 1,481 | 6,816 |

Red Rover Tunnel (Site #55)

Figure 44. Red Rover Tunnel in lower right and Ocean Wave Mine in upper middle of picture



#### Water Quality Impacts

Water quality impacts from this site are seasonal. There is probably some leaching of the waste rock by spring snowmelt and summer thunderstorms, but the principal impact is erosion of waste rock into Henson Creek. Eroded waste rock is visible down to the Henson Creek road. This site is bracketed by water quality sampling sites HC-9 and HC-10. There were no significant increases in heavy metal concentrations between the sampling sites during high-flow and low-flow. The size of the drainage area indicates that there probably is some base flow following snowmelt, although there was no visible flow in early June of 2005 during the high-flow sampling. A flow of approximately ten gallons per minute was observed at the top of the waste rock pile in September of 2004, but there was no visible flow at the bottom of the pile.

#### **Reclamation Options**

The lack of access to this site severely reduces the options to reduce impacts from this site. As discussed above, the principle impact to Henson Creek is probably through waste rock erosion. To reduce erosion, some type of conveyance needs to be constructed from the top of the waste pile to the Henson Creek road. Possible options would include a culvert, or a concrete lined channel. Both options would require an energy dissipater at the bottom, and construction of thrust blocks to hold the conveyance on the steep slope. As an alternative, a sediment trap could be constructed at road level and maintained by the Hinsdale County Road Department.

Reclamation at this site should be considered a low priority, because of the high construction cost relative to the impact to Henson Creek. A water quality sample should be collected and analyzed when the drainage is flowing. Because the drainage is principally south facing, an early May sampling is recommended.

### **Owl Gulch Mine**

This site is located approximately one mile south of Henson Creek on the west side of Owl Gulch at an elevation of 10,500 feet at N38° 0' 20.0" W107° 24' 25.2". The waste rock pile at this site is estimated to contain 700 cubic yards. The waste rock pile was sampled as site #57. This waste rock pile had very low heavy metal concentrations in the leachate. Overall, this waste rock pile ranked 54<sup>th</sup> out of 66 waste rock piles sampled. No reclamation is recommended for these waste piles at this time.

#### Yellow Jacket Mine

This site is located on the south side of Henson Creek west of the Owl Gulch confluence with Henson Creek. The mine site consists of two levels. There is no Mine drainage from this site. The lower level is at an elevation of 9,425 feet at N38° 1' 13.6" W107° 24' 21.8". The upper level is at an elevation of 9,500 feet at N38° 1' 15.4" W107° 24' 19.0". The lower waste rock pile, sampled as site #58, is estimated to contain 750 cubic yards and the upper pile, sampled as site #59 is estimated to contain 500 cubic yards. Both waste rock piles had low heavy metal concentrations in the leachate, but the lower pile had a low pH. Overall, the lower waste rock pile ranked 43<sup>rd</sup> and the upper waste rock pile ranked 62<sup>nd</sup> out of 66 waste rock piles sampled.

### Mountain Chief Mine

This site is located on the south side of Henson Creek east of the Ute-Ule Mine, apparently on the same vein as the Pelican Mine. The mine site consists of two levels. There is no mine drainage from this site. The upper level is at an elevation of 9,200 feet at N38° 1' 15.5" W107° 20' 34.0". The lower level is at an elevation of 9,000 feet at N38° 1' 6.9" W107° 21' 2.0". The

lower waste rock pile, sampled as site #62, is estimated to contain 1,200 cubic yards and the upper pile, sampled as site #63 is estimated to contain 1,500 cubic yards. Both waste rock piles had low heavy metal concentrations in the leachate, with the exception of manganese. Both waste rock piles were high in manganese concentrations. Overall, the lower waste rock pile ranked 34<sup>th</sup> and the upper waste rock pile ranked 40<sup>th</sup> out of 66 waste rock piles sampled. There currently is no reclamation recommended for this site.

#### Ute-Ule Mine

The Ute-Ule Mine was not investigated because of the exhaustive environmental assessment work that has been contracted out by the Bureau of Land Management. During high-flow, there were no major changes in Henson Creek heavy metal concentrations between the upstream and downstream sites. During low-flow, there was a large increase in manganese and zinc concentration and loading below the mine.

#### Hidden Treasure Tailings

The Hidden Treasure tailings pile is located near the junction of Alpine Gulch and Henson Creek. The mine is located on public lands managed by BLM. The tailings area is located approximately 2.5 miles west of Lake City, Colorado in Hinsdale County via CR-20 approximately one mile downstream from the Ute-Ule Mine/mill complex. The Hidden Treasure tailings site (mine dump sample #60) is located at N38° 1' 7.536", W107° 21' 25.625", at an elevation of 8,910 feet. The site is bracketed between sample stations HC-15 and HC-16 subtracting the impacts from Alpine Gulch (station AG).

The Hidden Treasure mill was equipped with a 100 ton concentrating mill erected in 1898, a water driven compressor, and a 50 horsepower electric hoist. The mill was connected to the Hidden Treasure Mine with a 3,800 long, Bleichert wire-rope tram with twenty-five 450-500 pound buckets. The tram had a capacity of 12 tons per hour. The first ore was taken from the mine in June 1897 and was worked continuously until 1908. The mine associated with the mill had produced ore worth at least \$700,00 by 1911 (Irving and Bancroft, 1911, p. 89).

#### Mine Waste

Located on the south side of Henson Creek, the predominate tailings pile associated with sample #60 is approximately 1,500 cubic yards in size. The area around the tailings contains additionally scattered amounts mixed among alluvial material. The tailings were once contained by wooden cribbing which has fallen over on the downstream side. Currently, the tailings are somewhat contained within a rock berm located approximately 50 feet from river bank right. The tailings are not in direct contact with Henson Creek flows although there are minor erosional features which bisect the area showing evidence of flows during high flow or storm events. Sparse grasses are present along the perimeter of the tailings pile. The Hidden Treasure tailings ranks the highest of all dumps sampled for manganese. The tailings also rank high in cadmium, lead and zinc. Previous sampling efforts performed by Harding ESE for the Bureau of Land Management showed concentrations in exceedance of PRG values at depths up to two feet. Depth of the main tailings could be up to four feet. Overall, the mill tailings ranked 13<sup>th</sup> out of 66 sites sampled. Leachate results from sample #60 follow.

| pН   | Acidity | Diss Al | Diss As | Diss Cd | Diss Cu | Diss Fe | Diss Mn | Diss Pb | Diss Zn |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s.u. | mg/l    | ug/l    |
| 4.67 | 80      | 116.0   | BDL     | 365.5   | 132.4   | BDL     | 38469.1 | 4354.7  | 26528.6 |

Hidden Treasure Tailings (Site #60)

#### Water Quality Impacts

As stated above, the first station downstream from the Hidden Treasure tailings location is HC-16. Due to extreme flows, high flow data was not obtained at this location. Impacts from the Hidden Treasure Tailings site seem to be insignificant compared to the loading which comes in from Alpine Gulch within this bracketed reach. Interestingly, manganese drops within this reach where dissolved concentrations from the leachate extraction are relatively high within the tailings.

#### Low-flow Dissolved Loading

| Station  | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|----------|----------|----------|----------|----------|----------|----------|----------|
| HC15     | BDL      | BDL      | BDL      | BDL      | BDL      | 2959.62  | 3655.99  |
| Alpine G | 847.72   | BDL      | BDL      | 3281.300 | BDL      | 311.41   | 173.00   |
| HC16     | BDL      | BDL      | BDL      | BDL      | BDL      | 3118.05  | 3579.98  |

#### Low-flow Total Loading

| Station  | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|----------|----------|----------|----------|----------|----------|----------|----------|
| HC15     | 16364.95 | BDL      | BDL      | 9459.17  | BDL      | 3365.84  | 3772.06  |
| Alpine G | 12398.58 | BDL      | BDL      | 5201.64  | BDL      | 311.40   | 149.94   |
| HC16     | 26387.91 | BDL      | BDL      | 10393.48 | BDL      | 3233.53  | 3695.46  |

#### Sample AG - Loading - High-flow

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | BDL      | BDL      | BDL      | BDL      | BDL      | 3841.5   | 2211.8   |
| Total     | 62628.2  | BDL      | BDL      | 32478.2  | BDL      | 4190.7   | 1979.0   |

The increase in dissolved aluminum, iron and manganese loading between stations HC-15 and HC-16 could easily be attributed to Alpine Gulch during low-flow.

#### **Reclamation Options**

Due to the excessively high concentrations of manganese and to some extent, lead, cadmium and zinc, the tailings should be excavated out of the flood plain. There is very little on-site space to accommodate the tailings above the flood plain. A logical location for placement would be the BLM upper tailings location west of the Ute-Ule complex. Temporary road construction would be necessary to access Henson Creek. During the low-flow of Henson Creek, access to the Hidden Treasure tailings area could be easily reached with a variety of compact panel, military or other type of temporary bridge arrangements. Precautions would be essential for sediment control through the use of excelsior, straw and/or fabric fencing around the area to be impacted. Sediment pond construction may be necessary if the water table is intersected during excavation. Once all the tailings are excavated, revegetation should include riparian shrub species as well as future hedge brush layering with endemic willow species along streamside contact.

#### Risorgimento (Grand La Plata) Mine

The Risorgimento Mine is between the junction of Alpine Gulch and the town of Lake City. According to a mine map produced by Rehn and Carey, 1983, the main workings are actually the Grand La Plata Mine with the Risorgimento Mine positioned to the west on the Risorgimento MS. 17676 patented claim. Most of the mine is located on public lands managed by BLM. The mine is located approximately 0.3 miles downstream from the Hidden Treasure site, just over two miles west of Lake City, Colorado in Hinsdale County via CR20. The Risorgimento (Grand La Plata) Mine site (mine dump sample #61) is located at N38° 1' 6.837", W107° 21' 1.983", at an elevation of 8,860 feet. The site is bracketed between sample stations HC-16 and HC-17. The mine has several draining adits (station DM-15).

#### Geology and Mine Workings

The Risorgimento Mine is located within the Eureka member (Tse) of the Sapinero Mesa Tuff, a volcaniclastic sedimentary assemblage formed during collapse of the San Juan-Uncompanying caldera complex. The mine appears to develop a vein that strikes generally N20°W and dips to the NW at 85°. The vein is a simple fissure type vein that varies in width from three inches to six inches. Hydrothermal alteration appears confined to the vein along with ore deposition.

The mine mapping produced by Rehn and Carey, 1983, show the Grand La Plata Mine having three levels. Contrary to mining classification, Rehn and Carey label tunnel #1 at the lowest portion of the workings which is at creek level. This was the location of the low-flow sampling for station DM-15. The workings associated with tunnel #1 extend over 250 feet in a southwest direction under tunnel #3 workings. tunnel #3 is 42 feet above the tunnel #1 workings. During high flow sampling tunnel #3 was sampled as DM-15.

#### Mine Waste

Mine waste from the Grand La Plata has been predominately overcast from the terrace above Henson Creek to stream level. A bench has been created over time from the mine waste. The waste pile is approximately 2,500 cubic yards in size. The area around the mine waste on the bench contains additionally scattered amounts of mine waste mixed with alluvial material. Currently, the mine waste is buffered from Henson Creek with a fairly dense population of willow. Mine waste could be in contact with Henson Creek during extreme high-flow events which flow over the bench. Mine waste sample #61 shows relatively high concentrations of aluminum, iron and manganese from the leachate tests. Behind the Hidden Treasure tailings, sample #61 ranks second of all dumps sampled for manganese. Overall, the waste rock ranked 14<sup>th</sup> of the 66 sites sampled. Leachate results from sample #61 follow.

| pН   | Acidity | Diss Al | Diss | Diss | Diss   | Diss Fe | Diss Mn | Diss | Diss Zn |
|------|---------|---------|------|------|--------|---------|---------|------|---------|
| s.u. | mg/l    | ug/l    | As   | Cd   | Cu     | ug/l    | ug/l    | Pb   | ug/l    |
|      |         |         | Ug/l | ug/l | ug/l   |         |         | ug/l |         |
| 2.73 | 370     | 10612.3 | BDL  | 50.2 | 1610.4 | 27776.2 | 13916.4 | BDL  | 13103.6 |

Risorgimento Waste Rock (Site #61)

#### Water Quality Impacts

As stated above, the site is bracketed by station HC-16 and HC-17. High flow data was not obtained at HC-16. Except for a slight increase in zinc, water quality improves between stations HC-16 and HC-17.

#### Low-flow Dissolved Loading

| Station | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|---------|----------|----------|----------|----------|----------|----------|----------|
| HC16    | BDL      | BDL      | BDL      | BDL      | BDL      | 3118.05  | 3579.98  |
| DM15    | BDL      | BDL      | BDL      | BDL      | BDL      | 2.13     | 1.67     |
| HC17    | BDL      | BDL      | BDL      | BDL      | BDL      | 2878.98  | 3995.31  |

#### Low-flow Total Loading

| Station | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|---------|----------|----------|----------|----------|----------|----------|----------|
| HC16    | 26387.91 | BDL      | BDL      | 10393.48 | BDL      | 3233.53  | 3695.46  |
| DM15    | BDL      | BDL      | BDL      | BDL      | BDL      | 2.10     | 1.62     |
| HC17    | 24206.91 | BDL      | BDL      | 9812.02  | BDL      | 3113.99  | 4582.86  |

Sample DM-15 - Loading

|           | Al g/day | Cd g/day | Cu g/day | Fe g/day | Pb g/day | Mn g/day | Zn g/day |
|-----------|----------|----------|----------|----------|----------|----------|----------|
| Dissolved | BDL      | BDL      | BDL      | BDL      | BDL      | 3841.5   | 2211.8   |
| Total     | 62628.2  | BDL      | BDL      | 32478.2  | BDL      | 4190.7   | 1979.0   |

#### Reclamation Options

Due to the relatively high concentrations of aluminum, iron, manganese and to some extent, zinc, the mine waste should be excavated out of the flood plain. An alternative location for placement would be immediately to the south. Placement would require preparation work including tree, vegetation and soil removal prior to relocation. Sediment control measures would be needed through the use of excelsior, straw and/or fabric fencing along Henson Creek between the area to be excavated. Sediment pond construction may be necessary if the water table is intersected during excavation. After relocation of the waste, the pile would then be amended with limestone per acid/base calculations, covered with the previously excavated soils and revegetated. Drainage occurs out of the tunnel #3 adit. Waste under-drains would need to be constructed if placement was to impact this adit. Regardless, run-on controls would be constructed to divert upslope flows around the area to the northwest down the historic access route. Caution would be needed to maintain the relocation of mine waste well off of the Risorgimento patented claim to the west. Current access per historic road beyond the tunnel #3 location may be needed to be maintained. Construction access to the site across Henson Creek could be minimized under this option. Once all the mine waste was excavated, revegetation should include riparian shrub species as well as future hedge brush layering with endemic willow species along streamside contact.

Another option for re-locating the waste is for placement at the BLM upper tailings location west of the Ute-Ule complex. If this work was performed in concert with the removal of the Hidden Treasure tailings, unit costs would be competitive. Temporary road construction would be necessary to access the site as well as temporary crossing measures for Henson Creek. During the low-flow of Henson Creek, access to the area could be easily reached with a variety of compact panel, military or other type of temporary bridge arrangements. Sediment control measures would be needed through the use of excelsior, straw and/or fabric fencing along Henson Creek. Sediment pond construction may be necessary if the water table is intersected during excavation. Once all the mine waste was excavated, revegetation should include riparian shrub species as well as future hedge brush layering with endemic willow species along streamside contact.

#### Pelican Mine

The Pelican Mine is located approximately 2.0 miles west of Lake City, Colorado in Hinsdale County via CR-20. The Mine is on the Pelican MS. #464 and Pelican No. 1 MS. #1700A patented mining claims. The Pelican Mine site exhibits three levels of workings. There are piles of collapsed debris on the lower pile. A small 'A' frame structure is situated on the middle level at the base of the second waste pile. This is the location of the backfill closure within the Lake

City AML hazard abatement project in 1996. The backfilled adit is seeping with most of the water visible at the site coming from a spring which has been piped and directed into a 55 gallon drum structure. Sampling station DM-16 is located on this bench where flows were barely collected during the high-flow event. Within less than 100 feet downflow from the sampling location, the flow disappeared into the colluvial material. The site is located at N38° 1' 28.175", W107° 20' 22.646", at an elevation of 9,520 feet. The mine had three mine dump samples taken from each level #64, #65 and #66.

#### Geology and Mine Workings

The Pelican Mine, much like the Risorgimento, is driven entirely within the Eureka member (Tse) of the Sapinero Mesa Tuff. The mine develops a vein that strikes N30°E and dips to the SE at 70°. Reports indicate that extensive brecciation and replacement occurred along the vein, yet alteration appears confined to the fissure and local country rock.

The Pelican Mine produced silver ore intermittently from 1891 to 1960. The ore minerals apparently were freibergite (argentiferous tetrahedrite), pyragyrite and galena (Irving and Bancroft, 1911) contained in a three foot wide fissure type vein. Initial development was by a 50 foot deep shaft later accessed by a lower adit and drift.

#### Mine Waste

The upper mine waste pile at the Pelican Mine is predominately country rock with signs of calcite and manganese. Sample #66 was from this pile which contains approximately 700 cubic yards. The middle pile, sample #65 contains minor amounts of pyrite with predominately country rock. The middle pile contains approximately 1,700 cubic yards of waste. The lower pile (#64) is the largest waste pile containing approximately 7,000 cubic yards of mostly benign material consisting of country rock with minor amounts of pyrite. The intermittent drainage bisects the waste pile. As shown by the leachate results for the waste piles which follow, all three piles are not detrimental. Overall, waste pile #66 ranked 50<sup>th</sup>, #65 ranked 48<sup>th</sup> and #64 ranked 36<sup>th</sup> out of 66 sites sampled.

| · • | Cilcuit Ivi |      | to Dump | oumpio ( | 20110011 | lationio |      |       |        |       |        |
|-----|-------------|------|---------|----------|----------|----------|------|-------|--------|-------|--------|
|     | Sample      | pН   | Acidity | Diss     | Diss     | Diss     | Diss | Diss  | Diss   | Diss  | Diss   |
|     | #           | s.u. | mg/l    | AI       | As       | Cd       | Cu   | Fe    | Mn     | Pb    | Zn     |
|     |             |      | -       | ug/l     | ug/l     | ug/l     | ug/l | ug/l  | ug/l   | ug/l  | ug/l   |
|     | # 66        | 4.68 | 16      | 214.4    | BDL      | BDL      | 8.3  | 435.3 | 200.1  | 90.4  | 187.4  |
|     | # 65        | 4.59 | 14      | 33.5     | BDL      | 7.2      | 89.1 | 12.2  | 351.9  | 201.0 | 1038.6 |
|     | # 64        | 4.44 | 26      | 42.2     | BDL      | 13.3     | 15.2 | 18.4  | 2730.7 | BDL   | 1917.1 |

#### Pelican Mine Waste Dump Sample Concentrations

#### Water Quality Impacts

As stated above, a high flow sample was taken from the draining adit and spring seep flows as station DM-16. Low flow data was not obtained due to very shallow standing seep water which exhibited extremely minor flow movement. As shown by the high-flow loading and the waste leachate results, this site is a minor source of heavy metals.

#### Reclamation Options

There are no reclamation recommendations for the Pelican Mine.

#### DM-18 - Draining Mine Below Pelican

This adit is located approximately one mile from the town of Lake City, on the north side of Engineer Pass Road behind a wooden fence storage area, owned by a local construction

contractor. The elevation of the site is 8,800 feet. The coordinate location of this site is N38 $^{\circ}$  1' 20.1", W107 $^{\circ}$  19' 59.9".

The draining mine is bracketed by stream sampling locations HC-17 and HC-18. The effects of the draining mine cannot be seen in Henson Creek due to the minimal amount of flow. During high flow sampling, the flow out of the mine was .001 cfs. During low flow sampling the, the flow out of the mine was .002 cfs. The water from DM-18 is generally less contaminated than the water in Henson Creek at HC-18. The recommended reclamation is no action at this site, because the mine drainage is generally cleaner water than Henson Creek and the flows are minimal.

### **RECOMMENDATIONS FOR FURTHER INVESTIGATIONS**

Several unanswered questions remain about some of the mining sites investigated. These issues were discussed in the narrative for each individual site in this report. In most cases, the unanswered question must be investigated prior to a final decision on the best reclamation option. In many cases, the answer to the question may simply involve a water sample, while in other cases, it may take additional work to better understand the site hydrology. For reference, these questions are consolidated and reviewed in Table 5 below.

#### **CONCLUSIONS**

#### Table 5. Summary of Reclamation Actions Recommended at This Time

| Site                                           |                                  | Recomme                      | nded Action               |                        |
|------------------------------------------------|----------------------------------|------------------------------|---------------------------|------------------------|
|                                                | Adit<br>Discharge<br>Reclamation | No Action<br>at this<br>time | Waste Rock<br>Reclamation | Further<br>Investigate |
| HEADWATERS AND BURROWS CREEK<br>SITES          |                                  |                              |                           |                        |
| Hough Mine                                     | Х                                |                              | Х                         | Х                      |
| Sarah Woods Area                               |                                  |                              | Х                         | Х                      |
| Miners Bank Mine                               |                                  |                              | Х                         |                        |
| Hoffman, Engineer and Emporer<br>Wilhelm Mines |                                  | X                            |                           |                        |
| Group of Dumps above Palmetto                  |                                  |                              | Х                         | Х                      |
| Palmetto Mine                                  |                                  |                              | Х                         |                        |
| Golconda Mine                                  |                                  |                              | Х                         | Х                      |
| Hanna Mill Tailings                            |                                  | Reclamation<br>in Progress   |                           |                        |
| Yellowstone Mill Tailings                      |                                  |                              | Х                         |                        |
| Yellow Medicine Mine                           |                                  |                              | Х                         |                        |
| Mountain Belle Lode                            |                                  |                              | Х                         |                        |
| Broker Lode (Dump at gate below<br>Czarina)    |                                  | X                            |                           |                        |
| Excelsior Lode                                 |                                  |                              | Х                         |                        |
| Wave of the Ocean                              |                                  | Х                            |                           |                        |
| Red Rover Tunnel/Little Hattie Lode            |                                  | Х                            |                           |                        |
| Pride of America Mine                          | Х                                |                              | Х                         | Х                      |
| Hidden Treasure Tailings                       |                                  |                              | Х                         |                        |
| Risorgimento Mine                              | Х                                |                              | Х                         |                        |
| Roy Pray                                       |                                  | Reclamation<br>in Progress   |                           | Х                      |
| Chicago Tunnel                                 |                                  | X                            |                           |                        |
| Vulcan Mine                                    | Х                                |                              |                           | Х                      |
| Four Aces Mine                                 |                                  | X                            |                           |                        |
| Pelican Mine                                   |                                  | Х                            |                           |                        |

## **ANALYSIS OF RESULTS**

Both natural and mining related metals loading affect water quality in Henson Creek. This investigation was designed to quantify the relative contribution of surface mine waste and mine portal discharge sources to Henson Creek. A simple model was used to provide some indication of the potential water quality improvement which might be expected if surface wastes and portal discharges were addressed. Because of the minimal loading measured in Henson Creek, this model was only used for Palmetto Gulch.

To do this, total zinc and manganese were selected as the parameters to be used to determine the relative percentage of metals loading that can be attributed to adit discharges. Manganese and zinc were chosen because they are found in all the adit discharges in Henson Creek, because there is a high correlation between manganese and zinc and other heavy metals of concern, and because it is a "conservative" metal, meaning that it is not readily precipitated. The assumption is that measured total load from the adit discharges will be approximately equal to the total manganese load measured in the stream below the sources if there are no natural manganese sources or inflows of mining impacted groundwater. In Palmetto Gulch, the percentages of the metal loading attributable to mining sources was similar using zinc and using manganese as the tracing parameters. During high-flow, zinc appeared to be more conservative while manganese appeared to be more conservative during low-flow.

Using this model, it was determined that a maximum of 35% and 6% of the zinc load measured at the mouth of Palmetto Gulch could be attributed to mining waste and draining mines respectively during high-flow. During low-flow, a maximum of 3% and 30% of the manganese load could be attributed to mining waste and draining mines, respectively. This indicates that the majority of the metal loading from Palmetto Gulch may be from natural sources. Further sampling would be required to ascertain whether water quality standards can be met if all the mining related sources are eliminated.

## **REFERENCES**

A. Von Schulz,1883, Colorado Mining Directory and Mining Laws.

Bove, Dana J., Kurtz, Jeffrey P., Wright, Winfield G., 2002, Geology, Mineralization, and hydrothermal alteration and relationships to acidic and metal-bearing surface waters in the Palmetto Gulch area, southwestern Colorado: U.S. Geological Survey Open-File Report 02-275.

Bove, Dana J., Hon, Ken, Budding, Karin E., Slack, John F., Snee, Lawrence W., Yeoman, Ross A., 2001, Geochronology and geology of late Oligocene through Miocene volcanism and Mineralization in the Western San Juan Mountains, Colorado: U.S. Geological Survey Professional Paper 1642.

Burbank, Wilbur S., Luedke, Robert G., 1969, Geology and ore deposits of the Eureka and adjoining districts, San Juan Mountains, Colorado: U.S. Geological Survey Professional Paper 535, p. 5-43.

Hon, Ken, 1987, Geologic, alteration and vein maps of the Redcloud Peak (Lake City caldera) and Handies Peak Wilderness Study Areas, Hinsdale County, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-1949.

Irving, John Duer, Bancroft, Howland, 1911, Geology and ore deposits near Lake City, Colorado: U.S. Geological Survey Bulletin 478, p. 11-98.

Lee, Keenan, 1986, Map showing areas of limonitic hydrothermal alteration in the Lake City caldera area, western San Juan Mountains, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-1868.

Lipman, P. W., 1976, Geologic map of the Lake City caldera area, western San Juan Mountains, southwestern Colorado: U.S. Geological Survey Miscellaneous Investigations Map I-962, scale 1:48,000.

Luedke, Robert G., Burbank, Wilbur S., 1987, Geologic map of the Handies Peak Quadrangle, San Juan, Hinsdale and Ouray Counties, Colorado: U.S. Geological Survey Geologic Quadrangle Map GQ-1595.

Morse, M.Z., Bielser, F. 2000; A brief history of mining Hinsdale County: A compilation of information abut geology and Mineralogy; their relation to the mining history of Colorado, Hinsdale County and Lake City, Colorado.

Sanford, Richard F, Kramer, Ann M, and O'Brien, Hugh, 1986; Geology, Mineralogy and paragenesis of the Pride of America Mine, Lake City, Hinsdale County, Colorado.

Sanford, R.F., Rehn, Patty, Kirk, A.R., Slack, J.F., Bove, Dana, 1991, Mine maps of silver-leadzinc epithermal deposits in the Lake City area, Hinsdale County, San Juan Mountains, southwestern Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF 2152.

Stover, 2001.Report of Geologic Investigation – Roy Pray Mine, Hinsdale County, Colorado

# **APPENDIX 1**

# **High-Flow Concentration Data**

| Site #   | Description                       | Sample    | Sample | Flow | Flow    | Adjusted<br>Flow | Diss. Al | Diss. As | Diss.<br>Cd | Diss. Ca |
|----------|-----------------------------------|-----------|--------|------|---------|------------------|----------|----------|-------------|----------|
|          |                                   | Date      | Time   | Time | cfs     | cfs              | ug/l     | ug/l     | ug/l        | ug/l     |
| HC-1     | Henson Headwaters                 | 6/29/2005 | 1115   | 1000 | 26.81   | 26.81            | <100     | <10      | <1          | 8070     |
| HC-1     | Henson Headwaters                 | 6/29/2005 |        | 1115 | 26.81   | 26.81            |          |          |             |          |
| HC-1     | Henson Headwaters                 | 6/29/2005 |        | 1315 | 30.24   | 30.24            |          |          |             |          |
| HC-2     | Henson below Palmetto             | 6/29/2005 | 1145   |      |         |                  | <100     | <10      | <1          | 11100    |
| HC-3     | Henson below Redcloud             | 6/29/2005 | 1148   | 1500 | 69.02   | 56.8             | <100     | <10      | <1          | 11900    |
| HC-4     | Henson below Schafer              | 6/29/2005 | 1100   | 1315 | 62.888  | 62.888           | <100     | <10      | <1          | 12600    |
| HC-4 DUP | Henson below Schafer              | 6/29/2005 | 1100   | 1315 | 62.888  | 62.888           | <100     | <10      | <1          | 12500    |
| HC-5     | Henson above Hanna Mill           | 6/1/2005  | 1037   | 1200 | 150.34  | 150.34           | <100     | <10      | <1          | 13100    |
| HC-5     | Henson above Hanna Mill           | 6/29/2005 | 1130   | 1045 | 135.27  | 135.27           | <100     | <10      | <1          | 14000    |
| HC-5     | Henson above Hanna Mill           | 6/29/2005 |        | 1215 | 136.99  | 136.99           |          |          |             |          |
| HC-5     | Henson above Hanna Mill           | 6/29/2005 |        | 1330 | 136.6   | 136.6            |          |          |             |          |
| HC-5     | Henson above Hanna Mill           | 6/29/2005 |        | 1445 | 144.05  | 144.05           |          |          |             |          |
| HC-5 DUP | Henson above Hanna Mill           | 6/1/2005  | 1037   | 1200 | 150.34  | 150.34           | <100     | <10      | <1          | 13100    |
| HC-6     | Henson above North Fork           | 6/1/2005  | 1008   | 1315 | 149.38  | 149.38           | <100     | <10      | <1          | 13500    |
| HC-7     | Henson above Lee Smelter          | 6/1/2005  |        | 1425 | 327.033 | 327.033          |          |          |             |          |
| HC-7     | Henson above Lee Smelter          | 6/1/2005  | 1000   | 1430 | 254.429 | 254.429          | <100     | <10      | <1          | 13500    |
| HC-8     | Henson above Copper               | 6/1/2005  | 1050   |      |         |                  | <100     | <10      | <1          | 13600    |
| HC-8     | Henson above Copper               | 6/29/2005 | 1157   | 1250 | 184.087 | 184.087          | <100     | <10      | <1          | 14400    |
| HC-9     | Henson above Big Casino           | 6/1/2005  | 1020   | 1300 | 305.004 | 305.004          | <100     | <10      | <1          | 13700    |
| HC-10    | Henson below Big Casino Gulch     | 6/1/2005  | 1030   |      |         |                  | <100     | <10      | <1          | 13700    |
| HC-10    | Henson below Big Casino Gulch     | 6/29/2005 | 1230   | 1245 | 225.786 | 225.786          | <100     | <10      | <1          | 13900    |
| HC-11    | Henson above Nellie and Owl Gulch | 6/1/2005  | 1050   | 1100 | 316.692 | 316.692          | <100     | <10      | <1          | 13600    |
| HC-12    | Henson above Ute-Ule Tailings     | 6/1/2005  | 1000   |      |         |                  | <100     | <10      | <1          | 13400    |
| HC-12    | Henson above Ute-Ule Tailings     | 6/29/2005 | 1135   |      |         |                  | <100     | <10      | <1          | 13300    |
| HC-13    | Henson below Ute-Ule Tailings     | 6/1/2005  | 1021   |      |         |                  | <100     | <10      | <1          | 13000    |
| HC-13    | Henson below Ute-Ule Tailings     | 6/29/2005 | 1125   |      |         |                  | <100     | <10      | <1          | 13400    |
| HC-14    | Henson below Ute-Ule              | 6/1/2005  | 1045   |      |         |                  | <100     | <10      | <1          | 13100    |
| HC-15    | Henson above Alpine               | 6/1/2005  | 1055   | 1045 | 352     | 352              | <100     | <10      | <1          | 13000    |
| HC-15    | Henson above Alpine               | 6/29/2005 | 1145   |      |         |                  | 238      | <10      | <1          | 13500    |
| HC-16    | Henson below Alpine               | 6/1/2005  | 1037   |      |         |                  | <100     | <10      | <1          | 13000    |
| HC-16    | Henson below Alpine               | 6/29/2005 | 1130   |      |         |                  | <100     | <10      | <1          | 13700    |

| Site #        | Description                         | Sample    | Sample | Flow | Flow     | Adjusted<br>Flow | Diss. Al | Diss. As | Diss.<br>Cd | Diss. Ca |
|---------------|-------------------------------------|-----------|--------|------|----------|------------------|----------|----------|-------------|----------|
|               |                                     | Date      | Time   | Time | cfs      | cfs              | ug/l     | ug/l     | ug/l        | ug/l     |
| HC-17         | Henson Below Pelican                | 6/1/2005  | 1017   |      | 441      | 441              | <100     | <10      | <1          | 12900    |
| HC-17         | Henson below Pelican                | 6/29/2005 | 1105   | 1355 | 268.095  | 268.095          | <100     | <10      | <1          | 13600    |
| HC-18         | Henson above Lake Fork              | 6/1/2005  |        | 820  | 498.99   | 498.99           |          |          |             |          |
| HC-18         | Henson above Lake Fork              | 6/1/2005  | 1000   | 1315 | 358.87   | 358.87           | <100     | <10      | <1          | 13000    |
| HC-18         | Henson above Lake Fork              | 6/29/2005 | 1030   | 1030 | 355.751  | 355.751          | <100     | <10      | <1          | 13600    |
| SW            | Sara Woods Dump Drainage            | 6/29/2005 | 1112   | 1130 | 0.0098   | 0.0098           | 224      | <10      | <1          | 5280     |
| PG-1          | Palmetto Gulch Headwaters           | 6/29/2005 |        | 1125 | 0.333    | 0.333            |          |          |             |          |
| PG-1          | Palmetto Gulch Headwaters           | 6/29/2005 |        | 1205 | 0.333    | 0.333            |          |          |             |          |
| PG-1          | Palmetto Gulch Headwaters           | 6/29/2005 |        | 1245 | 0.35     | 0.35             |          |          |             |          |
| PG-1          | Palmetto Gulch Headwaters           | 6/29/2005 | 1115   | 1417 | 0.421    | 0.421            | <100     | <10      | <1          | 30000    |
| PG-1A         | Runoff from Hough Dump              | 6/29/2005 | 1240   | 1325 | 0.1051   | 0.089            | 7630     | <10      | 32          | 33600    |
| PG-1B         | Downstream of Hough Adit            | 6/29/2005 | 1240   | 1310 | 0.382743 | 0.336            | 828      | <10      | 5           | 11600    |
| PG-2          | Palmetto below Sara Woods           | 6/29/2005 | 1115   | 1145 | 1.615    | 1.615            | 1420     | <10      | 4           | 33700    |
| PG-3          | South Trib to Palmetto              | 6/29/2005 | 1125   | 1150 | 0.633    | 0.633            | <100     | <10      | 2           | 23300    |
| PG-4          | Palmetto Trib below Wyoming         | 6/29/2005 | 1100   | 1120 | 0.497007 | 0.497007         | <100     | <10      | 3           | 18400    |
| PG-5          | Below Confluence of PG-3 and PG-4   | 6/29/2005 | 1100   | 1150 | 2.765    | 2.765            | <100     | <10      | 2           | 21700    |
| PG-6          | Palmetto below Roy Pray             | 6/29/2005 | 1100   | 1135 | 2.239    | 2.239            | 2290     | <10      | 6           | 31800    |
| PG-6 DUP      | Palmetto below Roy Pray             | 6/29/2005 | 1100   | 1135 | 2.239    | 2.239            | 2250     | <10      | 6           | 31600    |
| PG-7          | Palmetto below Hough                | 6/29/2005 | 1140   | 1235 | 2.427    | 2.28             | <100     | <10      | 4           | 16400    |
| PG-8          | Palmetto below Palmetto Mine        | 6/29/2005 | 1115   | 1320 | 5.325    | 4.74             | <100     | <10      | 1           | 13600    |
| PG-9          | Palmetto below Tributary Confluence | 6/29/2005 | 1105   | 1015 | 11.53    | 11.53            | <100     | <10      | 3           | 20700    |
| PG-10         | Palmetto above Henson               | 6/29/2005 | 1100   | 1040 | 9.94     | 9.94             | <100     | <10      | 2           | 19700    |
| PG-10         | Palmetto above Henson               | 6/29/2005 |        | 1150 | 10.17    | 10.17            |          |          |             |          |
| PG-10         | Palmetto above Henson               | 6/29/2005 |        | 1345 | 13.02    | 13.02            |          |          |             |          |
| RC            | Redcloud Gulch                      | 6/29/2005 | 1157   | 1545 | 5.779    | 4.47             | <100     | <10      | 1           | 20300    |
| SCG           | Schafer Gulch                       | 6/29/2005 | 1132   | 1415 | 18.831   | 16               | <100     | <10      | <1          | 14100    |
| NFHC-1        | North Fork Henson Headwaters        | 6/1/2005  | 1025   | 1200 | 55.066   | 55.066           | <100     | <10      | <1          | 7640     |
| NFHC-1<br>DUP | North Fork Henson Headwaters        | 6/1/2005  | 1025   | 1200 | 55.066   | 55.066           | <100     | <10      | <1          | 7660     |
| NFHC-2        | North Fork Henson above Yellowstone | 6/1/2005  | 1000   | 1300 | 94.24    | 94.24            | <100     | <10      | <1          | 11600    |
| NFHC-3        | North Fork Henson above Henson      | 6/1/2005  | 1000   | 915  | 115.38   | 115.38           | <100     | <10      | <1          | 12200    |
| NFHC-3        | North Fork Henson above Henson      | 6/1/2005  |        | 1015 | 113.948  | 113.948          |          | _        |             |          |
| NFHC-3        | North Fork Henson above Henson      | 6/29/2005 | 1315   | 1500 | 93.609   | 93.609           | <100     | <10      | <1          | 12400    |

| Site #       | Description                             | Sample    | Sample | Flow | Flow     | Adjusted<br>Flow | Diss. Al | Diss. As | Diss.<br>Cd | Diss. Ca |
|--------------|-----------------------------------------|-----------|--------|------|----------|------------------|----------|----------|-------------|----------|
|              |                                         | Date      | Time   | Time | cfs      | cfs              | ug/l     | ug/l     | ug/l        | ug/l     |
| YG           | Yellowstone Gulch                       | 6/1/2005  | 1030   | 1030 | 0.477    | 0.477            | <100     | <10      | 2           | 23100    |
| MHC          | Matterhorn Creek                        | 6/1/2005  | 1050   | 1130 | 37.005   | 37.005           | <100     | <10      | <1          | 16100    |
| LSG          | Lee Smelter Gulch                       | 6/1/2005  | 1015   | 1000 | 9.29     | 9.29             | 169      | <10      | <1          | 18800    |
| EPC          | El Paso Creek                           | 6/1/2005  | 1108   | 1145 | 30.899   | 30.899           | <100     | <10      | <1          | 9100     |
| BCG-1        | Big Casino Gulch above Pride of America | 6/1/2005  | 1230   | 1230 | 0.045    | 0.045            | <100     | <10      | 2           | 15700    |
| BCG-2        | Big Casino Gulch below Pride of America | 6/1/2005  | 1130   | 1130 | 0.08     | 0.08             | <100     | <10      | 16          | 15500    |
| NC           | Nellie Creek                            | 6/1/2005  | 1055   | 1145 | 25.918   | 25.918           | <100     | <10      | <1          | 5870     |
| OG           | Owl Gulch                               | 6/1/2005  | 1002   | 1000 | 16.374   | 16.374           | <100     | <10      | <1          | 15100    |
| AG           | Alpine Gulch                            | 6/1/2005  | 1058   | 1003 | 47.58    | 47.58            | <100     | <10      | <1          | 12300    |
| DM-2         | Wyoming Mine                            | 6/28/2005 | 1240   |      | 0.0828   | 0.0828           | <100     | <10      | <1          | 22000    |
| DM-5         | Palmetto Mine                           | 6/28/2005 | 1330   |      | 0.00605  | 0.00605          | <100     | <10      | <1          | 23700    |
| DM-7         | Chicago Tunnel                          | 6/28/2005 | 1420   |      | 0.211968 | 0.211968         | <100     | <10      | <1          | 50700    |
| DM-7 DUP     | Chicago Tunnel                          | 6/28/2005 | 1430   |      | 0.211968 | 0.211968         | <100     | <10      | <1          | 50500    |
| DM-8         | Highland Chief Mine                     | 6/28/2005 | 1330   |      | 0.0722   | 0.0722           | <100     | <10      | <1          | 32500    |
| DM-9         | Moro Tunnel                             | 6/2/2005  | 1000   |      | 0.001    | 0.001            | <100     | <10      | <1          | 91100    |
| DM-10        | Vulcan Mine                             | 6/2/2005  | 1058   |      | 0.04     | 0.04             | <100     | <10      | <1          | 101000   |
| DM-11        | Lucky Strike Mine                       | 6/2/2005  | 1105   |      | 0.031    | 0.031            | <100     | <10      | <1          | 309000   |
| DM-11<br>DUP | Lucky Strike Mine                       | 6/2/2005  | 1120   |      | 0.031    | 0.031            | <100     | <10      | <1          | 310000   |
| DM-12        | Adit between Copper & Big Casino        | 6/2/2005  | 945    |      | 0.024    | 0.024            | <100     | <10      | <1          | 34000    |
| DM-14        | Pride of America Mine                   | 6/1/2005  | 1204   | 1200 | 0.067    | 0.067            | <100     | <10      | 65          | 16600    |
| DM-16        | Pelican Mine                            | 6/2/2005  | 915    |      | 0.00125  | 0.00125          | <100     | <10      | 18          | 84100    |
| DM-17        | El Paso Gulch Draining Mine             | 6/2/2005  | 845    |      | 0.012    | 0.012            | <100     | <10      | 28          | 81800    |
| DM-18        | Brown Adit                              | 6/2/2005  | 1110   |      | 0.00125  | 0.00125          | <100     | <10      | <1          | 42500    |
| BK-7         | blank                                   | 6/1/2005  | 1500   |      |          |                  | <100     | <10      | <1          | <200     |
| BLK-1        | blank                                   | 6/1/2005  | 1415   |      |          |                  | <100     | <10      | <1          | <200     |
| BLK-1        | blank                                   | 6/29/2005 | 1207   |      |          |                  | <100     | <10      | <1          | <200     |
| BLK-2        | blank                                   | 6/29/2005 | 1215   |      |          |                  | <100     | <10      | <1          | <200     |

| Site #   | Description                       | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg | Diss. Mn | Diss. Ni | Diss. K | Diss. Na | Diss. Zn |
|----------|-----------------------------------|----------|----------|----------|----------|----------|----------|---------|----------|----------|
|          |                                   | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l    | ug/l     | ug/l     |
| HC-1     | Henson Headwaters                 | <10      | <200     | <5       | 855      | <4       | <3       | <1000   | 1140     | <10      |
| HC-1     | Henson Headwaters                 |          |          |          |          |          |          |         |          |          |
| HC-1     | Henson Headwaters                 |          |          |          |          |          |          |         |          |          |
| HC-2     | Henson below Palmetto             | 12       | <200     | <5       | 1210     | 146      | <3       | <1000   | 1060     | 70       |
| HC-3     | Henson below Redcloud             | 12       | <200     | <5       | 1250     | 161      | <3       | <1000   | 1060     | 76       |
| HC-4     | Henson below Schafer              | <10      | <200     | <5       | 1480     | 116      | <3       | <1000   | 925      | 94       |
| HC-4 DUP | Henson below Schafer              | <10      | <200     | <5       | 1490     | 115      | <3       | <1000   | 920      | 93       |
| HC-5     | Henson above Hanna Mill           | <10      | <200     | <5       | 1170     | 6        | <3       | <1000   | 986      | 34       |
| HC-5     | Henson above Hanna Mill           | <10      | <200     | <5       | 1300     | 26       | <3       | <1000   | 903      | 48       |
| HC-5     | Henson above Hanna Mill           |          |          |          |          |          |          |         |          |          |
| HC-5     | Henson above Hanna Mill           |          |          |          |          |          |          |         |          |          |
| HC-5     | Henson above Hanna Mill           |          |          |          |          |          |          |         |          |          |
| HC-5 DUP | Henson above Hanna Mill           | <10      | <200     | <5       | 1180     | 6        | <3       | <1000   | 977      | 35       |
| HC-6     | Henson above North Fork           | <10      | <200     | <5       | 1210     | 5        | <3       | <1000   | 1030     | 29       |
| HC-7     | Henson above Lee Smelter          |          |          |          |          |          |          |         |          |          |
| HC-7     | Henson above Lee Smelter          | <10      | <200     | <5       | 1520     | 14       | <3       | <1000   | 1610     | 17       |
| HC-8     | Henson above Copper               | <10      | <200     | <5       | 1510     | 19       | <3       | <1000   | 1580     | 20       |
| HC-8     | Henson above Copper               | <10      | <200     | <5       | 1640     | 28       | <3       | <1000   | 1560     | 25       |
| HC-9     | Henson above Big Casino           | <10      | <200     | <5       | 1470     | 17       | <3       | <1000   | 1640     | 39       |
| HC-10    | Henson below Big Casino Gulch     | <10      | <200     | <5       | 1480     | 16       | <3       | <1000   | 1650     | 20       |
| HC-10    | Henson below Big Casino Gulch     | <10      | <200     | <5       | 1540     | 26       | <3       | <1000   | 1560     | 23       |
| HC-11    | Henson above Nellie and Owl Gulch | <10      | <200     | <5       | 1480     | 14       | <3       | <1000   | 1680     | 22       |
| HC-12    | Henson above Ute-Ule Tailings     | <10      | <200     | <5       | 1420     | 12       | <3       | <1000   | 1740     | 31       |
| HC-12    | Henson above Ute-Ule Tailings     | <10      | <200     | <5       | 1470     | 20       | <3       | <1000   | 1640     | 20       |
| HC-13    | Henson below Ute-Ule Tailings     | <10      | <200     | <5       | 1410     | 11       | <3       | <1000   | 1720     | 16       |
| HC-13    | Henson below Ute-Ule Tailings     | <10      | <200     | <5       | 1470     | 20       | <3       | <1000   | 1620     | 17       |
| HC-14    | Henson below Ute-Ule              | <10      | <200     | <5       | 1410     | 14       | <3       | <1000   | 1730     | 22       |
| HC-15    | Henson above Alpine               | <10      | <200     | <5       | 1410     | 13       | <3       | <1000   | 1810     | 40       |
| HC-15    | Henson above Alpine               | <10      | <200     | <5       | 1480     | 28       | <3       | <1000   | 1640     | 30       |
| HC-16    | Henson below Alpine               | <10      | <200     | <5       | 1460     | 15       | <3       | <1000   | 1740     | 20       |
| HC-16    | Henson below Alpine               | <10      | <200     | <5       | 1540     | 22       | <3       | <1000   | 1700     | 23       |

| Site #   | Description                         | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg | Diss. Mn | Diss. Ni | Diss. K | Diss. Na | Diss. Zn |
|----------|-------------------------------------|----------|----------|----------|----------|----------|----------|---------|----------|----------|
|          |                                     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l    | ug/l     | ug/l     |
| HC-17    | Henson Below Pelican                | <10      | <200     | <5       | 1450     | 14       | <3       | <1000   | 1740     | 34       |
| HC-17    | Henson below Pelican                | <10      | <200     | <5       | 1540     | 22       | <3       | <1000   | 1660     | 24       |
| HC-18    | Henson above Lake Fork              |          |          |          |          |          |          |         |          |          |
| HC-18    | Henson above Lake Fork              | <10      | <200     | <5       | 1470     | 13       | <3       | <1000   | 1730     | 24       |
| HC-18    | Henson above Lake Fork              | <10      | <200     | <5       | 1550     | 24       | <3       | <1000   | 1690     | 32       |
| SW       | Sara Woods Dump Drainage            | 12       | <200     | <5       | 532      | 88       | 3        | <1000   | <500     | 27       |
| PG-1     | Palmetto Gulch Headwaters           |          |          |          |          |          |          |         |          |          |
| PG-1     | Palmetto Gulch Headwaters           |          |          |          |          |          |          |         |          |          |
| PG-1     | Palmetto Gulch Headwaters           |          |          |          |          |          |          |         |          |          |
| PG-1     | Palmetto Gulch Headwaters           | <10      | <200     | <5       | 2930     | 5        | <3       | <1000   | 1310     | <10      |
| PG-1A    | Runoff from Hough Dump              | 6410     | 991      | <5       | 5820     | 1580     | 17       | <1000   | <500     | 3710     |
| PG-1B    | Downstream of Hough Adit            | 1600     | 1200     | <5       | 1140     | 327      | 4        | <1000   | 579      | 671      |
| PG-2     | Palmetto below Sara Woods           | 228      | <200     | <5       | 4420     | 1270     | 12       | <1000   | 882      | 478      |
| PG-3     | South Trib to Palmetto              | <10      | <200     | <5       | 1930     | 1070     | 4        | <1000   | 886      | 434      |
| PG-4     | Palmetto Trib below Wyoming         | <10      | <200     | <5       | 1130     | 88       | <3       | <1000   | 730      | 537      |
| PG-5     | Below Confluence of PG-3 and PG-4   | <10      | <200     | <5       | 1650     | 623      | 3        | <1000   | 840      | 387      |
| PG-6     | Palmetto below Roy Pray             | 200      | 383      | <5       | 4880     | 1820     | 14       | <1000   | 694      | 921      |
| PG-6 DUP | Palmetto below Roy Pray             | 194      | 387      | <5       | 4860     | 1810     | 15       | <1000   | 680      | 905      |
| PG-7     | Palmetto below Hough                | 622      | 340      | <5       | 1790     | 333      | 3        | <1000   | 631      | 494      |
| PG-8     | Palmetto below Palmetto Mine        | 57       | <200     | <5       | 1520     | 108      | <3       | <1000   | 756      | 121      |
| PG-9     | Palmetto below Tributary Confluence | 36       | <200     | <5       | 2450     | 678      | 5        | <1000   | 782      | 386      |
| PG-10    | Palmetto above Henson               | 19       | <200     | <5       | 2240     | 592      | 4        | <1000   | 801      | 304      |
| PG-10    | Palmetto above Henson               |          |          |          |          |          |          |         |          |          |
| PG-10    | Palmetto above Henson               |          |          |          |          |          |          |         |          |          |
| RC       | Redcloud Gulch                      | <10      | <200     | <5       | 1750     | 424      | 3        | <1000   | 1160     | 206      |
| SCG      | Schafer Gulch                       | <10      | <200     | <5       | 2230     | 66       | <3       | <1000   | <500     | 189      |
| NFHC-1   | North Fork Henson Headwaters        | <10      | <200     | <5       | 890      | <4       | <3       | <1000   | 2500     | <10      |
| NFHC-1   | North Ford Hanney Handworten        | 10       | 000      | -        | 004      | 4        | 0        | 4000    | 0500     | 10       |
|          | North Fork Henson Headwaters        | <10      | <200     | <5       | 891      | <4       | <3       | <1000   | 2500     | <10      |
| NFHC-2   | North Fork Henson above Yellowstone | <10      | <200     | <5       | 1930     | 37       | <3       | <1000   | 2410     | <10      |
| NFHC-3   | North Fork Henson above Henson      | <10      | <200     | <5       | 1940     | 32       | <3       | <1000   | 2390     | <10      |
| NFHC-3   | North Fork Henson above Henson      | 10       |          | -        | 4040     |          |          | 4000    | 0500     | 4.0      |
| NFHC-3   | North Fork Henson above Henson      | <10      | <200     | <5       | 1940     | 29       | <3       | <1000   | 2530     | <10      |

| Site #   | Description                             | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg | Diss. Mn | Diss. Ni | Diss. K | Diss. Na | Diss. Zn |
|----------|-----------------------------------------|----------|----------|----------|----------|----------|----------|---------|----------|----------|
|          |                                         | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l    | ug/l     | ug/l     |
| YG       | Yellowstone Gulch                       | <10      | <200     | <5       | 2040     | <4       | <3       | <1000   | 2690     | 308      |
| MHC      | Matterhorn Creek                        | <10      | <200     | <5       | 3440     | 107      | <3       | <1000   | 2270     | 13       |
| LSG      | Lee Smelter Gulch                       | <10      | <200     | <5       | 1810     | 202      | <3       | <1000   | 1140     | 66       |
| EPC      | El Paso Creek                           | <10      | <200     | <5       | 994      | 9        | <3       | <1000   | 2250     | 10       |
| BCG-1    | Big Casino Gulch above Pride of America | <10      | <200     | 30       | 1040     | <4       | <3       | <1000   | 1070     | 185      |
| BCG-2    | Big Casino Gulch below Pride of America | 31       | <200     | 40       | 1050     | 28       | <3       | <1000   | 1110     | 1620     |
| NC       | Nellie Creek                            | <10      | <200     | <5       | 852      | <4       | <3       | 1000    | 2710     | <10      |
| OG       | Owl Gulch                               | <10      | <200     | <5       | 1040     | <4       | <3       | <1000   | 914      | <10      |
| AG       | Alpine Gulch                            | <10      | <200     | <5       | 1900     | 33       | <3       | <1000   | 1780     | 19       |
| DM-2     | Wyoming Mine                            | <10      | <200     | <5       | 1890     | 33       | <3       | <1000   | <500     | 192      |
| DM-5     | Palmetto Mine                           | 15       | <200     | <5       | 2980     | 144      | <3       | <1000   | 1030     | 122      |
| DM-7     | Chicago Tunnel                          | <10      | <200     | <5       | 4400     | 537      | <3       | 1630    | 3020     | 195      |
| DM-7 DUP | Chicago Tunnel                          | <10      | <200     | <5       | 4310     | 547      | <3       | 1680    | 3030     | 197      |
| DM-8     | Highland Chief Mine                     | <10      | <200     | <5       | 1660     | <4       | <3       | <1000   | 2600     | 34       |
| DM-9     | Moro Tunnel                             | <10      | <200     | <5       | 8200     | 475      | <3       | <1000   | 7660     | <10      |
| DM-10    | Vulcan Mine                             | <10      | 907      | <5       | 9480     | 802      | <3       | <1000   | 5310     | 51       |
| DM-11    | Lucky Strike Mine                       | 21       | <200     | <5       | 6990     | 287      | <3       | <1000   | 11300    | <10      |
| DM-11    |                                         |          |          | _        |          |          | _        |         |          |          |
| DUP      | Lucky Strike Mine                       | 21       | <200     | <5       | 6940     | 286      | <3       | <1000   | 11300    | <10      |
| DM-12    | Adit between Copper & Big Casino        | <10      | <200     | <5       | 1800     | <4       | <3       | <1000   | 2350     | 18       |
| DM-14    | Pride of America Mine                   | 55       | <200     | 5        | 1150     | 306      | <3       | <1000   | 1260     | 7220     |
| DM-16    | Pelican Mine                            | <10      | <200     | <5       | 15200    | 130      | <3       | 3100    | 22300    | 5870     |
| DM-17    | El Paso Gulch Draining Mine             | 191      | <200     | 19       | 3600     | 1110     | <3       | 1330    | 12600    | 2460     |
| DM-18    | Brown Adit                              | <10      | <200     | <5       | 5690     | <4       | <3       | 1460    | 9080     | 43       |
| BK-7     | blank                                   | <10      | <200     | <5       | <200     | <4       | <3       | <1000   | <500     | <10      |
| BLK-1    | blank                                   | <10      | <200     | <5       | <200     | <4       | <3       | <1000   | <500     | <10      |
| BLK-1    | blank                                   | <10      | <200     | <5       | <200     | <4       | <3       | <1000   | <500     | <10      |
| BLK-2    | blank                                   | <10      | <200     | <5       | <200     | <4       | <3       | <1000   | <500     | <10      |

| Site #      | Description                       | Tot. Al | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe | Tot. Pb | Tot. Mg | Tot. Mn | Tot. Ni |
|-------------|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|             |                                   | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | mg/l    | ug/l    | ug/l    |
| HC-1        | Henson Headwaters                 | 100     | <10     | <1      | <10     | <200    | <5      | 851     | 5       | 7       |
| HC-1        | Henson Headwaters                 |         |         |         |         |         |         |         |         |         |
| HC-1        | Henson Headwaters                 |         |         |         |         |         |         |         |         |         |
| HC-2        | Henson below Palmetto             | 397     | <10     | <1      | 30      | 334     | <5      | 1240    | 152     | <3      |
| HC-3        | Henson below Redcloud             | 403     | <10     | <1      | 27      | 329     | <5      | 1300    | 178     | <3      |
| HC-4        | Henson below Schafer              | 297     | <10     | <1      | 20      | 237     | <5      | 1520    | 124     | <3      |
| HC-4<br>DUP | Henson below Schafer              | 288     | <10     | <1      | 21      | 234     | <5      | 1530    | 125     | <3      |
| HC-5        | Henson above Hanna Mill           | 207     | <10     | 1       | <10     | <200    | <5      | 1220    | 17      | <3      |
| HC-5        | Henson above Hanna Mill           | 153     | <10     | <1      | <10     | <200    | <5      | 1360    | 33      | <3      |
| HC-5        | Henson above Hanna Mill           |         |         |         |         |         |         |         |         |         |
| HC-5        | Henson above Hanna Mill           |         |         |         |         |         |         |         |         |         |
| HC-5        | Henson above Hanna Mill           |         |         |         |         |         |         |         |         |         |
| HC-5<br>DUP | Henson above Hanna Mill           | 339     | <10     | <1      | <10     | 284     | <5      | 1270    | 25      | <3      |
| HC-6        | Henson above North Fork           | 197     | <10     | 1       | <10     | <200    | <5      | 1250    | 15      | <3      |
| HC-7        | Henson above Lee Smelter          |         |         |         |         |         |         |         |         |         |
| HC-7        | Henson above Lee Smelter          | 347     | <10     | 1       | <10     | 241     | <5      | 1540    | 23      | <3      |
| HC-8        | Henson above Copper               | 400     | <10     | <1      | <10     | 261     | <5      | 1590    | 30      | <3      |
| HC-8        | Henson above Copper               | 296     | <10     | <1      | <10     | <200    | <5      | 1700    | 33      | <3      |
| HC-9        | Henson above Big Casino           | 383     | <10     | <1      | <10     | 253     | <5      | 1520    | 28      | <3      |
| HC-10       | Henson below Big Casino Gulch     | 410     | <10     | <1      | <10     | 267     | <5      | 1510    | 29      | <3      |
| HC-10       | Henson below Big Casino Gulch     | 341     | <10     | <1      | <10     | <200    | <5      | 1600    | 33      | <3      |
| HC-11       | Henson above Nellie and Owl Gulch | 348     | <10     | <1      | <10     | 223     | <5      | 1490    | 24      | <3      |
| HC-12       | Henson above Ute-Ule Tailings     | 591     | <10     | <1      | <10     | 405     | <5      | 1520    | 32      | <3      |
| HC-12       | Henson above Ute-Ule Tailings     | 315     | <10     | <1      | <10     | <200    | <5      | 1530    | 27      | <3      |
| HC-13       | Henson below Ute-Ule Tailings     | 486     | <10     | <1      | <10     | 332     | <5      | 1480    | 26      | <3      |
| HC-13       | Henson below Ute-Ule Tailings     | 326     | <10     | <1      | <10     | <200    | <5      | 1530    | 27      | <3      |
| HC-14       | Henson below Ute-Ule              | 466     | <10     | <1      | <10     | 302     | <5      | 1490    | 30      | <3      |
| HC-15       | Henson above Alpine               | 485     | <10     | <1      | <10     | 345     | 5       | 1490    | 30      | <3      |
| HC-15       | Henson above Alpine               | <100    | <10     | <1      | <10     | <200    | <5      | 1450    | 21      | <3      |
| HC-16       | Henson below Alpine               | 381     | <10     | <1      | <10     | 243     | <5      | 1480    | 28      | <3      |
| HC-16       | Henson below Alpine               | 304     | <10     | <1      | <10     | <200    | <5      | 1530    | 29      | <3      |

| Site #        | Description                         | Tot. Al | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe | Tot. Pb | Tot. Mg | Tot. Mn | Tot. Ni |
|---------------|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|               |                                     | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | mg/l    | ug/l    | ug/l    |
| HC-17         | Henson Below Pelican                | 512     | <10     | <1      | <10     | 351     | <5      | 1550    | 31      | <3      |
| HC-17         | Henson below Pelican                | 353     | <10     | <1      | <10     | <200    | <5      | 1580    | 31      | <3      |
| HC-18         | Henson above Lake Fork              |         |         |         |         |         |         |         |         |         |
| HC-18         | Henson above Lake Fork              | 566     | <10     | <1      | <10     | 369     | <5      | 1550    | 31      | <3      |
| HC-18         | Henson above Lake Fork              | 320     | <10     | <1      | <10     | <200    | <5      | 1540    | 28      | <3      |
| SW            | Sara Woods Dump Drainage            | 342     | <10     | <1      | 11      | <200    | <5      | 565     | 92      | <3      |
| PG-1          | Palmetto Gulch Headwaters           |         |         |         |         |         |         |         |         |         |
| PG-1          | Palmetto Gulch Headwaters           |         |         |         |         |         |         |         |         |         |
| PG-1          | Palmetto Gulch Headwaters           |         |         |         |         |         |         |         |         |         |
| PG-1          | Palmetto Gulch Headwaters           | <100    | <10     | <1      | <10     | <200    | <5      | 2940    | 7       | <3      |
| PG-1A         | Runoff from Hough Dump              | 13000   | 78      | 33      | 6740    | 11900   | 100     | 6740    | 1680    | 16      |
| PG-1B         | Downstream of Hough Adit            | 2560    | 105     | 6       | 1720    | 5480    | 19      | 1320    | 361     | 3       |
| PG-2          | Palmetto below Sara Woods           | 5120    | <10     | 4       | 270     | 3160    | <5      | 4550    | 1320    | 11      |
| PG-3          | South Trib to Palmetto              | 659     | 10      | 2       | 36      | 2430    | <5      | 1910    | 1070    | 4       |
| PG-4          | Palmetto Trib below Wyoming         | <100    | <10     | 3       | <10     | 231     | <5      | 1130    | 90      | <3      |
| PG-5          | Below Confluence of PG-3 and PG-4   | 415     | <10     | 3       | 21      | 1500    | <5      | 1710    | 651     | <3      |
| PG-6          | Palmetto below Roy Pray             | 4510    | <10     | 6       | 216     | 2540    | <5      | 4970    | 1870    | 13      |
| PG-6          |                                     |         |         |         |         |         |         |         |         |         |
| DUP           | Palmetto below Roy Pray             | 4420    | <10     | 6       | 219     | 2570    | <5      | 4990    | 1840    | 14      |
| PG-7          | Palmetto below Hough                | 2000    | 36      | 4       | 942     | 2060    | <5      | 1840    | 331     | 5       |
| PG-8          | Palmetto below Palmetto Mine        | 497     | 10      | 1       | 191     | 507     | <5      | 1550    | 114     | <3      |
| PG-9          | Palmetto below Tributary Confluence | 1420    | <10     | 3       | 143     | 1190    | <5      | 2400    | 679     | 6       |
| PG-10         | Palmetto above Henson               | 1170    | <10     | 2       | 117     | 976     | <5      | 2280    | 589     | 4       |
| PG-10         | Palmetto above Henson               |         |         |         |         |         |         |         |         |         |
| PG-10         | Palmetto above Henson               |         |         |         |         |         |         |         |         |         |
| RC            | Redcloud Gulch                      | 223     | <10     | 1       | <10     | <200    | <5      | 1800    | 444     | <3      |
| SCG           | Schafer Gulch                       | <100    | <10     | <1      | <10     | <200    | <5      | 2270    | 71      | <3      |
| NFHC-1        | North Fork Henson Headwaters        | 220     | <10     | 6       | <10     | <200    | <5      | 945     | 6       | <3      |
| NFHC-1<br>DUP | North Fork Henson Headwaters        | 289     | <10     | <1      | <10     | 242     | <5      | 948     | 8       | <3      |
| NFHC-2        | North Fork Henson above Yellowstone | 540     | <10     | <1      | <10     | 340     | <5      | 1990    | 45      | <3      |
| NFHC-3        | North Fork Henson above Henson      | 581     | <10     | <1      | <10     | 354     | <5      | 1980    | 41      | <3      |
| NFHC-3        | North Fork Henson above Henson      |         |         |         |         |         |         |         |         |         |
| NFHC-3        | North Fork Henson above Henson      | 425     | <10     | <1      | <10     | 259     | <5      | 1980    | 34      | <3      |

| Site #       | Description                             | Tot. Al | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe | Tot. Pb | Tot. Mg | Tot. Mn | Tot. Ni |
|--------------|-----------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|              |                                         | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | mg/l    | ug/l    | ug/l    |
| YG           | Yellowstone Gulch                       | 133     | <10     | 2       | <10     | <200    | <5      | 2070    | 4       | <3      |
| MHC          | Matterhorn Creek                        | 925     | <10     | 1       | <10     | 475     | <5      | 3520    | 114     | <3      |
| LSG          | Lee Smelter Gulch                       | 1290    | <10     | <1      | <10     | <200    | <5      | 1850    | 207     | 3       |
| EPC          | El Paso Creek                           | 328     | <10     | <1      | <10     | <200    | <5      | 1020    | 20      | <3      |
| BCG-1        | Big Casino Gulch above Pride of America | 154     | <10     | 2       | <10     | <200    | 53      | 1070    | 7       | <3      |
| BCG-2        | Big Casino Gulch below Pride of America | 164     | <10     | 15      | 37      | <200    | 75      | 1040    | 29      | <3      |
| NC           | Nellie Creek                            | 287     | <10     | <1      | <10     | <200    | <5      | 883     | 10      | <3      |
| OG           | Owl Gulch                               | <100    | <10     | <1      | <10     | <200    | <5      | 1050    | <4      | <3      |
| AG           | Alpine Gulch                            | 538     | <10     | <1      | <10     | 279     | <5      | 1840    | 36      | <3      |
| DM-2         | Wyoming Mine                            | <100    | <10     | <1      | <10     | 289     | <5      | 1930    | 44      | <3      |
| DM-5         | Palmetto Mine                           | 562     | <10     | <1      | 23      | <200    | <5      | 2980    | 162     | <3      |
| DM-7         | Chicago Tunnel                          | <100    | <10     | <1      | <10     | 1220    | <5      | 4370    | 657     | <3      |
| DM-7<br>DUP  | Chicago Tunnel                          | <100    | <10     | <1      | <10     | 1260    | <5      | 4320    | 677     | <3      |
| DM-8         | Highland Chief Mine                     | <100    | <10     | <1      | <10     | <200    | <5      | 1670    | <4      | <3      |
| DM-9         | Moro Tunnel                             | <100    | <10     | <1      | <10     | <200    | <5      | 8160    | 713     | <3      |
| DM-10        | Vulcan Mine                             | <100    | <10     | <1      | <10     | 1010    | <5      | 9430    | 788     | <3      |
| DM-11        | Lucky Strike Mine                       | <100    | <10     | <1      | 17      | <200    | <5      | 7050    | 317     | <3      |
| DM-11<br>DUP | Lucky Strike Mine                       | <100    | <10     | <1      | 18      | <200    | <5      | 6960    | 301     | <3      |
| DM-12        | Adit between Copper & Big Casino        | <100    | <10     | <1      | <10     | <200    | <5      | 1770    | 4       | <3      |
| DM-14        | Pride of America Mine                   | 417     | <10     | 67      | 221     | 1280    | 49      | 1180    | 308     | <3      |
| DM-16        | Pelican Mine                            | 2460    | <10     | 19      | <10     | 1310    | 27      | 15400   | 468     | <3      |
| DM-17        | El Paso Gulch Draining Mine             | 1090    | <10     | 26      | 442     | <200    | 62      | 3500    | 1060    | <3      |
| DM-18        | Brown Adit                              | <100    | <10     | <1      | <10     | <200    | <5      | 5670    | <4      | <3      |
| BK-7         | blank                                   | <100    | <10     | <1      | <10     | <200    | <5      | <200    | <4      | <3      |
| BLK-1        | blank                                   | <100    | <10     | <1      | <10     | <200    | <5      | <200    | <4      | <3      |
| BLK-1        | blank                                   | <100    | <10     | <1      | <10     | <200    | <5      | <200    | <4      | <3      |
| BLK-2        | blank                                   | <100    | <10     | <1      | <10     | <200    | <5      | <200    | <4      | <3      |

| Site #   | Description                       | Tot. K | Tot. Zn | SO4  | Total<br>Alkalinity | Cond.    | рН   |
|----------|-----------------------------------|--------|---------|------|---------------------|----------|------|
|          |                                   | ug/l   | ug/l    | mg/l | mg/l                | umhos/cm | s.u. |
| HC-1     | Henson Headwaters                 | <1000  | 11      | 5.3  | 22.8                | 65.5     | 7.89 |
| HC-1     | Henson Headwaters                 |        |         |      |                     |          |      |
| HC-1     | Henson Headwaters                 |        |         |      |                     |          |      |
| HC-2     | Henson below Palmetto             | <1000  | 83      | 16.2 | 19.9                | 73.0     | 7.63 |
| HC-3     | Henson below Redcloud             | <1000  | 89      | 18.9 | 20.1                | 78.1     | 7.53 |
| HC-4     | Henson below Schafer              | <1000  | 102     | 22.4 | 17.9                | 83.8     | 7.47 |
| HC-4 DUP | Henson below Schafer              | <1000  | 102     | 22.5 | 17.8                |          |      |
| HC-5     | Henson above Hanna Mill           | <1000  | 43      | 16.4 | 23.2                | 76.8     | 7.56 |
| HC-5     | Henson above Hanna Mill           | <1000  | 51      | 22.4 | 20.6                | 86.8     | 7.58 |
| HC-5     | Henson above Hanna Mill           |        |         |      |                     |          |      |
| HC-5     | Henson above Hanna Mill           |        |         |      |                     |          |      |
| HC-5     | Henson above Hanna Mill           |        |         |      |                     |          |      |
| HC-5 DUP | Henson above Hanna Mill           | <1000  | 45      | 16.4 | 23.2                | 77.8     | 7.57 |
| HC-6     | Henson above North Fork           | <1000  | 47      | 17.1 | 23.2                | 80       | 7.53 |
| HC-7     | Henson above Lee Smelter          |        |         |      |                     |          |      |
| HC-7     | Henson above Lee Smelter          | <1000  | 22      | 18.3 | 24.6                | 91       | 7.55 |
| HC-8     | Henson above Copper               | <1000  | 25      | 19.5 | 24.1                | 107      | 7.55 |
| HC-8     | Henson above Copper               | <1000  | 29      | 23.5 | 23.4                | 98.1     | 7.60 |
| HC-9     | Henson above Big Casino           | <1000  | 29      | 19.4 | 24.2                | 102      | 7.56 |
| HC-10    | Henson below Big Casino Gulch     | <1000  | 26      | 18.7 | 24.1                | 92.4     | 7.45 |
| HC-10    | Henson below Big Casino Gulch     | <1000  | 28      | 23.3 | 22.8                | 98.1     | 7.31 |
| HC-11    | Henson above Nellie and Owl Gulch | <1000  | 24      | 18.5 | 24.8                | 101      | 7.58 |
| HC-12    | Henson above Ute-Ule Tailings     | <1000  | 28      | 17.5 | 24.5                | 124      | 7.56 |
| HC-12    | Henson above Ute-Ule Tailings     | <1000  | 23      | 21.7 | 22.9                | 93.6     | 7.56 |
| HC-13    | Henson below Ute-Ule Tailings     | <1000  | 21      | 17.5 | 24.7                | 85.1     | 7.7  |
| HC-13    | Henson below Ute-Ule Tailings     | <1000  | 24      | 21.7 | 23.1                | 93.2     | 7.64 |
| HC-14    | Henson below Ute-Ule              | <1000  | 29      | 17.4 | 24.7                | 90.3     | 7.64 |
| HC-15    | Henson above Alpine               | <1000  | 34      | 17.2 | 25.0                | 86.2     | 7.76 |
| HC-15    | Henson above Alpine               | <1000  | 28      | 21.7 | 23.0                | 90.4     | 7.40 |
| HC-16    | Henson below Alpine               | <1000  | 38      | 18.3 | 23.6                | 96.9     | 7.47 |
| HC-16    | Henson below Alpine               | <1000  | 29      | 22.9 | 22.1                | 91.8     | 7.47 |
| HC-17    | Henson Below Pelican              | <1000  | 34      | 18.1 | 23.7                | 103      | 7.58 |
| HC-17    | Henson below Pelican              | <1000  | 31      | 22.7 | 22.1                | 93.2     | 7.63 |

| Site #     | Description                         | Tot. K | Tot. Zn | SO4  | Total<br>Alkalinity | Cond.    | рН   |
|------------|-------------------------------------|--------|---------|------|---------------------|----------|------|
|            |                                     | ug/l   | ug/l    | mg/l | mg/l                | umhos/cm | s.u. |
| HC-18      | Henson above Lake Fork              |        |         |      |                     |          |      |
| HC-18      | Henson above Lake Fork              | <1000  | 30      | 18.3 | 23.6                | 97.8     | 7.5  |
| HC-18      | Henson above Lake Fork              | <1000  | 33      | 22.5 | 22.2                | 92.6     | 7.52 |
| SW         | Sara Woods Dump Drainage            | <1000  | 17      | 15.3 | <5.00               | 42.8     | 6.09 |
| PG-1       | Palmetto Gulch Headwaters           |        |         |      |                     |          |      |
| PG-1       | Palmetto Gulch Headwaters           |        |         |      |                     |          |      |
| PG-1       | Palmetto Gulch Headwaters           |        |         |      |                     |          |      |
| PG-1       | Palmetto Gulch Headwaters           | <1000  | <10     | 52.9 | 38.3                | 189      | 7.05 |
| PG-1A      | Runoff from Hough Dump              | 2030   | 3720    | 163  | <5.00               | 339      | 4.22 |
| PG-1B      | Downstream of Hough Adit            | 1590   | 657     | 43.8 | <5.00               | 113      | 4.70 |
| PG-2       | Palmetto below Sara Woods           | <1000  | 488     | 113  | <5.00               | 247      | 5.02 |
| PG-3       | South Trib to Palmetto              | <1000  | 421     | 64.8 | 6.62                | 163      | 6.12 |
| PG-4       | Palmetto Trib below Wyoming         | <1000  | 519     | 44.1 | 9.66                | 122      | 6.65 |
| PG-5       | Below Confluence of PG-3 and PG-4   | <1000  | 386     | 54.2 | 11.3                | 145      | 6.82 |
| PG-6       | Palmetto below Roy Pray             | <1000  | 917     | 121  | <5.00               | 258      | 4.93 |
| PG-6 DUP   | Palmetto below Roy Pray             | <1000  | 917     | 121  | <5.00               |          |      |
| PG-7       | Palmetto below Hough                | 1180   | 475     | 41.2 | 10.4                | 116      | 6.26 |
| PG-8       | Palmetto below Palmetto Mine        | <1000  | 134     | 24.5 | 19.0                | 93.6     | 7.13 |
| PG-9       | Palmetto below Tributary Confluence | <1000  | 394     | 57.3 | 9.49                | 148      | 6.86 |
| PG-10      | Palmetto above Henson               | <1000  | 344     | 50.1 | 12.0                | 131      | 7.35 |
| PG-10      | Palmetto above Henson               |        |         |      |                     |          |      |
| PG-10      | Palmetto above Henson               |        |         |      |                     |          |      |
| RC         | Redcloud Gulch                      | <1000  | 209     | 45.7 | 16.2                | 135      | 7.34 |
| SCG        | Schafer Gulch                       | <1000  | 182     | 38.2 | 8.25                | 104      | 7.11 |
| NFHC-1     | North Fork Henson Headwaters        | <1000  | 12      | 2.6  | 27.0                | 51       | 7.65 |
| NFHC-1 DUP | North Fork Henson Headwaters        | <1000  | <10     | 2.6  | 27.2                |          |      |
| NFHC-2     | North Fork Henson above Yellowstone | <1000  | 13      | 16.3 | 25.8                | 96.8     | 7.62 |
| NFHC-3     | North Fork Henson above Henson      | <1000  | 18      | 16.7 | 26.9                | 87.7     | 7.74 |
| NFHC-3     | North Fork Henson above Henson      |        |         |      |                     |          |      |
| NFHC-3     | North Fork Henson above Henson      | <1000  | 14      | 16.8 | 29.1                | 89.3     | 7.64 |
| YG         | Yellowstone Gulch                   | <1000  | 294     | 12.2 | 60.9                | 130      | 7.85 |
| MHC        | Matterhorn Creek                    | <1000  | 21      | 38.9 | 19.0                | 126      | 7.53 |
| LSG        | Lee Smelter Gulch                   | <1000  | 70      | 52.6 | <5.00               | 129      | 6.41 |
| EPC        | El Paso Creek                       | <1000  | 13      | 9.7  | 23.2                | 62.7     | 7.66 |

| Site #    | Description                             | Tot. K | Tot. Zn | SO4  | Total<br>Alkalinity | Cond.    | Hq   |
|-----------|-----------------------------------------|--------|---------|------|---------------------|----------|------|
|           |                                         | ug/l   | ug/l    | mg/l | mg/l                | umhos/cm | s.u. |
| BCG-1     | Big Casino Gulch above Pride of America | <1000  | 186     | 18.3 | 26.6                | 92.5     | 7.65 |
| BCG-2     | Big Casino Gulch below Pride of America | <1000  | 1460    | 20.6 | 25.4                | 97.3     | 7.47 |
| NC        | Nellie Creek                            | 1050   | <10     | 2.6  | 23.9                | 51.7     | 7.62 |
| OG        | Owl Gulch                               | <1000  | <10     | 20.3 | 22.6                | 92       | 7.56 |
| AG        | Alpine Gulch                            | <1000  | 17      | 27.9 | 13.3                | 92       | 7.49 |
| DM-2      | Wyoming Mine                            | <1000  | 188     | 43.4 | 20.5                | 139      | 7.01 |
| DM-5      | Palmetto Mine                           | 1070   | 127     | 53.3 | 20.2                | 165      | 6.86 |
| DM-7      | Chicago Tunnel                          | 1690   | 195     | 83.5 | 78.3                | 315      | 7.05 |
| DM-7 DUP  | Chicago Tunnel                          | 1720   | 204     | 83.7 | 78.3                |          |      |
| DM-8      | Highland Chief Mine                     | <1000  | 37      | 27.5 | 70.1                | 193      | 7.68 |
| DM-9      | Moro Tunnel                             | <1000  | <10     | 195  | 93.5                | 553      | 7.76 |
| DM-10     | Vulcan Mine                             | <1000  | 79      | 217  | 103                 | 581      | 7.19 |
| DM-11     | Lucky Strike Mine                       | <1000  | <10     | 818  | 98.1                | 1450     | 7.42 |
| DM-11 DUP | Lucky Strike Mine                       | <1000  | <10     | 820  | 98.1                |          |      |
| DM-12     | Adit between Copper & Big Casino        | <1000  | 17      | 41.6 | 54.8                | 189      | 7.65 |
| DM-14     | Pride of America Mine                   | <1000  | 7310    | 35.8 | 24.0                | 124      | 7.21 |
| DM-16     | Pelican Mine                            | 4620   | 5590    | 189  | 156                 | 612      | 7.38 |
| DM-17     | El Paso Gulch Draining Mine             | 1240   | 2550    | 172  | 93.8                | 478      | 7.7  |
| DM-18     | Brown Adit                              | 1550   | 51      | 14.2 | 138                 | 274      | 7.93 |
| BK-7      | blank                                   | <1000  | <10     | <1.0 | <5.00               |          |      |
| BLK-1     | blank                                   | <1000  | 16      | <1.0 | <5.00               |          |      |
| BLK-1     | blank                                   | <1000  | <10     | <1.0 | <5.00               |          |      |
| BLK-2     | blank                                   | <1000  | <10     | <1.0 | <5.00               |          |      |

# **APPENDIX 2**

High-Flow Loading Data

| Site #   | Description                       | Sample    | Sample | Flow | Flow     | Adjusted<br>Flow | Diss. Al  | Diss. As | Diss. Cd |
|----------|-----------------------------------|-----------|--------|------|----------|------------------|-----------|----------|----------|
|          |                                   | Date      | Time   | Time | cfs      | cfs              | g/day     | g/day    | g/day    |
| HC-1     | Henson Headwaters                 | 6/29/2005 | 1115   | 1000 | 26.81    | 26.81            | BDL       | BDL      | BDL      |
| HC-2     | Henson below Palmetto             | 6/29/2005 | 1145   |      |          |                  | No Data   | No Data  | No Data  |
| HC-3     | Henson below Redcloud             | 6/29/2005 | 1148   | 1500 | 69.02    | 56.8             | BDL       | BDL      | BDL      |
| HC-4     | Henson below Schafer              | 6/29/2005 | 1100   | 1315 | 62.888   | 62.888           | BDL       | BDL      | BDL      |
| HC-4 DUP | Henson below Schafer              | 6/29/2005 | 1100   | 1315 | 62.888   | 62.888           | BDL       | BDL      | BDL      |
| HC-5     | Henson above Hanna Mill           | 6/1/2005  | 1037   | 1200 | 150.34   | 150.34           | BDL       | BDL      | BDL      |
| HC-5     | Henson above Hanna Mill           | 6/29/2005 | 1130   | 1045 | 135.27   | 135.27           | BDL       | BDL      | BDL      |
| HC-5 DUP | Henson above Hanna Mill           | 6/1/2005  | 1037   | 1200 | 150.34   | 150.34           | BDL       | BDL      | BDL      |
| HC-6     | Henson above North Fork           | 6/1/2005  | 1008   | 1315 | 149.38   | 149.38           | BDL       | BDL      | BDL      |
| HC-7     | Henson above Lee Smelter          | 6/1/2005  | 1000   | 1430 | 254.429  | 254.429          | BDL       | BDL      | BDL      |
| HC-8     | Henson above Copper               | 6/1/2005  | 1050   |      |          |                  | No Data   | No Data  | No Data  |
| HC-8     | Henson above Copper               | 6/29/2005 | 1157   | 1250 | 184.087  | 184.087          | BDL       | BDL      | BDL      |
| HC-9     | Henson above Big Casino           | 6/1/2005  | 1020   | 1300 | 305.004  | 305.004          | BDL       | BDL      | BDL      |
| HC-10    | Henson below Big Casino Gulch     | 6/1/2005  | 1030   |      |          |                  | No Data   | No Data  | No Data  |
| HC-10    | Henson below Big Casino Gulch     | 6/29/2005 | 1230   | 1245 | 225.786  | 225.786          | BDL       | BDL      | BDL      |
| HC-11    | Henson above Nellie and Owl Gulch | 6/1/2005  | 1050   | 1100 | 316.692  | 316.692          | BDL       | BDL      | BDL      |
| HC-15    | Henson above Alpine               | 6/1/2005  | 1055   | 1045 | 352      | 352              | BDL       | BDL      | BDL      |
| HC-17    | Henson Below Pelican              | 6/1/2005  | 1017   |      | 441      | 441              | BDL       | BDL      | BDL      |
| HC-17    | Henson below Pelican              | 6/29/2005 | 1105   | 1355 | 268.095  | 268.095          | BDL       | BDL      | BDL      |
| HC-18    | Henson above Lake Fork            | 6/1/2005  | 1000   | 1315 | 358.87   | 358.87           | BDL       | BDL      | BDL      |
| HC-18    | Henson above Lake Fork            | 6/29/2005 | 1030   | 1030 | 355.751  | 355.751          | BDL       | BDL      | BDL      |
| SW       | Sara Woods Dump Drainage          | 6/29/2005 | 1112   | 1130 | 0.0098   | 0.0098           | 5.371     | BDL      | BDL      |
| PG-1     | Palmetto Gulch Headwaters         | 6/29/2005 | 1115   | 1417 | 0.421    | 0.421            | BDL       | BDL      | BDL      |
| PG-1A    | Runoff from Hough Dump            | 6/29/2005 | 1240   | 1325 | 0.1051   | 0.089            | 1661.413  | BDL      | 6.968    |
| PG-1B    | Downstream of Hough Adit          | 6/29/2005 | 1240   | 1310 | 0.382743 | 0.336            | 680.664   | BDL      | 4.110    |
| PG-2     | Palmetto below Sara Woods         | 6/29/2005 | 1115   | 1145 | 1.615    | 1.615            | 5610.788  | BDL      | 15.805   |
| PG-3     | South Trib to Palmetto            | 6/29/2005 | 1125   | 1150 | 0.633    | 0.633            | BDL       | BDL      | 1.549    |
| PG-4     | Palmetto Trib below Wyoming       | 6/29/2005 | 1100   | 1120 | 0.497007 | 0.497007         | BDL       | BDL      | 3.648    |
| PG-5     | Below Confluence of PG-3 and PG-4 | 6/29/2005 | 1100   | 1150 | 2.765    | 2.765            | BDL       | BDL      | 13.530   |
| PG-6     | Palmetto below Roy Pray           | 6/29/2005 | 1100   | 1135 | 2.239    | 2.239            | 12544.477 | BDL      | 32.868   |
| PG-6 DUP | Palmetto below Roy Pray           | 6/29/2005 | 1100   | 1135 | 2.239    | 2.239            | 12325.359 | BDL      | 32.868   |
| PG-7     | Palmetto below Hough              | 6/29/2005 | 1140   | 1235 | 2.427    | 2.28             | BDL       | BDL      | 22.313   |
| PG-8     | Palmetto below Palmetto Mine      | 6/29/2005 | 1115   | 1320 | 5.325    | 4.74             | BDL       | BDL      | 11.597   |

| Site #     | Description                             | Sample    | Sample | Flow | Flow     | Adjusted<br>Flow | Diss. Al | Diss. As | Diss. Cd |
|------------|-----------------------------------------|-----------|--------|------|----------|------------------|----------|----------|----------|
|            |                                         | Date      | Time   | Time | cfs      | cfs              | g/day    | g/day    | g/day    |
| PG-9       | Palmetto below Tributary Confluence     | 6/29/2005 | 1105   | 1015 | 11.53    | 11.53            | BDL      | BDL      | 84.628   |
| PG-10      | Palmetto above Henson                   | 6/29/2005 | 1100   | 1040 | 9.94     | 9.94             | BDL      | BDL      | 48.638   |
| RC         | Redcloud Gulch                          | 6/29/2005 | 1157   | 1545 | 5.779    | 4.47             | BDL      | BDL      | 10.936   |
| SCG        | Schafer Gulch                           | 6/29/2005 | 1132   | 1415 | 18.831   | 16               | BDL      | BDL      | BDL      |
| NFHC-1     | North Fork Henson Headwaters            | 6/1/2005  | 1025   | 1200 | 55.066   | 55.066           | BDL      | BDL      | BDL      |
| NFHC-1 DUP | North Fork Henson Headwaters            | 6/1/2005  | 1025   | 1200 | 55.066   | 55.066           | BDL      | BDL      | BDL      |
| NFHC-2     | North Fork Henson above Yellowstone     | 6/1/2005  | 1000   | 1300 | 94.24    | 94.24            | BDL      | BDL      | BDL      |
| NFHC-3     | North Fork Henson above Henson          | 6/1/2005  | 1000   | 915  | 115.38   | 115.38           | BDL      | BDL      | BDL      |
| NFHC-3     | North Fork Henson above Henson          | 6/29/2005 | 1315   | 1500 | 93.609   | 93.609           | BDL      | BDL      | BDL      |
| YG         | Yellowstone Gulch                       | 6/1/2005  | 1030   | 1030 | 0.477    | 0.477            | BDL      | BDL      | 2.334    |
| МНС        | Matterhorn Creek                        | 6/1/2005  | 1050   | 1130 | 37.005   | 37.005           | BDL      | BDL      | BDL      |
| LSG        | Lee Smelter Gulch                       | 6/1/2005  | 1015   | 1000 | 9.29     | 9.29             | BDL      | BDL      | BDL      |
| EPC        | El Paso Creek                           | 6/1/2005  | 1108   | 1145 | 30.899   | 30.899           | BDL      | BDL      | BDL      |
| BCG-1      | Big Casino Gulch above Pride of America | 6/1/2005  | 1230   | 1230 | 0.045    | 0.045            | BDL      | BDL      | 0.220    |
| BCG-2      | Big Casino Gulch below Pride of America | 6/1/2005  | 1130   | 1130 | 0.08     | 0.08             | BDL      | BDL      | 3.132    |
| NC         | Nellie Creek                            | 6/1/2005  | 1055   | 1145 | 25.918   | 25.918           | BDL      | BDL      | BDL      |
| OG         | Owl Gulch                               | 6/1/2005  | 1002   | 1000 | 16.374   | 16.374           | BDL      | BDL      | BDL      |
| AG         | Alpine Gulch                            | 6/1/2005  | 1058   | 1003 | 47.58    | 47.58            | BDL      | BDL      | BDL      |
| DM-2       | Wyoming Mine                            | 6/28/2005 | 1240   |      | 0.0828   | 0.0828           | BDL      | BDL      | BDL      |
| DM-5       | Palmetto Mine                           | 6/28/2005 | 1330   |      | 0.00605  | 0.00605          | BDL      | BDL      | BDL      |
| DM-7       | Chicago Tunnel                          | 6/28/2005 | 1420   |      | 0.211968 | 0.211968         | BDL      | BDL      | BDL      |
| DM-7 DUP   | Chicago Tunnel                          | 6/28/2005 | 1430   |      | 0.211968 | 0.211968         | BDL      | BDL      | BDL      |
| DM-8       | Highland Chief Mine                     | 6/28/2005 | 1330   |      | 0.0722   | 0.0722           | BDL      | BDL      | BDL      |
| DM-9       | Moro Tunnel                             | 6/2/2005  | 1000   |      | 0.001    | 0.001            | BDL      | BDL      | BDL      |
| DM-10      | Vulcan Mine                             | 6/2/2005  | 1058   |      | 0.04     | 0.04             | BDL      | BDL      | BDL      |
| DM-11      | Lucky Strike Mine                       | 6/2/2005  | 1105   |      | 0.031    | 0.031            | BDL      | BDL      | BDL      |
| DM-11 DUP  | Lucky Strike Mine                       | 6/2/2005  | 1120   |      | 0.031    | 0.031            | BDL      | BDL      | BDL      |
| DM-12      | Adit between Copper & Big Casino        | 6/2/2005  | 945    |      | 0.024    | 0.024            | BDL      | BDL      | BDL      |
| DM-14      | Pride of America Mine                   | 6/1/2005  | 1204   | 1200 | 0.067    | 0.067            | BDL      | BDL      | 10.655   |
| DM-16      | Pelican Mine                            | 6/2/2005  | 915    |      | 0.00125  | 0.00125          | BDL      | BDL      | 0.055    |
| DM-17      | El Paso Gulch Draining Mine             | 6/2/2005  | 845    |      | 0.012    | 0.012            | BDL      | BDL      | 0.822    |
| DM-18      | Brown Adit                              | 6/2/2005  | 1110   |      | 0.00125  | 0.00125          | BDL      | BDL      | BDL      |

| Site #   | Description                       | Diss. Ca   | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg    | Diss. Mn  | Diss. Ni | Diss. K |
|----------|-----------------------------------|------------|----------|----------|----------|-------------|-----------|----------|---------|
|          |                                   | g/day      | g/day    | g/day    | g/day    | g/day       | g/day     | g/day    | g/day   |
| HC-1     | Henson Headwaters                 | 529,338    | BDL      | BDL      | BDL      | 56,082.3    | BDL       | BDL      | BDL     |
| HC-2     | Henson below Palmetto             | No Data    | No Data  | No Data  | No Data  | No Data     | No Data   | No Data  | No Data |
| HC-3     | Henson below Redcloud             | 1,653,706  | 1,667.6  | BDL      | BDL      | 173,708.6   | 22,373.7  | BDL      | BDL     |
| HC-4     | Henson below Schafer              | 1,938,658  | BDL      | BDL      | BDL      | 227,715.4   | 17,848.0  | BDL      | BDL     |
| HC-4 DUP | Henson below Schafer              | 1,923,272  | BDL      | BDL      | BDL      | 229,254.1   | 17,694.1  | BDL      | BDL     |
| HC-5     | Henson above Hanna Mill           | 4,818,466  | BDL      | BDL      | BDL      | 430,351.6   | 2,206.9   | BDL      | BDL     |
| HC-5     | Henson above Hanna Mill           | 4,633,322  | BDL      | BDL      | BDL      | 430,237.1   | 8,604.7   | BDL      | BDL     |
| HC-5     | Henson above Hanna Mill           | 7,692,658  | BDL      | BDL      | BDL      | 1,332,478.2 | 361,738.1 | BDL      | BDL     |
| HC-5 DUP | Henson above Hanna Mill           | 4,818,466  | BDL      | BDL      | BDL      | 434,029.8   | 2,206.9   | BDL      | BDL     |
| HC-6     | Henson above North Fork           | 4,933,887  | BDL      | BDL      | BDL      | 442,222.5   | 1,827.4   | BDL      | BDL     |
| HC-7     | Henson above Lee Smelter          | 8,403,561  | BDL      | BDL      | BDL      | 946,178.7   | 8,714.8   | BDL      | BDL     |
| HC-8     | Henson above Copper               | No Data    | No Data  | No Data  | No Data  | No Data     | No Data   | No Data  | No Data |
| HC-8     | Henson above Copper               | 6,485,576  | BDL      | BDL      | BDL      | 738,635.1   | 12,610.8  | BDL      | BDL     |
| HC-9     | Henson above Big Casino           | 10,223,252 | BDL      | BDL      | BDL      | 1,096,947.5 | 12,685.8  | BDL      | BDL     |
| HC-10    | Henson below Big Casino Gulch     | No Data    | No Data  | No Data  | No Data  | No Data     | No Data   | No Data  | No Data |
| HC-10    | Henson below Big Casino Gulch     | 7,678,472  | BDL      | BDL      | BDL      | 850,708.4   | 14,362.6  | BDL      | BDL     |
| HC-11    | Henson above Nellie and Owl Gulch | 10,537,534 | BDL      | BDL      | BDL      | 1,146,731.6 | 10,847.5  | BDL      | BDL     |
| HC-15    | Henson above Alpine               | 11,195,642 | BDL      | BDL      | BDL      | 1,214,296.5 | 11,195.6  | BDL      | BDL     |
| HC-17    | Henson Below Pelican              | 13,918,463 | BDL      | BDL      | BDL      | 1,564,478.4 | 15,105.3  | BDL      | BDL     |
| HC-17    | Henson below Pelican              | 8,920,529  | BDL      | BDL      | BDL      | 1,010,118.7 | 14,430.3  | BDL      | BDL     |
| HC-18    | Henson above Lake Fork            | 11,414,147 | BDL      | BDL      | BDL      | 1,290,676.7 | 11,414.1  | BDL      | BDL     |
| HC-18    | Henson above Lake Fork            | 11,837,173 | BDL      | BDL      | BDL      | 1,349,089.6 | 20,889.1  | BDL      | BDL     |
| SW       | Sara Woods Dump Drainage          | 127        | 0.3      | BDL      | BDL      | 12.8        | 2.1       | 0.1      | BDL     |
| PG-1     | Palmetto Gulch Headwaters         | 2,314,651  | BDL      | BDL      | BDL      | 362,130.9   | 5,413.3   | BDL      | BDL     |
| PG-1     | Palmetto Gulch Headwaters         | 30,901     | BDL      | BDL      | BDL      | 3,018.0     | 5.2       | BDL      | BDL     |
| PG-1A    | Runoff from Hough Dump            | 7,316      | 1,395.8  | 215.8    | BDL      | 1,267.3     | 344.0     | 3.7      | BDL     |
| PG-1B    | Downstream of Hough Adit          | 9,536      | 1,315.3  | 986.5    | BDL      | 937.1       | 268.8     | 3.3      | BDL     |
| PG-2     | Palmetto below Sara Woods         | 133,157    | 900.9    | BDL      | BDL      | 17,464.6    | 5,018.1   | 47.4     | BDL     |
| PG-3     | South Trib to Palmetto            | 18,042     | BDL      | BDL      | BDL      | 1,494.5     | 828.6     | 3.1      | BDL     |
| PG-4     | Palmetto Trib below Wyoming       | 22,374     | BDL      | BDL      | BDL      | 1,374.1     | 107.0     | BDL      | BDL     |
| PG-5     | Below Confluence of PG-3 and PG-4 | 146,797    | BDL      | BDL      | BDL      | 11,162.0    | 4,214.5   | 20.3     | BDL     |
| PG-6     | Palmetto below Roy Pray           | 174,198    | 1,095.6  | 2,098.1  | BDL      | 26,732.3    | 9,969.8   | 76.7     | BDL     |

| Site #        | Description                             | Diss. Ca  | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg  | Diss. Mn | Diss. Ni | Diss. K  |
|---------------|-----------------------------------------|-----------|----------|----------|----------|-----------|----------|----------|----------|
|               |                                         | g/day     | g/day    | g/day    | g/day    | g/day     | g/day    | g/day    | g/day    |
| PG-6 DUP      | Palmetto below Roy Pray                 | 173,103   | 1,062.7  | 2,120.0  | BDL      | 26,622.8  | 9,915.1  | 82.2     | BDL      |
| PG-7          | Palmetto below Hough                    | 91,483    | 3,469.7  | 1,896.6  | BDL      | 9,985.1   | 1,857.6  | 16.7     | BDL      |
| PG-8          | Palmetto below Palmetto Mine            | 157,718   | 661.0    | BDL      | BDL      | 17,627.3  | 1,252.5  | BDL      | BDL      |
| PG-9          | Palmetto below Tributary Confluence     | 583,932   | 1,015.5  | BDL      | BDL      | 69,112.8  | 19,125.9 | 141.0    | BDL      |
| PG-10         | Palmetto above Henson                   | 479,088   | 462.1    | BDL      | BDL      | 54,475.0  | 14,397.0 | 97.3     | BDL      |
| RC            | Redcloud Gulch                          | 222,007   | BDL      | BDL      | BDL      | 19,138.5  | 4,637.0  | 32.8     | BDL      |
| SCG           | Schafer Gulch                           | 551,953   | BDL      | BDL      | BDL      | 87,294.7  | 2,583.6  | BDL      | BDL      |
| NFHC-1        | North Fork Henson Headwaters            | 1,029,295 | BDL      | BDL      | BDL      | 119,904.8 | BDL      | BDL      | BDL      |
| NFHC-1<br>DUP | North Fork Henson Headwaters            | 1,031,989 | BDL      | BDL      | BDL      | 120,039.5 | BDL      | BDL      | BDL      |
| NFHC-2        | North Fork Henson above Yellowstone     | 2,674,584 | BDL      | BDL      | BDL      | 444,995.4 | 8,531.0  | BDL      | BDL      |
| NFHC-3        | North Fork Henson above Henson          | 3,443,922 | BDL      | BDL      | BDL      | 547,640.1 | 9,033.2  | BDL      | BDL      |
| NFHC-3        | North Fork Henson above Henson          | 2,839,895 | BDL      | BDL      | BDL      | 444,306.1 | 6,641.7  | BDL      | BDL      |
| YG            | Yellowstone Gulch                       | 26,958    | BDL      | BDL      | BDL      | 2,380.7   | BDL      | BDL      | BDL      |
| MHC           | Matterhorn Creek                        | 1,457,637 | BDL      | BDL      | BDL      | 311,445.3 | 9,687.4  | BDL      | BDL      |
| LSG           | Lee Smelter Gulch                       | 427,304   | BDL      | BDL      | BDL      | 41,139.3  | 4,591.2  | 68.2     | BDL      |
| EPC           | El Paso Creek                           | 687,937   | BDL      | BDL      | BDL      | 75,143.9  | 680.4    | BDL      | BDL      |
| BCG-1         | Big Casino Gulch above Pride of America | 1,729     | BDL      | BDL      | 3.3      | 114.5     | BDL      | BDL      | BDL      |
| BCG-2         | Big Casino Gulch below Pride of America | 3,034     | 6.1      | BDL      | 7.8      | 205.5     | 5.5      | BDL      | BDL      |
| NC            | Nellie Creek                            | 372,222   | BDL      | BDL      | BDL      | 54,026.2  | BDL      | BDL      | 63,411.0 |
| OG            | Owl Gulch                               | 604,915   | BDL      | BDL      | BDL      | 41,663.1  | BDL      | BDL      | BDL      |
| AG            | Alpine Gulch                            | 1,431,834 | BDL      | BDL      | BDL      | 221,177.5 | 3,841.5  | BDL      | BDL      |
| DM-2          | Wyoming Mine                            | 4,457     | BDL      | BDL      | BDL      | 382.9     | 6.7      | BDL      | BDL      |
| DM-5          | Palmetto Mine                           | 351       | 0.2      | BDL      | BDL      | 44.1      | 2.1      | BDL      | BDL      |
| DM-7          | Chicago Tunnel                          | 26,293    | BDL      | BDL      | BDL      | 2,281.8   | 278.5    | BDL      | 845.3    |
| DM-7<br>DUP   | Chicago Tunnel                          | 26,189    | BDL      | BDL      | BDL      | 2,235.2   | 283.7    | BDL      | 871.2    |
| DM-8          | Highland Chief Mine                     | 5,741     | BDL      | BDL      | BDL      | 293.2     | BDL      | BDL      | BDL      |
| DM-9          | Moro Tunnel                             | 223       | BDL      | BDL      | BDL      | 20.1      | 1.2      | BDL      | BDL      |
| DM-10         | Vulcan Mine                             | 9,884     | BDL      | 88.8     | BDL      | 927.8     | 78.5     | BDL      | BDL      |
| DM-11         | Lucky Strike Mine                       | 23,436    | 1.6      | BDL      | BDL      | 530.2     | 21.8     | BDL      | BDL      |
| DM-11<br>DUP  | Lucky Strike Mine                       | 23,512    | 1.6      | BDL      | BDL      | 526.4     | 21.7     | BDL      | BDL      |
| DM-12         | Adit between Copper & Big Casino        | 1,996     | BDL      | BDL      | BDL      | 105.7     | BDL      | BDL      | BDL      |

| Site # | Description                 | Diss. Ca | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg | Diss. Mn | Diss. Ni | Diss. K |
|--------|-----------------------------|----------|----------|----------|----------|----------|----------|----------|---------|
|        |                             | g/day    | g/day   |
| DM-14  | Pride of America Mine       | 2,721    | 9.0      | BDL      | 0.8      | 188.5    | 50.2     | BDL      | BDL     |
| DM-16  | Pelican Mine                | 257      | BDL      | BDL      | BDL      | 46.5     | 0.4      | BDL      | 9.5     |
| DM-17  | El Paso Gulch Draining Mine | 2,402    | 5.6      | BDL      | 0.6      | 105.7    | 32.6     | BDL      | 39.0    |
| DM-18  | Brown Adit                  | 130      | BDL      | BDL      | BDL      | 17.4     | BDL      | BDL      | 4.5     |

| Site #   | Description                       | Diss. Na    | Diss. Zn | Tot. Al   | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe   | Tot. Pb |
|----------|-----------------------------------|-------------|----------|-----------|---------|---------|---------|-----------|---------|
|          |                                   | g/day       | g/day    | g/day     | g/day   | g/day   | g/day   | g/day     | g/day   |
| HC-1     | Henson Headwaters                 | 74,776.4    | BDL      | 6,559.3   | BDL     | BDL     | BDL     | BDL       | BDL     |
| HC-2     | Henson below Palmetto             | No Data     | No Data  | No Data   | No Data | No Data | No Data | No Data   | No Data |
| HC-3     | Henson below Redcloud             | 147,304.9   | 10,561.5 | 56,003.7  | BDL     | BDL     | 3,752.1 | 45,720.1  | BDL     |
| HC-4     | Henson below Schafer              | 142,322.1   | 14,463.0 | 45,696.9  | BDL     | BDL     | 3,077.2 | 36,465.2  | BDL     |
| HC-4 DUP | Henson below Schafer              | 141,552.8   | 14,309.1 | 44,312.2  | BDL     | BDL     | 3,231.1 | 36,003.7  | BDL     |
| HC-5     | Henson above Hanna Mill           | 362,672.3   | 12,505.9 | 76,139.1  | BDL     | 367.8   | BDL     | BDL       | BDL     |
| HC-5     | Henson above Hanna Mill           | 298,849.3   | 15,885.7 | 50,635.6  | BDL     | BDL     | BDL     | BDL       | BDL     |
| HC-5 DUP | Henson above Hanna Mill           | 359,361.9   | 12,873.8 | 124,691.6 | BDL     | BDL     | BDL     | 104,461.4 | BDL     |
| HC-6     | Henson above North Fork           | 376,437.3   | 10,598.7 | 71,998.2  | BDL     | 365.5   | BDL     | BDL       | BDL     |
| HC-7     | Henson above Lee Smelter          | 1,002,202.4 | 10,582.3 | 216,002.6 | BDL     | 622.5   | BDL     | 150,019.1 | BDL     |
| HC-8     | Henson above Copper               | No Data     | No Data  | No Data   | No Data | No Data | No Data | No Data   | No Data |
| HC-8     | Henson above Copper               | 702,604.1   | 11,259.7 | 133,314.6 | BDL     | BDL     | BDL     | BDL       | BDL     |
| HC-9     | Henson above Big Casino           | 1,223,805.4 | 29,102.7 | 285,803.3 | BDL     | BDL     | BDL     | 188,794.4 | BDL     |
| HC-10    | Henson below Big Casino Gulch     | No Data     | No Data  | No Data   | No Data | No Data | No Data | No Data   | No Data |
| HC-10    | Henson below Big Casino Gulch     | 861,756.5   | 12,705.4 | 188,371.1 | BDL     | BDL     | BDL     | BDL       | BDL     |
| HC-11    | Henson above Nellie and Owl Gulch | 1,301,695.3 | 17,046.0 | 269,636.9 | BDL     | BDL     | BDL     | 172,784.6 | BDL     |
| HC-15    | Henson above Alpine               | 1,558,777.8 | 34,448.1 | 417,683.6 | BDL     | BDL     | BDL     | 297,115.1 | 4,306.0 |
| HC-17    | Henson Below Pelican              | 1,877,374.0 | 36,684.3 | 552,422.7 | BDL     | BDL     | BDL     | 378,711.7 | 5,394.8 |
| HC-17    | Henson below Pelican              | 1,088,829.2 | 15,742.1 | 231,540.2 | BDL     | BDL     | BDL     | BDL       | BDL     |
| HC-18    | Henson above Lake Fork            | 1,518,959.6 | 21,072.3 | 496,954.4 | BDL     | BDL     | BDL     | 323,986.2 | BDL     |
| HC-18    | Henson above Lake Fork            | 1,470,942.9 | 27,852.2 | 278,521.7 | BDL     | BDL     | BDL     | BDL       | BDL     |
| SW       | Sara Woods Dump Drainage          | BDL         | 0.6      | 8.2       | BDL     | BDL     | 0.3     | BDL       | BDL     |
| PG-1     | Palmetto Gulch Headwaters         | 472,263.5   | BDL!     | 79,332.8  | BDL     | BDL     | BDL     | BDL       | BDL     |
| PG-1     | Palmetto Gulch Headwaters         | 1,349.3     | BDL      | BDL       | BDL     | BDL     | BDL     | BDL       | BDL     |
| PG-1A    | Runoff from Hough Dump            | BDL         | 807.8    | 2,830.7   | 17.0    | 7.2     | 1,467.6 | 2,591.2   | 21.8    |
| PG-1B    | Downstream of Hough Adit          | 476.0       | 551.6    | 2,104.5   | 86.3    | 4.9     | 1,413.9 | 4,504.9   | 15.6    |
| PG-2     | Palmetto below Sara Woods         | 3,485.0     | 1,888.7  | 20,230.4  | BDL     | 15.8    | 1,066.8 | 12,486.0  | BDL     |
| PG-3     | South Trib to Palmetto            | 686.1       | 336.1    | 510.3     | 7.7     | 1.5     | 27.9    | 1,881.7   | BDL     |
| PG-4     | Palmetto Trib below Wyoming       | 887.7       | 653.0    | BDL       | BDL     | 3.6     | BDL     | 280.9     | BDL     |
| PG-5     | Below Confluence of PG-3 and PG-4 | 5,682.5     | 2,618.0  | 2,807.4   | BDL     | 20.3    | 142.1   | 10,147.3  | BDL     |
| PG-6     | Palmetto below Roy Pray           | 3,801.7     | 5,045.2  | 24,705.5  | BDL     | 32.9    | 1,183.2 | 13,914.0  | BDL     |
| PG-6 DUP | Palmetto below Roy Pray           | 3,725.0     | 4,957.5  | 24,212.5  | BDL     | 32.9    | 1,199.7 | 14,078.3  | BDL     |
| PG-7     | Palmetto below Hough              | 3,519.9     | 2,755.7  | 11,156.5  | 200.8   | 22.3    | 5,254.7 | 11,491.2  | BDL     |

| Site #     | Description                             | Diss. Na  | Diss. Zn | Tot. Al   | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe  | Tot. Pb |
|------------|-----------------------------------------|-----------|----------|-----------|---------|---------|---------|----------|---------|
|            |                                         | g/day     | g/day    | g/day     | g/day   | g/day   | g/day   | g/day    | g/day   |
| PG-8       | Palmetto below Palmetto Mine            | 8,767.2   | 1,403.2  | 5,763.7   | 116.0   | 11.6    | 2,215.0 | 5,879.6  | BDL     |
| PG-9       | Palmetto below Tributary Confluence     | 22,059.7  | 10,888.8 | 40,057.2  | BDL     | 84.6    | 4,033.9 | 33,569.1 | BDL     |
| PG-10      | Palmetto above Henson                   | 19,479.7  | 7,393.0  | 28,453.5  | BDL     | 48.6    | 2,845.3 | 23,735.5 | BDL     |
| RC         | Redcloud Gulch                          | 12,686.1  | 2,252.9  | 2,438.8   | BDL     | 10.9    | BDL     | BDL      | BDL     |
| SCG        | Schafer Gulch                           | BDL       | 7,398.5  | BDL       | BDL     | BDL     | BDL     | BDL      | BDL     |
| NFHC-1     | North Fork Henson Headwaters            | 336,811.2 | BDL      | 29,639.4  | BDL     | 808.3   | BDL     | BDL      | BDL     |
| NFHC-1 DUP | North Fork Henson Headwaters            | 336,811.2 | BDL      | 38,935.4  | BDL     | BDL     | BDL     | 32,603.3 | BDL     |
| NFHC-2     | North Fork Henson above Yellowstone     | 555,667.9 | BDL      | 124,506.5 | BDL     | BDL     | BDL     | 78,393.0 | BDL     |
| NFHC-3     | North Fork Henson above Henson          | 674,670.0 | BDL      | 164,009.7 | BDL     | BDL     | BDL     | 99,930.2 | BDL     |
| NFHC-3     | North Fork Henson above Henson          | 0.0       | 0.0      | 0.0       | 0.0     | 0.0     | 0.0     | 0.0      | 0.0     |
| NFHC-3     | North Fork Henson above Henson          | 579,430.2 | BDL      | 97,335.1  | BDL     | BDL     | BDL     | 59,317.2 | BDL     |
| YG         | Yellowstone Gulch                       | 3,139.3   | 359.4    | 155.2     | BDL     | 2.3     | BDL     | BDL      | BDL     |
| MHC        | Matterhorn Creek                        | 205,517.7 | 1,177.0  | 83,746.2  | BDL     | 90.5    | BDL     | 43,004.8 | BDL     |
| LSG        | Lee Smelter Gulch                       | 25,911.0  | 1,500.1  | 29,320.3  | BDL     | BDL     | BDL     | BDL      | BDL     |
| EPC        | El Paso Creek                           | 170,094.4 | 756.0    | 24,796.0  | BDL     | BDL     | BDL     | BDL      | BDL     |
| BCG-1      | Big Casino Gulch above Pride of America | 117.8     | 20.4     | 17.0      | BDL     | 0.2     | BDL     | BDL      | 5.8     |
| BCG-2      | Big Casino Gulch below Pride of America | 217.3     | 317.1    | 32.1      | BDL     | 2.9     | 7.2     | BDL      | 14.7    |
| NC         | Nellie Creek                            | 171,843.8 | BDL      | 18,199.0  | BDL     | BDL     | BDL     | BDL      | BDL     |
| OG         | Owl Gulch                               | 36,615.4  | BDL      | BDL       | BDL     | BDL     | BDL     | BDL      | BDL     |
| AG         | Alpine Gulch                            | 207,208.4 | 2,211.8  | 62,628.2  | BDL     | BDL     | BDL     | 32,478.2 | BDL     |
| DM-2       | Wyoming Mine                            | BDL       | 38.9     | BDL       | BDL     | BDL     | BDL     | 58.5     | BDL     |
| DM-5       | Palmetto Mine                           | 15.2      | 1.8      | 8.3       | BDL     | BDL     | 0.3     | BDL      | BDL     |
| DM-7       | Chicago Tunnel                          | 1,566.2   | 101.1    | BDL       | BDL     | BDL     | BDL     | 632.7    | BDL     |
| DM-7 DUP   | Chicago Tunnel                          | 1,571.4   | 102.2    | BDL       | BDL     | BDL     | BDL     | 653.4    | BDL     |
| DM-8       | Highland Chief Mine                     | 459.3     | 6.0      | BDL       | BDL     | BDL     | BDL     | BDL      | BDL     |
| DM-9       | Moro Tunnel                             | 18.7      | BDL      | BDL       | BDL     | BDL     | BDL     | BDL      | BDL     |
| DM-10      | Vulcan Mine                             | 519.7     | 5.0      | BDL       | BDL     | BDL     | BDL     | 98.8     | BDL     |
| DM-11      | Lucky Strike Mine                       | 857.0     | BDL      | BDL       | BDL     | BDL     | 1.3     | BDL      | BDL     |
| DM-11 DUP  | Lucky Strike Mine                       | 857.0     | BDL      | BDL       | BDL     | BDL     | 1.4     | BDL      | BDL     |
| DM-12      | Adit between Copper & Big Casino        | 138.0     | 1.1      | BDL       | BDL     | BDL     | BDL     | BDL      | BDL     |
| DM-14      | Pride of America Mine                   | 206.5     | 1,183.5  | 68.4      | BDL     | 11.0    | 36.2    | 209.8    | 8.0     |
| DM-16      | Pelican Mine                            | 68.2      | 18.0     | 7.5       | BDL     | 0.1     | BDL     | 4.0      | 0.1     |
| DM-17      | El Paso Gulch Draining Mine             | 369.9     | 72.2     | 32.0      | BDL     | 0.8     | 13.0    | BDL      | 1.8     |
| DM-18      | Brown Adit                              | 27.8      | 0.1      | BDL       | BDL     | BDL     | BDL     | BDL      | BDL     |

| Site # Description |                                   | Tot. Mg         | Tot. Mn  | Tot. Ni | Tot. K  | Tot.Zn   | SO4          | Total<br>Alkalinity |
|--------------------|-----------------------------------|-----------------|----------|---------|---------|----------|--------------|---------------------|
| One #              | Description                       | g/day           | g/day    | g/day   | g/day   | g/day    | g/day        | g/day               |
| HC-1               | Henson Headwaters                 | 55,819,937.4    | 328.0    | 459.2   | BDL     | 721.5    | 347,644.7    | 1,495,528.3         |
| HC-2               | Henson below Palmetto             | No Data         | No Data  | No Data | No Data | No Data  | No Data      | No Data             |
| HC-3               | Henson below Redcloud             | 180,656,944.0   | 24,736.1 | BDL     | BDL     | 12,368.1 | 2,626,474.0  | 2,793,234.3         |
| HC-4               | Henson below Schafer              | 233,869,906.8   | 19,078.9 | BDL     | BDL     | 15,693.9 | 3,446,503.9  | 2,754,125.9         |
| HC-4 DUP           | Henson below Schafer              | 235,408,524.6   | 19,232.7 | BDL     | BDL     | 15,693.9 | 3,461,890.1  | 2,738,739.7         |
| HC-5               | Henson above Hanna Mill           | 448,742,649.7   | 6,253.0  | BDL     | BDL     | 15,816.3 | 6,032,278.2  | 8,533,466.8         |
| HC-5               | Henson above Hanna Mill           | 450,094,151.5   | 10,921.4 | BDL     | BDL     | 16,878.5 | 7,413,315.4  | 6,817,602.6         |
| HC-5 DUP           | Henson above Hanna Mill           | 467,133,741.9   | 9,195.5  | BDL     | BDL     | 16,552.0 | 6,032,278.2  | 8,533,466.8         |
| HC-6               | Henson above North Fork           | 456,841,385.0   | 5,482.1  | BDL     | BDL     | 17,177.2 | 6,249,590.1  | 8,478,976.1         |
| HC-7               | Henson above Lee Smelter          | 958,628,426.8   | 14,317.2 | BDL     | BDL     | 13,694.7 | 11,391,493.6 | 15,313,155.4        |
| HC-8               | Henson above Copper               | No Data         | No Data  | No Data | No Data | No Data  | No Data      | No Data             |
| HC-8               | Henson above Copper               | 765,658,332.1   | 14,862.8 | BDL     | BDL     | 13,061.2 | 10,584,100.5 | 10,539,061.7        |
| HC-9               | Henson above Big Casino           | 1,134,258,635.3 | 20,894.2 | BDL     | BDL     | 21,640.5 | 14,476,722.1 | 18,058,591.4        |
| HC-10              | Henson below Big Casino Gulch     | No Data         | No Data  | No Data | No Data | No Data  | No Data      | No Data             |
| HC-10              | Henson below Big Casino Gulch     | 883,852,844.2   | 18,229.5 | BDL     | BDL     | 15,467.4 | 12,871,107.0 | 12,594,903.0        |
| HC-11              | Henson above Nellie and Owl Gulch | 1,154,479,784.3 | 18,595.6 | BDL     | BDL     | 18,595.6 | 14,334,145.0 | 19,215,502.5        |
| HC-15              | Henson above Alpine               | 1,283,192,768.0 | 25,836.1 | BDL     | BDL     | 29,280.9 | 14,812,695.0 | 21,530,080.0        |
| HC-17              | Henson Below Pelican              | 1,672,373,430.0 | 33,447.5 | BDL     | BDL     | 36,684.3 | 19,529,005.9 | 25,571,129.2        |
| HC-17              | Henson below Pelican              | 1,036,355,538.7 | 20,333.6 | BDL     | BDL     | 20,333.6 | 14,889,411.9 | 14,495,859.1        |
| HC-18              | Henson above Lake Fork            | 1,360,917,580.1 | 27,218.4 | BDL     | BDL     | 26,340.3 | 16,067,607.6 | 20,721,067.7        |
| HC-18              | Henson above Lake Fork            | 1,340,385,810.8 | 24,370.7 | BDL     | BDL     | 28,722.6 | 19,583,558.9 | 19,322,444.8        |
| SW                 | Sara Woods Dump Drainage          | 13,546.8        | 2.2      | BDL     | BDL     | 0.4      | 366.8        | BDL                 |
| PG-1               | Palmetto Gulch Headwaters         | 369,597,500.9   | 6,346.6  | BDL     | BDL     | BDL      | 3,135,978.8  | 5,431,963.3         |
| PG-1               | Palmetto Gulch Headwaters         | 3,028,254.7     | 7.2      | BDL     | BDL     | BDL      | 54,488.0     | 39,449.7            |
| PG-1A              | Runoff from Hough Dump            | 1,467,617.5     | 365.8    | 3.5     | 442.0   | 810.0    | 35,492.8     | BDL                 |
| PG-1B              | Downstream of Hough Adit          | 1,085,116.0     | 296.8    | 2.5     | 1,307.1 | 540.1    | 36,006.1     | BDL                 |
| PG-2               | Palmetto below Sara Woods         | 17,978,228.5    | 5,215.7  | 43.5    | BDL     | 1,928.2  | 446,492.3    | BDL                 |
| PG-3               | South Trib to Palmetto            | 1,479,006.4     | 828.6    | 3.1     | BDL     | 326.0    | 50,177.8     | 5,126.2             |
| PG-4               | Palmetto Trib below Wyoming       | 1,374,054.4     | 109.4    | BDL     | BDL     | 631.1    | 53,624.6     | 11,746.3            |
| PG-5               | Below Confluence of PG-3 and PG-4 | 11,567,891.8    | 4,403.9  | BDL     | BDL     | 2,611.2  | 366,654.8    | 76,442.8            |
| PG-6               | Palmetto below Roy Pray           | 27,225,348.9    | 10,243.7 | 71.2    | BDL     | 5,023.3  | 662,830.4    | BDL                 |
| PG-6 DUP           | Palmetto below Roy Pray           | 27,334,907.6    | 10,079.4 | 76.7    | BDL     | 5,023.3  | 662,830.4    | BDL                 |
| PG-7               | Palmetto below Hough              | 10,263,976.3    | 1,846.4  | 27.9    | 6,582.3 | 2,649.7  | 229,823.8    | 58,013.8            |

| Site # Description |                                         | Tot. Mg       | Tot. Mn  | Tot. Ni | Tot. K   | Tot.Zn   | SO4         | Total<br>Alkalinity |
|--------------------|-----------------------------------------|---------------|----------|---------|----------|----------|-------------|---------------------|
|                    |                                         | g/day         | g/day    | g/day   | g/day    | g/day    | g/day       | g/day               |
| PG-8               | Palmetto below Palmetto Mine            | 17,975,170.2  | 1,322.0  | BDL     | BDL      | 1,554.0  | 284,123.7   | 220,340.8           |
| PG-9               | Palmetto below Tributary Confluence     | 67,702,315.2  | 19,154.1 | 169.3   | BDL      | 11,114.5 | 1,616,392.8 | 267,706.2           |
| PG-10              | Palmetto above Henson                   | 55,447,785.1  | 14,324.0 | 97.3    | BDL      | 8,365.8  | 1,218,392.1 | 291,830.4           |
| RC                 | Redcloud Gulch                          | 19,685,343.6  | 4,855.7  | BDL     | BDL      | 2,285.7  | 499,789.0   | 177,168.1           |
| SCG                | Schafer Gulch                           | 88,860,512.0  | 2,779.3  | BDL     | BDL      | 7,124.5  | 1,495,361.9 | 322,951.2           |
| NFHC-1             | North Fork Henson Headwaters            | 127,314,629.4 | 808.3    | BDL     | BDL      | 1,616.7  | 350,283.6   | 3,637,560.8         |
| NFHC-1 DUP         | North Fork Henson Headwaters            | 127,718,802.9 | 1,077.8  | BDL     | BDL      | BDL      | 350,283.6   | 3,664,505.7         |
| NFHC-2             | North Fork Henson above Yellowstone     | 458,829,492.2 | 10,375.5 | BDL     | BDL      | 2,997.4  | 3,758,251.6 | 5,948,643.7         |
| NFHC-3             | North Fork Henson above Henson          | 558,931,641.8 | 11,573.8 | BDL     | BDL      | 5,081.2  | 4,714,221.4 | 7,593,566.2         |
| NFHC-3             | North Fork Henson above Henson          | 453,467,083.2 | 7,786.8  | BDL     | BDL      | 3,206.3  | 3,847,599.5 | 6,664,592.0         |
| YG                 | Yellowstone Gulch                       | 2,415,748.4   | 4.7      | BDL     | BDL      | 343.1    | 14,237.7    | 71,072.0            |
| MHC                | Matterhorn Creek                        | 318,688,244.2 | 10,321.2 | BDL     | BDL      | 1,901.3  | 3,521,867.2 | 1,720,192.2         |
| LSG                | Lee Smelter Gulch                       | 42,048,490.9  | 4,704.9  | 68.2    | BDL      | 1,591.0  | 1,195,540.9 | BDL                 |
| EPC                | El Paso Creek                           | 77,109,443.3  | 1,511.9  | BDL     | BDL      | 982.8    | 733,295.7   | 1,753,861.8         |
| BCG-1              | Big Casino Gulch above Pride of America | 117,803.8     | 0.8      | BDL     | BDL      | 20.5     | 2,014.8     | 2,928.6             |
| BCG-2              | Big Casino Gulch below Pride of America | 203,557.1     | 5.7      | BDL     | BDL      | 285.8    | 4,032.0     | 4,971.5             |
| NC                 | Nellie Creek                            | 55,991,894.3  | 634.1    | BDL     | 66,581.5 | BDL      | 164,868.5   | 1,515,522.4         |
| OG                 | Owl Gulch                               | 42,063,659.8  | BDL      | BDL     | BDL      | BDL      | 813,230.8   | 905,370.2           |
| AG                 | Alpine Gulch                            | 214,192,979.5 | 4,190.7  | BDL     | BDL      | 1,979.0  | 3,247,817.5 | 1,548,242.7         |
| DM-2               | Wyoming Mine                            | 390,976.5     | 8.9      | BDL     | BDL      | 38.1     | 8,791.9     | 4,152.9             |
| DM-5               | Palmetto Mine                           | 44,109.8      | 2.4      | BDL     | 15.8     | 1.9      | 788.9       | 299.0               |
| DM-7               | Chicago Tunnel                          | 2,266,286.0   | 340.7    | BDL     | 876.4    | 101.1    | 43,303.2    | 40,606.5            |
| DM-7 DUP           | Chicago Tunnel                          | 2,240,355.9   | 351.1    | BDL     | 892.0    | 105.8    | 43,406.9    | 40,606.5            |
| DM-8               | Highland Chief Mine                     | 294,996.3     | BDL      | BDL     | BDL      | 6.5      | 4,857.7     | 12,382.8            |
| DM-9               | Moro Tunnel                             | 19,964.3      | 1.7      | BDL     | BDL      | BDL      | 477.1       | 228.8               |
| DM-10              | Vulcan Mine                             | 922,857.5     | 77.1     | BDL     | BDL      | 7.7      | 21,236.5    | 10,080.0            |
| DM-11              | Lucky Strike Mine                       | 534,704.4     | 24.0     | BDL     | BDL      | BDL      | 62,040.9    | 7,440.4             |
| DM-11 DUP          | Lucky Strike Mine                       | 527,878.4     | 22.8     | BDL     | BDL      | BDL      | 62,192.6    | 7,440.4             |
| DM-12              | Adit between Copper & Big Casino        | 103,931.6     | 0.2      | BDL     | BDL      | 1.0      | 2,442.7     | 3,217.8             |
| DM-14              | Pride of America Mine                   | 193,428.2     | 50.5     | BDL     | BDL      | 1,198.3  | 5,868.4     | 3,934.1             |
| DM-16              | Pelican Mine                            | 47,097.1      | 1.4      | BDL     | 14.1     | 17.1     | 578.0       | 477.1               |
| DM-17              | El Paso Gulch Draining Mine             | 102,757.2     | 31.1     | BDL     | 36.4     | 74.9     | 5,049.8     | 2,753.9             |
| DM-18              | Brown Adit                              | 17,340.3      | BDL      | BDL     | 4.7      | 0.2      | 43.4        | 422.0               |

# **APPENDIX 3**

# **Low-Flow Concentration Data**

|           |                                      | Sample    | Flow       | Adjusted Flow | Diss. Al | Diss. As | Diss. Cd | Diss. Ca | Diss. Co |
|-----------|--------------------------------------|-----------|------------|---------------|----------|----------|----------|----------|----------|
| Site #    | Description                          | Date      | cfs        | cfs           | ug/l     | ug/l     | ug/l     | ug/l     | ug/L     |
| HC-1      | Henson Headwaters                    | 9/20/2005 | 0.813      | 0.813         | <100     | <15      | <1       | 19100    |          |
| HC-2      | Henson below Palmetto                | 9/20/2005 | 1.084      | 1.084         | <100     | <15      | 1        | 31600    |          |
| HC-3      | Henson below Redcloud                | 9/14/2005 | 2.326      | 1.55842       | <100     | <15      | <1       | 32100    | <2       |
| HC-3      | Henson below Redcloud                | 9/20/2005 | 1.534      | 1.534         | <100     | <15      | <1       | 32300    |          |
| HC-4      | Henson below Schafer                 | 9/14/2005 | 3.22       | 2.1574        | <100     | <15      | <1       | 35700    | <2       |
| HC-5      | Henson above Hanna Mill              | 9/14/2005 | 10.393     | 6.96331       | <100     | <15      | <1       | 38400    | <2       |
| HC-5      | Henson above Hanna Mill              | 9/20/2005 | 6.996      | 6.996         | <100     | <15      | <1       | 35200    |          |
| HC-6      | Henson above North Fork              | 9/14/2005 | 9.062      | 6.07154       | <100     | <15      | <1       | 33900    | <2       |
| HC-7      | Henson above Lee Smelter             | 9/14/2005 | 22.604     | 15.14468      | <100     | <15      | <1       | 33200    | <2       |
| HC-8      | Henson above Copper                  | 9/14/2005 | 17.331     | 11.61177      | <100     | <15      | <1       | 34400    | <2       |
| HC-9      | Henson above Big Casino              | 9/14/2005 | 24.718     | 16.56106      | <100     | <15      | <1       | 34800    | <2       |
| HC-10     | Henson below Big Casino Gulch        | 9/14/2005 | 27.674     | 18.54158      | <100     | <15      | <1       | 34000    | <2       |
| HC-11     | Henson above Nellie and Owl Gulch    | 9/14/2005 | 31.01      | 20.7767       | <100     | <15      | <1       | 33300    | <2       |
| HC-12     | Henson above Ute-Ule Tailings        | 9/14/2005 | 31.1       | 20.837        | 106      | <15      | <1       | 30700    | <2       |
| HC-13     | Henson below Ute-Ule Tailings        | 9/14/2005 | 31.371     | 21.01857      | <100     | <15      | <1       | 28600    | <2       |
| HC-13 DUP | Henson below Ute-Ule Tailings        | 9/14/2005 | 31.371     | 21.01857      | <100     | <15      | <1       | 29700    | <2       |
| HC-14     | Henson below Ute-Ule                 | 9/14/2005 | 36.008     | 24.12536      | <100     | <15      | <1       | 30500    | <2       |
| HC-15     | Henson above Alpine                  | 9/14/2005 | 35.402     | 23.71934      | <100     | <15      | <1       | 28700    | <2       |
| HC-16     | Henson below Alpine                  | 9/14/2005 | 35.225     | 23.60075      | <100     | <15      | <1       | 31000    | <2       |
| HC-17     | Henson below Pelican                 | 9/14/2005 | 35.843     | 24.01481      | <100     | <15      | <1       | 30000    | <2       |
| HC-18     | Henson above Lake Fork               | 9/14/2005 | 36.52      | 24.4684       | <100     | <15      | <1       | 30900    | <2       |
| PG-1      | Palmetto Gulch Headwaters            | 9/20/2005 | 0.00253575 | 0.00253575    | <100     | <15      | <1       | 45900    |          |
| PG-2      | Palmetto below Sara Woods            | 9/20/2005 | 0.013248   | 0.013248      | <100     | <15      | 6        | 69200    |          |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 9/20/2005 | 0.040572   | 0.040572      | 3450     | <15      | 23       | 126000   |          |
| PG-3      | South Trib to Palmetto               | 9/20/2005 | 0.02205    | 0.02205       | <100     | <15      | 2        | 73600    |          |
| PG-4      | Palmetto Trib below Wyoming          | 9/20/2005 | 0.00245    | 0.00245       | <100     | <15      | <1       | 47200    |          |
| PG-5      | Below Confluence of PG-3 and PG-4    | 9/20/2005 | 0.052992   | 0.052992      | <100     | <15      | <1       | 59500    |          |
| PG-6      | Palmetto below Roy Pray              | 9/20/2005 | 0.091287   | 0.091287      | 5330     | <15      | 22       | 122000   |          |
| PG-7      | Palmetto below Hough                 | 9/20/2005 | 0.040572   | 0.040572      | <100     | <15      | 1        | 42400    |          |
| PG-7A     | Palmetto below Palmetto Waste Pile   | 9/20/2005 | 0.0828     | 0.0828        | <100     | <15      | <1       | 33300    |          |
| PG-8      | Palmetto below Palmetto Mine         | 9/20/2005 | 0.119232   | 0.119232      | <100     | <15      | <1       | 31800    |          |
| PG-9      | Palmetto below Tributary Confluence  | 9/20/2005 | 0.283383   | 0.283383      | <100     | <15      | 6        | 64000    |          |
| PG-10     | Palmetto above Henson                | 9/20/2005 | 0.381      | 0.381         | <100     | <15      | 4        | 62000    |          |

|           |                                         | Samula         | Flow     | Adjusted Flow        |                  | Diss.<br>As | Diag. Cd         | Diss.<br>Ca | Diss. Co |
|-----------|-----------------------------------------|----------------|----------|----------------------|------------------|-------------|------------------|-------------|----------|
| Site #    | Description                             | Sample<br>Date | cfs      | Adjusted Flow<br>cfs | Diss. Al<br>ug/l | ug/l        | Diss. Cd<br>ug/l | ug/l        | ug/L     |
| PG-10 DUP | Palmetto above Henson                   | 9/20/2005      | 0.381    | 0.381                | <100             | <15         | 4                | 62700       | ~g.=     |
| RC        | Redcloud Gulch                          | 9/20/2005      | 0.0406   | 0.0406               | <100             | <15         | <1               | 54400       |          |
| SCG       | Schafer Gulch                           | 9/14/2005      | 1.77     | 1.1859               | <100             | <15         | <1               | 35100       | <2       |
| BGO       | Below Golconda                          | 9/19/2005      | 0.1058   | 0.1058               | <100             | <15         | 2                | 21700       |          |
| NFHC-1    | North Fork Henson Headwaters            | 9/14/2005      | 5.639    | 3.77813              | <100             | <15         | <1               | 17400       | <2       |
| NFHC-2    | North Fork Henson above Yellowstone     | 9/14/2005      | 9.885    | 6.62295              | <100             | <15         | <1               | 29300       | 3        |
| NFHC-3    | North Fork Henson above Henson          | 9/14/2005      | 10.877   | 7.28759              | <100             | <15         | <1               | 30900       | 2        |
| MHC       | Matterhorn Creek                        | 9/14/2005      | 2.505    | 1.67835              | 1650             | <15         | <1               | 48400       | 14       |
| YG        | Yellowstone Gulch                       | 9/14/2005      | 0.278501 | 0.18659567           | <100             | <15         | 4                | 36100       | <2       |
| LSG       | Lee Smelter Gulch                       | 9/14/2005      | 0.689    | 0.46163              | 2290             | <15         | <1               | 62500       | 3        |
| EPC       | El Paso Creek                           | 9/14/2005      |          | 0                    | <100             | <15         | <1               | 13400       | <2       |
| BCG-1     | Big Casino Gulch above Pride of America | 9/14/2005      | 0.0128   | 0.008576             | <100             | <15         | 9                | 42500       | <2       |
| BCG-2     | Big Casino Gulch below Pride of America | 9/14/2005      | 0.016    | 0.016                | <100             | <15         | 29               | 42400       | <2       |
| NC        | Nellie Creek                            | 9/14/2005      | 4.543    | 3.04381              | <100             | <15         | <1               | 7510        | <2       |
| OG        | Owl Gulch                               | 9/14/2005      | 0.744    | 0.49848              | <100             | <15         | <1               | 34900       | <2       |
| AG        | Alpine Gulch                            | 9/14/2005      | 3.518    | 2.35706              | 147              | <15         | <1               | 27800       | 3        |
| DM-1      | Hough Mine                              | 9/20/2005      | 0.003312 | 0.003312             | 6590             | <15         | 29               | 44000       |          |
| DM-3      | Roy Pray Mine                           | 9/20/2005      | 0.008829 | 0.008829             | 927              | <15         | 15               | 403000      |          |
| DM-4      | Wyoming Mine                            | 9/20/2005      | 0.0098   | 0.0098               | 320              | <15         | 10               | 47000       |          |
| DM-5      | Palmetto Mine                           | 9/19/2005      | 0.000654 | 0.000654             | <100             | <15         | <1               | 36300       |          |
| DM-5 DUP  | Palmetto Mine                           | 9/19/2005      | 0.000654 | 0.000654             | <100             | <15         | <1               | 37200       |          |
| DM-6      | BLM Adit below Confluence               | 9/20/2005      | 0.00129  | 0.00129              | <100             | <15         | <1               | 30000       |          |
| DM-7      | Chicago Tunnel                          | 9/13/2005      | 0.285    | 0.285                | <100             | <15         | 5                | 58800       | 4        |
| DM-7 DUP  | Chicago Tunnel                          | 9/13/2005      | 0.285    | 0.285                | <100             | <15         | 6                | 58700       | 4        |
| DM-8      | Highland Chief Mine                     | 9/13/2005      | 0.029    | 0.029                | <100             | <15         | <1               | 47800       | <2       |
| DM-9      | Moro Tunnel                             | 9/13/2005      | 0.001    | 0.001                | <100             | <15         | <1               | 112000      | <2       |
| DM-10     | Vulcan Mine                             | 9/13/2005      | 0.083    | 0.083                | <100             | <15         | <1               | 103000      | 2        |
| DM-11     | Lucky Strike Mine                       | 9/13/2005      | 0.03     | 0.03                 | <100             | <15         | <1               | 347000      | <2       |
| DM-14     | Pride of America Mine                   | 9/14/2005      | 0.0032   | 0.0032               | <100             | <15         | 184              | 42100       | 6        |
| DM-15     | Pelican Mine                            | 9/14/2005      | 0.003342 | 0.003342             | <100             | <15         | <1               | 154000      | <2       |
| DM-18     | Brown Adit                              | 9/14/2005      | 0.0022   | 0.0022               | <100             | <15         | <1               | 51000       | <2       |
| BL1       | Blank                                   | 9/20/2005      |          |                      | <100             | <15         | <1               | 129         |          |

|           |                                      | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg | Diss. Mn | Diss. Ni | Diss. K | Diss. Na | Diss. Zn |
|-----------|--------------------------------------|----------|----------|----------|----------|----------|----------|---------|----------|----------|
| Site #    | Description                          | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l    | ug/l     | ug/l     |
| HC-1      | Henson Headwaters                    | <20      | <100     | <10      | 2030     | <2       | <4       | <1000   | 2640     | <10      |
| HC-2      | Henson below Palmetto                | <20      | <100     | <10      | 3310     | 303      | <4       | <1000   | 2480     | 199      |
| HC-3      | Henson below Redcloud                | <20      | <100     | <10      | 3110     | 295      | <4       | <1000   | 2510     | 134      |
| HC-3      | Henson below Redcloud                | <20      | <100     | <10      | 3340     | 226      | <4       | <1000   | 2490     | 159      |
| HC-4      | Henson below Schafer                 | <20      | <100     | <10      | 4020     | 136      | <4       | <1000   | 2080     | 121      |
| HC-5      | Henson above Hanna Mill              | <20      | <100     | <10      | 3170     | 5        | <4       | <1000   | 1760     | 40       |
| HC-5      | Henson above Hanna Mill              | <20      | <100     | <10      | 2740     | 3        | <4       | <1000   | 1680     | 36       |
| HC-6      | Henson above North Fork              | <20      | <100     | <10      | 2690     | 3        | <4       | <1000   | 1710     | 32       |
| HC-7      | Henson above Lee Smelter             | <20      | <100     | <10      | 3370     | 56       | <4       | <1000   | 2880     | 21       |
| HC-8      | Henson above Copper                  | <20      | <100     | <10      | 3410     | 69       | <4       | <1000   | 2720     | 22       |
| HC-9      | Henson above Big Casino              | <20      | <100     | <10      | 3400     | 68       | <4       | <1000   | 3050     | 21       |
| HC-10     | Henson below Big Casino Gulch        | <20      | <100     | <10      | 3260     | 65       | <4       | <1000   | 2880     | 23       |
| HC-11     | Henson above Nellie and Owl Gulch    | <20      | <100     | <10      | 3420     | 59       | <4       | <1000   | 3010     | 23       |
| HC-12     | Henson above Ute-Ule Tailings        | <20      | <100     | <10      | 3050     | 40       | <4       | <1000   | 3100     | 18       |
| HC-13     | Henson below Ute-Ule Tailings        | <20      | <100     | <10      | 2820     | 37       | <4       | <1000   | 3010     | 16       |
| HC-13 DUP | Henson below Ute-Ule Tailings        | <20      | <100     | <10      | 3030     | 39       | <4       | <1000   | 3140     | 16       |
| HC-14     | Henson below Ute-Ule                 | <20      | <100     | <10      | 2990     | 59       | <4       | <1000   | 3080     | 45       |
| HC-15     | Henson above Alpine                  | <20      | <100     | <10      | 2790     | 51       | <4       | <1000   | 3120     | 63       |
| HC-16     | Henson below Alpine                  | <20      | <100     | <10      | 3210     | 54       | <4       | <1000   | 3180     | 62       |
| HC-17     | Henson below Pelican                 | <20      | <100     | <10      | 3150     | 49       | <4       | <1000   | 3180     | 68       |
| HC-18     | Henson above Lake Fork               | <20      | <100     | <10      | 3250     | 44       | <4       | <1000   | 3180     | 76       |
| PG-1      | Palmetto Gulch Headwaters            | <20      | <100     | <10      | 3270     | 5        | <4       | <1000   | 2380     | 11       |
| PG-2      | Palmetto below Sara Woods            | 63       | <100     | <10      | 8050     | 1870     | 14       | <1000   | 1310     | 733      |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 330      | 6670     | 14       | 15500    | 6620     | 45       | 1370    | 1510     | 3550     |
| PG-3      | South Trib to Palmetto               | <20      | <100     | <10      | 6180     | 387      | 4        | <1000   | 2220     | 593      |
| PG-4      | Palmetto Trib below Wyoming          | <20      | <100     | <10      | 3050     | <2       | <4       | <1000   | 1680     | 250      |
| PG-5      | Below Confluence of PG-3 and PG-4    | <20      | <100     | <10      | 4510     | 54       | <4       | <1000   | 2030     | 138      |
| PG-6      | Palmetto below Roy Pray              | 327      | 1060     | <10      | 16800    | 6550     | 41       | 1280    | 1500     | 3560     |
| PG-7      | Palmetto below Hough                 | <20      | <100     | <10      | 4170     | 81       | <4       | 1500    | 1610     | 102      |
| PG-7A     | Palmetto below Palmetto Waste Pile   | <20      | <100     | <10      | 3620     | 30       | <4       | 1180    | 1630     | 31       |
| PG-8      | Palmetto below Palmetto Mine         | <20      | <100     | <10      | 3030     | 42       | <4       | <1000   | 1990     | 25       |
| PG-9      | Palmetto below Tributary Confluence  | <20      | 135      | <10      | 8780     | 2020     | 11       | <1000   | 1930     | 1040     |
| PG-10     | Palmetto above Henson                | <20      | <100     | <10      | 7040     | 1150     | 6        | <1000   | 1980     | 701      |

|           |                                         | Diss. Cu | Diss.<br>Fe | Diss. Pb | Diss.<br>Mg | Diss. Mn | Diss. Ni | Diss. K | Diss. Na | Diss.<br>Zn |
|-----------|-----------------------------------------|----------|-------------|----------|-------------|----------|----------|---------|----------|-------------|
| Site #    | Description                             | ug/l     | ug/l        | ug/l     | ug/l        | ug/l     | ug/l     | ug/l    | ug/l     | ug/l        |
| PG-10 DUP | Palmetto above Henson                   | <20      | <100        | <10      | 6870        | 1120     | 7        | <1000   | 1980     | 704         |
| RC        | Redcloud Gulch                          | <20      | <100        | <10      | 3710        | 46       | <4       | <1000   | 3020     | 131         |
| SCG       | Schafer Gulch                           | <20      | <100        | <10      | 4440        | <2       | <4       | 1080    | 1260     | 139         |
| BGO       | Below Golconda                          | <20      | <100        | <10      | 5340        | 7        | <4       | <1000   | <500     | 730         |
| NFHC-1    | North Fork Henson Headwaters            | <20      | <100        | <10      | 1800        | 3        | <4       | <1000   | 4070     | <10         |
| NFHC-2    | North Fork Henson above Yellowstone     | <20      | 316         | <10      | 4580        | 173      | <4       | <1000   | 4220     | 12          |
| NFHC-3    | North Fork Henson above Henson          | <20      | <100        | <10      | 4560        | 140      | <4       | <1000   | 4260     | 15          |
| MHC       | Matterhorn Creek                        | <20      | 2970        | <10      | 9440        | 577      | 6        | 1100    | 4860     | 100         |
| YG        | Yellowstone Gulch                       | <20      | <100        | <10      | 3430        | <2       | <4       | <1000   | 3800     | 563         |
| LSG       | Lee Smelter Gulch                       | <20      | <100        | <10      | 5930        | 594      | 11       | 1230    | 2390     | 188         |
| EPC       | El Paso Creek                           | <20      | <100        | <10      | 1480        | 61       | <4       | 1300    | 3330     | 11          |
| BCG-1     | Big Casino Gulch above Pride of America | <20      | <100        | 167      | 2650        | <2       | <4       | <1000   | 2510     | 933         |
| BCG-2     | Big Casino Gulch below Pride of America | <20      | <100        | <10      | 2630        | <2       | <4       | <1000   | 2600     | 2260        |
| NC        | Nellie Creek                            | <20      | <100        | <10      | 1060        | 4        | <4       | 1070    | 3340     | <10         |
| OG        | Owl Gulch                               | <20      | <100        | <10      | 2280        | <2       | <4       | <1000   | 1770     | <10         |
| AG        | Alpine Gulch                            | <20      | 569         | <10      | 3890        | 54       | <4       | 1510    | 3220     | 30          |
| DM-1      | Hough Mine                              | 6070     | 3290        | 13       | 7590        | 3390     | 24       | 1160    | 4050     | 3600        |
| DM-3      | Roy Pray Mine                           | <20      | 76800       | 13       | 44800       | 27700    | 88       | 3740    | 3470     | 7110        |
| DM-4      | Wyoming Mine                            | 43       | 1270        | 10       | 3450        | 551      | <4       | 1130    | 2820     | 2060        |
| DM-5      | Palmetto Mine                           | <20      | <100        | <10      | 3360        | 100      | <4       | 1040    | 2120     | 51          |
| DM-5 DUP  | Palmetto Mine                           | <20      | <100        | <10      | 3460        | 105      | <4       | <1000   | 2040     | 57          |
| DM-6      | BLM Adit below Confluence               | <20      | <100        | <10      | 1470        | <2       | <4       | <1000   | 4520     | 33          |
| DM-7      | Chicago Tunnel                          | <20      | 547         | <10      | 4990        | 1800     | <4       | 1750    | 3350     | 823         |
| DM-7 DUP  | Chicago Tunnel                          | <20      | 554         | <10      | 5220        | 1870     | <4       | 1700    | 3270     | 846         |
| DM-8      | Highland Chief Mine                     | <20      | <100        | <10      | 2500        | 4        | <4       | <1000   | 3880     | 58          |
| DM-9      | Moro Tunnel                             | <20      | <100        | <10      | 9580        | 1380     | <4       | 1040    | 8440     | <10         |
| DM-10     | Vulcan Mine                             | <20      | 1110        | <10      | 9680        | 813      | <4       | <1000   | 5050     | 67          |
| DM-11     | Lucky Strike Mine                       | <20      | <100        | <10      | 8100        | 336      | <4       | <1000   | 12600    | <10         |
| DM-14     | Pride of America Mine                   | 38       | <100        | <10      | 2760        | 882      | <4       | <1000   | 2620     | 18700       |
| DM-15     | Pelican Mine                            | <20      | <100        | <10      | 7210        | 261      | <4       | 3680    | 39200    | 204         |
| DM-18     | Brown Adit                              | <20      | <100        | <10      | 6520        | 2        | <4       | 2080    | 22200    | 43          |
| BL1       | Blank                                   | <20      | <100        | <10      | <100        | <2       | <4       | <1000   | <500     | <10         |

|           |                                      | Tot. Al | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe | Tot. Pb | Tot. Mg | Tot. Mn | Tot. Ni |
|-----------|--------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Site #    | Description                          | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | mg/l    | ug/l    | ug/l    |
| HC-1      | Henson Headwaters                    | <100    | <15     | <1      | <20     | <100    | <10     | 1.9     | <2      | <4      |
| HC-2      | Henson below Palmetto                | 138     | <15     | 1       | <20     | <100    | <10     | 3.11    | 288     | <4      |
| HC-3      | Henson below Redcloud                | 403     | <15     | <1      | 20      | 216     | <10     | 3.18    | 300     | <4      |
| HC-3      | Henson below Redcloud                | <100    | <15     | <1      | <20     | <100    | <10     | 3.03    | 208     | <4      |
| HC-4      | Henson below Schafer                 | <100    | <15     | <1      | <20     | <100    | <10     | 3.85    | 131     | <4      |
| HC-5      | Henson above Hanna Mill              | <100    | <15     | <1      | <20     | <100    | <10     | 2.88    | 6       | <4      |
| HC-5      | Henson above Hanna Mill              | <100    | <15     | <1      | <20     | <100    | <10     | 2.65    | 5       | <4      |
| HC-6      | Henson above North Fork              | <100    | <15     | <1      | <20     | <100    | <10     | 2.92    | 4       | <4      |
| HC-7      | Henson above Lee Smelter             | 649     | <15     | <1      | <20     | 359     | <10     | 3.68    | 62      | <4      |
| HC-8      | Henson above Copper                  | 704     | <15     | <1      | <20     | 337     | <10     | 3.82    | 79      | <4      |
| HC-9      | Henson above Big Casino              | 602     | <15     | <1      | <20     | 268     | <10     | 3.5     | 71      | <4      |
| HC-10     | Henson below Big Casino Gulch        | 613     | <15     | <1      | <20     | 260     | <10     | 3.65    | 75      | <4      |
| HC-11     | Henson above Nellie and Owl Gulch    | 507     | <15     | <1      | <20     | 211     | <10     | 3.5     | 62      | <4      |
| HC-12     | Henson above Ute-Ule Tailings        | 375     | <15     | <1      | <20     | 164     | <10     | 3.06    | 43      | <4      |
| HC-13     | Henson below Ute-Ule Tailings        | 355     | <15     | <1      | <20     | 152     | <10     | 3.02    | 41      | <4      |
| HC-13 DUP | Henson below Ute-Ule Tailings        | 379     | <15     | <1      | <20     | 164     | <10     | 3.08    | 43      | <4      |
| HC-14     | Henson below Ute-Ule                 | 327     | <15     | <1      | <20     | 151     | <10     | 3.08    | 63      | <4      |
| HC-15     | Henson above Alpine                  | 282     | <15     | <1      | <20     | 163     | <10     | 3.09    | 58      | <4      |
| HC-16     | Henson below Alpine                  | 457     | <15     | <1      | <20     | 180     | <10     | 3.15    | 56      | <4      |
| HC-17     | Henson below Pelican                 | 412     | <15     | <1      | <20     | 167     | <10     | 3.3     | 53      | <4      |
| HC-18     | Henson above Lake Fork               | 392     | <15     | <1      | <20     | 147     | <10     | 3.16    | 46      | <4      |
| PG-1      | Palmetto Gulch Headwaters            | <100    | <15     | <1      | <20     | <100    | <10     | 3.3     | 4       | <4      |
| PG-2      | Palmetto below Sara Woods            | 5050    | <15     | 6       | 161     | 123     | <10     | 7.06    | 1650    | 15      |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 5540    | <15     | 26      | 334     | 7070    | 13      | 17.6    | 7400    | 48      |
| PG-3      | South Trib to Palmetto               | 260     | <15     | 2       | <20     | <100    | <10     | 6.17    | 387     | 4       |
| PG-4      | Palmetto Trib below Wyoming          | <100    | <15     | 1       | <20     | <100    | <10     | 3.05    | <2      | <4      |
| PG-5      | Below Confluence of PG-3 and PG-4    | <100    | <15     | <1      | <20     | <100    | <10     | 4.39    | 53      | <4      |
| PG-6      | Palmetto below Roy Pray              | 5780    | <15     | 24      | 324     | 1370    | <10     | 17.2    | 6780    | 44      |
| PG-7      | Palmetto below Hough                 | <100    | <15     | 1       | <20     | <100    | <10     | 4.34    | 85      | <4      |
| PG-7A     | Palmetto below Palmetto Waste Pile   | <100    | <15     | <1      | <20     | <100    | <10     | 3.26    | 29      | <4      |
| PG-8      | Palmetto below Palmetto Mine         | <100    | <15     | <1      | <20     | <100    | <10     | 3.11    | 44      | <4      |
| PG-9      | Palmetto below Tributary Confluence  | 1400    | <15     | 6       | 79      | 345     | <10     | 7.02    | 1650    | 12      |
| PG-10     | Palmetto above Henson                | 506     | <15     | 4       | 36      | 134     | <10     | 6.01    | 1010    | 8       |
|           |                                      |         |         |         |         |         |         |         |         |         |

|           |                                         | Tot. Al | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe | Tot. Pb | Tot. Mg | Tot. Mn | Tot. Ni |
|-----------|-----------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Site #    | Description                             | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    | mg/l    | ug/l    | ug/l    |
| PG-10 DUP | Palmetto above Henson                   | 496     | <15     | 4       | 32      | 145     | <10     | 6.65    | 1100    | 8       |
| RC        | Redcloud Gulch                          | <100    | <15     | <1      | <20     | <100    | <10     | 3.74    | 50      | <4      |
| SCG       | Schafer Gulch                           | <100    | <15     | <1      | <20     | <100    | <10     | 4.81    | <2      | <4      |
| BGO       | Below Golconda                          | <100    | <15     | 2       | <20     | <100    | <10     | 5.46    | 6       | <4      |
| NFHC-1    | North Fork Henson Headwaters            | <100    | <15     | <1      | <20     | <100    | <10     | 1.76    | 6       | <4      |
| NFHC-2    | North Fork Henson above Yellowstone     | 2130    | <15     | <1      | <20     | 1250    | <10     | 4.87    | 183     | <4      |
| NFHC-3    | North Fork Henson above Henson          | 1730    | <15     | <1      | <20     | 946     | <10     | 4.7     | 147     | <4      |
| MHC       | Matterhorn Creek                        | 6950    | <15     | <1      | <20     | 4670    | <10     | 10.2    | 607     | 5       |
| YG        | Yellowstone Gulch                       | <100    | <15     | 4       | <20     | <100    | <10     | 3.37    | 4       | <4      |
| LSG       | Lee Smelter Gulch                       | 2660    | <15     | <1      | <20     | <100    | <10     | 6.09    | 615     | 9       |
| EPC       | El Paso Creek                           | 569     | <15     | <1      | <20     | <100    | <10     | 1.54    | 67      | <4      |
| BCG-1     | Big Casino Gulch above Pride of America | <100    | <15     | 10      | <20     | <100    | 184     | 2.98    | <2      | <4      |
| BCG-2     | Big Casino Gulch below Pride of America | <100    | <15     | 27      | <20     | <100    | <10     | 2.88    | <2      | <4      |
| NC        | Nellie Creek                            | <100    | <15     | <1      | <20     | <100    | <10     | 1.17    | 7       | <4      |
| OG        | Owl Gulch                               | <100    | <15     | <1      | <20     | <100    | <10     | 2.27    | <2      | <4      |
| AG        | Alpine Gulch                            | 2150    | <15     | <1      | <20     | 902     | <10     | 3.84    | 54      | <4      |
| DM-1      | Hough Mine                              | 6690    | <15     | 31      | 6080    | 3760    | 14      | 8.41    | 3620    | 26      |
| DM-3      | Roy Pray Mine                           | 1020    | <15     | 14      | <20     | 82900   | 13      | 46.7    | 28300   | 90      |
| DM-4      | Wyoming Mine                            | 463     | <15     | 10      | 52      | 3310    | 97      | 3.34    | 536     | <4      |
| DM-5      | Palmetto Mine                           | <100    | <15     | <1      | <20     | <100    | <10     | 3.33    | 106     | <4      |
| DM-5 DUP  | Palmetto Mine                           | <100    | <15     | <1      | <20     | <100    | <10     | 3.15    | 112     | <4      |
| DM-6      | BLM Adit below Confluence               | <100    | <15     | <1      | <20     | <100    | <10     | 1.54    | <2      | <4      |
| DM-7      | Chicago Tunnel                          | 245     | <15     | 5       | <20     | 2500    | <10     | 4.87    | 1810    | <4      |
| DM-7 DUP  | Chicago Tunnel                          | 248     | <15     | 5       | <20     | 2510    | <10     | 4.85    | 1810    | <4      |
| DM-8      | Highland Chief Mine                     | <100    | <15     | <1      | <20     | <100    | <10     | 2.65    | 5       | <4      |
| DM-9      | Moro Tunnel                             | <100    | <15     | <1      | <20     | 234     | <10     | 9.51    | 2050    | <4      |
| DM-10     | Vulcan Mine                             | <100    | <15     | <1      | <20     | 1030    | <10     | 9.55    | 811     | <4      |
| DM-11     | Lucky Strike Mine                       | <100    | <15     | <1      | <20     | <100    | <10     | 7.84    | 340     | <4      |
| DM-14     | Pride of America Mine                   | 734     | <15     | 204     | 550     | 3540    | 172     | 3.1     | 1000    | <4      |
| DM-15     | Pelican Mine                            | <100    | <15     | <1      | <20     | <100    | <10     | 7.19    | 257     | <4      |
| DM-18     | Brown Adit                              | <100    | <15     | <1      | <20     | <100    | <10     | 6.81    | 2       | <4      |
| BL1       | Blank                                   | <100    | <15     | <1      | <20     | <100    | <10     | BDL     | <2      | <4      |

|           |                                      | Tot. K | Tot. Zn | SO4  | Total Alkalinity | Cond.    | рН   |
|-----------|--------------------------------------|--------|---------|------|------------------|----------|------|
| Site #    | Description                          | ug/l   | ug/l    | mg/l | mg/l             | umhos/cm | s.u. |
| HC-1      | Henson Headwaters                    | <1000  | <10     | 9.8  | 52.0             | 109      | 8.00 |
| HC-2      | Henson below Palmetto                | <1000  | 190     | 53.6 | 44.0             | 185      | 7.93 |
| HC-3      | Henson below Redcloud                | <1000  | 163     | 57.7 | 38.4             | 196      | 7.95 |
| HC-3      | Henson below Redcloud                | <1000  | 145     | 56.6 | 43.4             | 191      | 7.78 |
| HC-4      | Henson below Schafer                 | <1000  | 117     | 71.7 | 29.4             | 205      | 7.57 |
| HC-5      | Henson above Hanna Mill              | <1000  | 32      | 65.1 | 31.0             | 220      | 6.68 |
| HC-5      | Henson above Hanna Mill              | <1000  | 34      | 69.3 | 34.0             | 206      | 7.64 |
| HC-6      | Henson above North Fork              | <1000  | 32      | 65.6 | 32.2             | 208      | 7.68 |
| HC-7      | Henson above Lee Smelter             | <1000  | 28      | 68.9 | 35.4             | 213      | 7.86 |
| HC-8      | Henson above Copper                  | <1000  | 33      | 72.5 | 33.9             | 223      | 7.80 |
| HC-9      | Henson above Big Casino              | <1000  | 29      | 68.2 | 31.5             | 204      | 7.72 |
| HC-10     | Henson below Big Casino Gulch        | <1000  | 31      | 67.6 | 31.7             | 208      | 7.77 |
| HC-11     | Henson above Nellie and Owl Gulch    | <1000  | 27      | 67.1 | 32.7             | 211      | 7.82 |
| HC-12     | Henson above Ute-Ule Tailings        | <1000  | 21      | 55.5 | 32.6             | 92.2     | 7.85 |
| HC-13     | Henson below Ute-Ule Tailings        | <1000  | 20      | 56.5 | 33.0             | 193      | 7.78 |
| HC-13 DUP | Henson below Ute-Ule Tailings        | <1000  | 21      | 55.9 | 32.9             |          |      |
| HC-14     | Henson below Ute-Ule                 | <1000  | 48      | 56.5 | 32.8             | 184      | 7.84 |
| HC-15     | Henson above Alpine                  | <1000  | 65      | 56.4 | 33.4             | 276      | 7.71 |
| HC-16     | Henson below Alpine                  | <1000  | 64      | 58.2 | 30.2             | 190      | 7.77 |
| HC-17     | Henson below Pelican                 | <1000  | 78      | 58.5 | 30.5             | 187      | 7.76 |
| HC-18     | Henson above Lake Fork               | <1000  | 79      | 58.0 | 30.6             | 187      | 7.62 |
| PG-1      | Palmetto Gulch Headwaters            | <1000  | 13      | 67.7 | 74.0             | 277      | 6.88 |
| PG-2      | Palmetto below Sara Woods            | <1000  | 716     | 188  | 11.7             | 427      | 6.40 |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 1310   | 3690    | 440  | <5.00            | 800      | 4.96 |
| PG-3      | South Trib to Palmetto               | <1000  | 596     | 187  | 19.8             | 425      | 7.55 |
| PG-4      | Palmetto Trib below Wyoming          | <1000  | 247     | 104  | 35.3             | 282      | 6.76 |
| PG-5      | Below Confluence of PG-3 and PG-4    | <1000  | 149     | 143  | 30.0             | 346      | 7.66 |
| PG-6      | Palmetto below Roy Pray              | 1180   | 3590    | 417  | <5.00            | 755      | 4.79 |
| PG-7      | Palmetto below Hough                 | 1470   | 89      | 96.2 | 27.0             | 261      | 6.70 |
| PG-7A     | Palmetto below Palmetto Waste Pile   | 1280   | 32      | 65.7 | 33.2             | 201      | 7.98 |
| PG-8      | Palmetto below Palmetto Mine         | 1020   | 18      | 55.7 | <5.00            | 194      | 7.36 |
| PG-9      | Palmetto below Tributary Confluence  | <1000  | 985     | 175  | 19.1             | 408      | 7.13 |
| PG-10     | Palmetto above Henson                | <1000  | 642     | 154  | 24.6             | 387      | 7.30 |
|           |                                      |        |         |      |                  |          |      |

|           |                                         | Tot. K | Tot. Zn | SO4  | Total Alkalinity | Cond.    | рН   |
|-----------|-----------------------------------------|--------|---------|------|------------------|----------|------|
| Site #    | Description                             | ug/l   | ug/l    | mg/l | mg/l             | umhos/cm | s.u. |
| PG-10 DUP | Palmetto above Henson                   | <1000  | 691     | 154  | 24.6             |          |      |
| RC        | Redcloud Gulch                          | <1000  | 124     | 123  | 39.3             | 320      | 7.61 |
| SCG       | Schafer Gulch                           | <1000  | 135     | 89.0 | 14.7             | 218      | 7.57 |
| BGO       | Below Golconda                          | <1000  | 746     | 76.4 | <5.00            | 174      | 5.70 |
| NFHC-1    | North Fork Henson Headwaters            | <1000  | 12      | 5.2  | 49.1             | 103      | 7.80 |
| NFHC-2    | North Fork Henson above Yellowstone     | <1000  | 26      | 64.6 | 34.2             | 211      | 6.86 |
| NFHC-3    | North Fork Henson above Henson          | <1000  | 38      | 64.1 | 37.6             | 220      | 7.77 |
| MHC       | Matterhorn Creek                        | <1000  | 101     | 170  | <5.00            | 243      | 5.57 |
| YG        | Yellowstone Gulch                       | <1000  | 533     | 25.8 | 81.5             | 238      | 6.11 |
| LSG       | Lee Smelter Gulch                       | 1130   | 169     | 177  | <5.00            | 356      | 5.85 |
| EPC       | El Paso Creek                           | 1160   | 12      | 30.0 | 15.7             | 104      | 7.76 |
| BCG-1     | Big Casino Gulch above Pride of America | <1000  | 917     | 71.3 | 49.1             | 267      | 7.75 |
| BCG-2     | Big Casino Gulch below Pride of America | <1000  | 2060    | 77.5 | 40.8             | 242      | 7.46 |
| NC        | Nellie Creek                            | <1000  | <10     | 2.4  | 29.8             | 71.0     | 7.75 |
| OG        | Owl Gulch                               | <1000  | <10     | 64.8 | 29.2             | 200      | 7.27 |
| AG        | Alpine Gulch                            | 1400   | 26      | 84.4 | <5.00            | 194      | 6.99 |
| DM-1      | Hough Mine                              | 1270   | 3870    | 202  | <5.00            | 465      | 3.89 |
| DM-3      | Roy Pray Mine                           | 3870   | 7480    | 1400 | 81.8             | 2120     | 6.22 |
| DM-4      | Wyoming Mine                            | 1210   | 2020    | 135  | <5.00            | 299      | 5.82 |
| DM-5      | Palmetto Mine                           | 1070   | 43      | 73.1 | 35.7             | 218      | 6.99 |
| DM-5 DUP  | Palmetto Mine                           | 1130   | 44      | 73.2 | 35.6             |          |      |
| DM-6      | BLM Adit below Confluence               | <1000  | <10     | 7.0  | 83.8             | 168      | 7.61 |
| DM-7      | Chicago Tunnel                          | 1610   | 750     | 96.6 | 67.2             | 322      | 6.94 |
| DM-7 DUP  | Chicago Tunnel                          | 1640   | 747     | 97.1 | 67.3             |          |      |
| DM-8      | Highland Chief Mine                     | <1000  | 54      | 44.6 | 88.9             | 256      | 7.86 |
| DM-9      | Moro Tunnel                             | <1000  | <10     | 196  | 93.3             | 551      | 7.35 |
| DM-10     | Vulcan Mine                             | <1000  | 73      | 178  | 104              | 527      | 7.34 |
| DM-11     | Lucky Strike Mine                       | <1000  | <10     | 818  | 98.5             | 1500     | 7.40 |
| DM-14     | Pride of America Mine                   | <1000  | 21500   | 124  | 30.9             | 314      | 7.25 |
| DM-15     | Pelican Mine                            | 3360   | 199     | 366  | 130              | 935      | 7.30 |
| DM-18     | Brown Adit                              | 1910   | 36      | 34.7 | 145              |          |      |
| BL1       | Blank                                   | <1000  | <10     | <1.0 | <5.00            |          |      |

# **APPENDIX 4**

# Low-Flow Loading Data

|           |                                      | Sample    | Flow       | Diss. Al | Diss. As | Diss. Cd | Diss. Ca    |
|-----------|--------------------------------------|-----------|------------|----------|----------|----------|-------------|
| Site #    | Description                          | Date      | cfs        | g/day    | g/day    | g/day    | g/day       |
| HC-1      | Henson Headwaters                    | 9/20/2005 | 0.813      | BDL      | BDL      | BDL      | 37,991.5    |
| HC-2      | Henson below Palmetto                | 9/20/2005 | 1.084      | BDL      | BDL      | 2.7      | 83,806.8    |
| HC-3      | Henson below Redcloud                | 9/14/2005 | 2.326      | BDL      | BDL      | BDL      | 182,674.4   |
| HC-3      | Henson below Redcloud                | 9/20/2005 | 1.534      | BDL      | BDL      | BDL      | 121,224.6   |
| HC-4      | Henson below Schafer                 | 9/14/2005 | 3.22       | BDL      | BDL      | BDL      | 281,246.5   |
| HC-5      | Henson above Hanna Mill              | 9/14/2005 | 10.393     | BDL      | BDL      | BDL      | 976,416.5   |
| HC-5      | Henson above Hanna Mill              | 9/20/2005 | 6.996      | BDL      | BDL      | BDL      | 602,497.8   |
| HC-6      | Henson above North Fork              | 9/14/2005 | 9.062      | BDL      | BDL      | BDL      | 751,599.9   |
| HC-7      | Henson above Lee Smelter             | 9/14/2005 | 22.604     | BDL      | BDL      | BDL      | 1,836,057.8 |
| HC-8      | Henson above Copper                  | 9/14/2005 | 17.331     | BDL      | BDL      | BDL      | 1,458,629.6 |
| HC-9      | Henson above Big Casino              | 9/14/2005 | 24.718     | BDL      | BDL      | BDL      | 2,104,532.0 |
| HC-10     | Henson below Big Casino Gulch        | 9/14/2005 | 27.674     | BDL      | BDL      | BDL      | 2,302,045.1 |
| HC-11     | Henson above Nellie and Owl Gulch    | 9/14/2005 | 31.01      | BDL      | BDL      | BDL      | 2,526,439.9 |
| HC-12     | Henson above Ute-Ule Tailings        | 9/14/2005 | 31.1       | 8,065.5  | BDL      | BDL      | 2,335,940.3 |
| HC-13     | Henson below Ute-Ule Tailings        | 9/14/2005 | 31.371     | BDL      | BDL      | BDL      | 2,195,115.5 |
| HC-13 DUP | Henson below Ute-Ule Tailings        | 9/14/2005 | 31.371     | BDL      | BDL      | BDL      | 2,279,543.0 |
| HC-14     | Henson below Ute-Ule                 | 9/14/2005 | 36.008     | BDL      | BDL      | BDL      | 2,686,963.8 |
| HC-15     | Henson above Alpine                  | 9/14/2005 | 35.402     | BDL      | BDL      | BDL      | 2,485,837.1 |
| HC-16     | Henson below Alpine                  | 9/14/2005 | 35.225     | BDL      | BDL      | BDL      | 2,671,626.0 |
| HC-17     | Henson below Pelican                 | 9/14/2005 | 35.843     | BDL      | BDL      | BDL      | 2,630,804.5 |
| HC-18     | Henson above Lake Fork               | 9/14/2005 | 36.52      | BDL      | BDL      | BDL      | 2,760,909.8 |
| PG-1      | Palmetto Gulch Headwaters            | 9/20/2005 | 0.00253575 | BDL      | BDL      | BDL      | 284.8       |
| PG-2      | Palmetto below Sara Woods            | 9/20/2005 | 0.013248   | BDL      | BDL      | 0.2      | 2,242.9     |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 9/20/2005 | 0.040572   | 342.5    | BDL      | 2.3      | 12,507.2    |
| PG-3      | South Trib to Palmetto               | 9/20/2005 | 0.02205    | BDL      | BDL      | 0.1      | 3,970.5     |
| PG-4      | Palmetto Trib below Wyoming          | 9/20/2005 | 0.00245    | BDL      | BDL      | BDL      | 282.9       |
| PG-5      | Below Confluence of PG-3 and PG-4    | 9/20/2005 | 0.052992   | BDL      | BDL      | BDL      | 7,714.2     |
| PG-6      | Palmetto below Roy Pray              | 9/20/2005 | 0.091287   | 1,190.4  | BDL      | 4.9      | 27,247.8    |
| PG-7      | Palmetto below Hough                 | 9/20/2005 | 0.040572   | BDL      | BDL      | 0.1      | 4,208.8     |
| PG-7A     | Palmetto below Palmetto Waste Pile   | 9/20/2005 | 0.0828     | BDL      | BDL      | BDL      | 6,745.9     |
| PG-8      | Palmetto below Palmetto Mine         | 9/20/2005 | 0.119232   | BDL      | BDL      | BDL      | 9,276.5     |
| PG-9      | Palmetto below Tributary Confluence  | 9/20/2005 | 0.283383   | BDL      | BDL      | 4.2      | 44,372.8    |
| PG-10     | Palmetto above Henson                | 9/20/2005 | 0.381      | BDL      | BDL      | 3.7      | 57,793.6    |

|           |                                         | Sample    | Flow     | Diss. Al | Diss. As | Diss. Cd | Diss. Ca  |
|-----------|-----------------------------------------|-----------|----------|----------|----------|----------|-----------|
| Site #    | Description                             | Date      | cfs      | g/day    | g/day    | g/day    | g/day     |
| PG-10 DUP | Palmetto above Henson                   | 9/20/2005 | 0.381    | BDL      | BDL      | 3.7      | 58,446.1  |
| RC        | Redcloud Gulch                          | 9/20/2005 | 0.0406   | BDL      | BDL      | BDL      | 5,403.7   |
| SCG       | Schafer Gulch                           | 9/14/2005 | 1.77     | BDL      | BDL      | BDL      | 151,999.9 |
| BGO       | Below Golconda                          | 9/19/2005 | 0.1058   | BDL      | BDL      | 0.5      | 5,617.1   |
| NFHC-1    | North Fork Henson Headwaters            | 9/14/2005 | 5.639    | BDL      | BDL      | BDL      | 240,057.0 |
| NFHC-2    | North Fork Henson above Yellowstone     | 9/14/2005 | 9.885    | BDL      | BDL      | BDL      | 708,610.0 |
| NFHC-3    | North Fork Henson above Henson          | 9/14/2005 | 10.877   | BDL      | BDL      | BDL      | 822,300.5 |
| MHC       | Matterhorn Creek                        | 9/14/2005 | 2.505    | 10,112.4 | BDL      | BDL      | 296,630.7 |
| YG        | Yellowstone Gulch                       | 9/14/2005 | 0.278501 | BDL      | BDL      | 2.7      | 24,597.8  |
| LSG       | Lee Smelter Gulch                       | 9/14/2005 | 0.689    | 3,860.3  | BDL      | BDL      | 105,356.7 |
| EPC       | El Paso Creek                           | 9/14/2005 |          | BDL      | BDL      | BDL      | 0.0       |
| BCG-1     | Big Casino Gulch above Pride of America | 9/14/2005 | 0.0128   | BDL      | BDL      | 0.3      | 1,331.0   |
| BCG-2     | Big Casino Gulch below Pride of America | 9/14/2005 | 0.016    | BDL      | BDL      | 1.1      | 1,659.8   |
| NC        | Nellie Creek                            | 9/14/2005 | 4.543    | BDL      | BDL      | BDL      | 83,472.9  |
| OG        | Owl Gulch                               | 9/14/2005 | 0.744    | BDL      | BDL      | BDL      | 63,527.4  |
| AG        | Alpine Gulch                            | 9/14/2005 | 3.518    | 1,265.2  | BDL      | BDL      | 239,278.5 |
| DM-5      | Palmetto Mine                           | 9/19/2005 | 0.000654 | BDL      | BDL      | BDL      | 58.1      |
| DM-5 DUP  | Palmetto Mine                           | 9/19/2005 | 0.000654 | BDL      | BDL      | BDL      | 59.5      |
| DM-1      | Hough Mine                              | 9/20/2005 | 0.003312 | 53.4     | BDL      | 0.2      | 356.5     |
| DM-3      | Roy Pray Mine                           | 9/20/2005 | 0.008829 | 20.0     | BDL      | 0.3      | 8,705.2   |
| DM-4      | Wyoming Mine                            | 9/20/2005 | 0.0098   | 7.7      | BDL      | 0.2      | 1,126.9   |
| DM-6      | BLM Adit below Confluence               | 9/20/2005 | 0.00129  | BDL      | BDL      | BDL      | 94.7      |
| DM-7      | Chicago Tunnel                          | 9/13/2005 | 0.285    | BDL      | BDL      | 3.5      | 41,000.1  |
| DM-7 DUP  | Chicago Tunnel                          | 9/13/2005 | 0.285    | BDL      | BDL      | 4.2      | 40,930.4  |
| DM-8      | Highland Chief Mine                     | 9/13/2005 | 0.029    | BDL      | BDL      | BDL      | 3,391.5   |
| DM-9      | Moro Tunnel                             | 9/13/2005 | 0.001    | BDL      | BDL      | BDL      | 274.0     |
| DM-10     | Vulcan Mine                             | 9/13/2005 | 0.083    | BDL      | BDL      | BDL      | 20,916.0  |
| DM-11     | Lucky Strike Mine                       | 9/13/2005 | 0.03     | BDL      | BDL      | BDL      | 25,469.1  |
| DM-14     | Pride of America Mine                   | 9/14/2005 | 0.0032   | BDL      | BDL      | 1.4      | 329.6     |
| DM-15     | Pelican Mine                            | 9/14/2005 | 0.003342 | BDL      | BDL      | BDL      | 1,259.2   |
| DM-18     | Brown Adit                              | 9/14/2005 | 0.0022   | BDL      | BDL      | BDL      | 274.5     |
| BL1       | Blank                                   | 9/20/2005 |          | BDL      | BDL      | BDL      | 0.0       |

|           |                                      | Diss. Co | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg  | Diss. Mn | Diss. Ni | Diss. K | Diss. Na  |
|-----------|--------------------------------------|----------|----------|----------|----------|-----------|----------|----------|---------|-----------|
| Site #    | Description                          | g/day    | g/day    | g/day    | g/day    | g/day     | g/day    | g/day    | g/day   | g/day     |
| HC-1      | Henson Headwaters                    | 0.0      | BDL      | BDL      | BDL      | 4,037.8   | BDL      | BDL      | BDL     | 5,251.2   |
| HC-2      | Henson below Palmetto                | 0.0      | BDL      | BDL      | BDL      | 8,778.5   | 803.6    | BDL      | BDL     | 6,577.2   |
| HC-3      | Henson below Redcloud                | BDL      | BDL      | BDL      | BDL      | 17,698.4  | 1,678.8  | BDL      | BDL     | 14,283.9  |
| HC-3      | Henson below Redcloud                | 0.0      | BDL      | BDL      | BDL      | 12,535.3  | 848.2    | BDL      | BDL     | 9,345.2   |
| HC-4      | Henson below Schafer                 | BDL      | BDL      | BDL      | BDL      | 31,669.8  | 1,071.4  | BDL      | BDL     | 16,386.3  |
| HC-5      | Henson above Hanna Mill              | BDL      | BDL      | BDL      | BDL      | 80,605.2  | 127.1    | BDL      | BDL     | 44,752.4  |
| HC-5      | Henson above Hanna Mill              | 0.0      | BDL      | BDL      | BDL      | 46,899.0  | 51.3     | BDL      | BDL     | 28,755.6  |
| HC-6      | Henson above North Fork              | BDL      | BDL      | BDL      | BDL      | 59,640.2  | 66.5     | BDL      | BDL     | 37,912.6  |
| HC-7      | Henson above Lee Smelter             | BDL      | BDL      | BDL      | BDL      | 186,370.9 | 3,097.0  | BDL      | BDL     | 159,272.5 |
| HC-8      | Henson above Copper                  | BDL      | BDL      | BDL      | BDL      | 144,590.9 | 2,925.7  | BDL      | BDL     | 115,333.5 |
| HC-9      | Henson above Big Casino              | BDL      | BDL      | BDL      | BDL      | 205,615.2 | 4,112.3  | BDL      | BDL     | 184,448.9 |
| HC-10     | Henson below Big Casino Gulch        | BDL      | BDL      | BDL      | BDL      | 220,725.5 | 4,401.0  | BDL      | BDL     | 194,996.8 |
| HC-11     | Henson above Nellie and Owl Gulch    | BDL      | BDL      | BDL      | BDL      | 259,472.2 | 4,476.3  | BDL      | BDL     | 228,365.9 |
| HC-12     | Henson above Ute-Ule Tailings        | BDL      | BDL      | BDL      | BDL      | 232,072.2 | 3,043.6  | BDL      | BDL     | 235,876.7 |
| HC-13     | Henson below Ute-Ule Tailings        | BDL      | BDL      | BDL      | BDL      | 216,441.5 | 2,839.8  | BDL      | BDL     | 231,024.4 |
| HC-13 DUP | Henson below Ute-Ule Tailings        | BDL      | BDL      | BDL      | BDL      | 232,559.4 | 2,993.3  | BDL      | BDL     | 241,002.2 |
| HC-14     | Henson below Ute-Ule                 | BDL      | BDL      | BDL      | BDL      | 263,410.5 | 5,197.7  | BDL      | BDL     | 271,339.3 |
| HC-15     | Henson above Alpine                  | BDL      | BDL      | BDL      | BDL      | 241,654.5 | 4,417.3  | BDL      | BDL     | 270,237.3 |
| HC-16     | Henson below Alpine                  | BDL      | BDL      | BDL      | BDL      | 276,642.6 | 4,653.8  | BDL      | BDL     | 274,057.1 |
| HC-17     | Henson below Pelican                 | BDL      | BDL      | BDL      | BDL      | 276,234.5 | 4,297.0  | BDL      | BDL     | 278,865.3 |
| HC-18     | Henson above Lake Fork               | BDL      | BDL      | BDL      | BDL      | 290,387.0 | 3,931.4  | BDL      | BDL     | 284,132.5 |
| PG-1      | Palmetto Gulch Headwaters            | 0.0      | BDL      | BDL      | BDL      | 20.3      | 0.0      | BDL      | BDL     | 14.8      |
| PG-2      | Palmetto below Sara Woods            | 0.0      | 2.0      | BDL      | BDL      | 260.9     | 60.6     | 0.5      | BDL     | 42.5      |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 0.0      | 32.8     | 662.1    | 1.4      | 1,538.6   | 657.1    | 4.5      | 136.0   | 149.9     |
| PG-3      | South Trib to Palmetto               | 0.0      | BDL      | BDL      | BDL      | 333.4     | 20.9     | 0.2      | BDL     | 119.8     |
| PG-4      | Palmetto Trib below Wyoming          | 0.0      | BDL      | BDL      | BDL      | 18.3      | BDL      | BDL      | BDL     | 10.1      |
| PG-5      | Below Confluence of PG-3 and PG-4    | 0.0      | BDL      | BDL      | BDL      | 584.7     | 7.0      | BDL      | BDL     | 263.2     |
| PG-6      | Palmetto below Roy Pray              | 0.0      | 73.0     | 236.7    | BDL      | 3,752.2   | 1,462.9  | 9.2      | 285.9   | 335.0     |
| PG-7      | Palmetto below Hough                 | 0.0      | BDL      | BDL      | BDL      | 413.9     | 8.0      | BDL      | 148.9   | 159.8     |
| PG-7A     | Palmetto below Palmetto Waste Pile   | 0.0      | BDL      | BDL      | BDL      | 733.3     | 6.1      | BDL      | 239.0   | 330.2     |
| PG-8      | Palmetto below Palmetto Mine         | 0.0      | BDL      | BDL      | BDL      | 883.9     | 12.3     | BDL      | BDL     | 580.5     |
| PG-9      | Palmetto below Tributary Confluence  | 0.0      | BDL      | 93.6     | BDL      | 6,087.4   | 1,400.5  | 7.6      | BDL     | 1,338.1   |
| PG-10     | Palmetto above Henson                | 0.0      | BDL      | BDL      | BDL      | 6,562.4   | 1,072.0  | 5.6      | BDL     | 1,845.7   |

|           |                                         | Diss. Co | Diss. Cu | Diss. Fe | Diss. Pb | Diss. Mg  | Diss. Mn | Diss. Ni | Diss. K  | Diss. Na  |
|-----------|-----------------------------------------|----------|----------|----------|----------|-----------|----------|----------|----------|-----------|
| Site #    | Description                             | g/day    | g/day    | g/day    | g/day    | g/day     | g/day    | g/day    | g/day    | g/day     |
| PG-10 DUP | Palmetto above Henson                   | 0.0      | BDL      | BDL      | BDL      | 6,403.9   | 1,044.0  | 6.5      | BDL      | 1,845.7   |
| RC        | Redcloud Gulch                          | 0.0      | BDL      | BDL      | BDL      | 368.5     | 4.6      | BDL      | BDL      | 300.0     |
| SCG       | Schafer Gulch                           | BDL      | BDL      | BDL      | BDL      | 19,227.3  | BDL      | BDL      | 4,676.9  | 5,456.4   |
| BGO       | Below Golconda                          | 0.0      | BDL      | BDL      | BDL      | 1,382.3   | 1.8      | BDL      | BDL      | BDL       |
| NFHC-1    | North Fork Henson Headwaters            | BDL      | BDL      | BDL      | BDL      | 24,833.5  | 41.4     | BDL      | BDL      | 56,151.3  |
| NFHC-2    | North Fork Henson above Yellowstone     | 72.6     | BDL      | 7,642.3  | BDL      | 110,765.7 | 4,183.9  | BDL      | BDL      | 102,059.2 |
| NFHC-3    | North Fork Henson above Henson          | 53.2     | BDL      | BDL      | BDL      | 121,349.2 | 3,725.6  | BDL      | BDL      | 113,365.7 |
| MHC       | Matterhorn Creek                        | 85.8     | BDL      | 18,202.3 | BDL      | 57,855.2  | 3,536.3  | 36.8     | 6,741.6  | 29,785.6  |
| YG        | Yellowstone Gulch                       | BDL      | BDL      | BDL      | BDL      | 2,337.1   | BDL      | BDL      | BDL      | 2,589.2   |
| LSG       | Lee Smelter Gulch                       | 5.1      | BDL      | BDL      | BDL      | 9,996.2   | 1,001.3  | 18.5     | 2,073.4  | 4,028.8   |
| EPC       | El Paso Creek                           | BDL      | BDL      | BDL      | BDL      | 0.0       | 0.0      | BDL      | 0.0      | 0.0       |
| BCG-1     | Big Casino Gulch above Pride of America | BDL      | BDL      | BDL      | 5.2      | 83.0      | BDL      | BDL      | BDL      | 78.6      |
| BCG-2     | Big Casino Gulch below Pride of America | BDL      | BDL      | BDL      | BDL      | 103.0     | BDL      | BDL      | BDL      | 101.8     |
| NC        | Nellie Creek                            | BDL      | BDL      | BDL      | BDL      | 11,781.8  | 44.5     | BDL      | 11,892.9 | 37,123.8  |
| OG        | Owl Gulch                               | BDL      | BDL      | BDL      | BDL      | 4,150.2   | BDL      | BDL      | BDL      | 3,221.9   |
| AG        | Alpine Gulch                            | 25.8     | BDL      | 4,897.5  | BDL      | 33,481.8  | 464.8    | BDL      | 12,996.8 | 27,715.0  |
| DM-5      | Palmetto Mine                           | 0.0      | BDL      | BDL      | BDL      | 5.4       | 0.2      | BDL      | 1.7      | 3.4       |
| DM-5 DUP  | Palmetto Mine                           | 0.0      | BDL      | BDL      | BDL      | 5.5       | 0.2      | BDL      | BDL      | 3.3       |
| DM-1      | Hough Mine                              | 0.0      | 49.2     | 26.7     | 0.1      | 61.5      | 27.5     | 0.2      | 9.4      | 32.8      |
| DM-3      | Roy Pray Mine                           | 0.0      | BDL      | 1,659.0  | 0.3      | 967.7     | 598.3    | 1.9      | 80.8     | 75.0      |
| DM-4      | Wyoming Mine                            | 0.0      | 1.0      | 30.5     | 0.2      | 82.7      | 13.2     | BDL      | 27.1     | 67.6      |
| DM-6      | BLM Adit below Confluence               | 0.0      | BDL      | BDL      | BDL      | 4.6       | BDL      | BDL      | BDL      | 14.3      |
| DM-7      | Chicago Tunnel                          | 2.8      | BDL      | 381.4    | BDL      | 3,479.4   | 1,255.1  | BDL      | 1,220.2  | 2,335.9   |
| DM-7 DUP  | Chicago Tunnel                          | 2.8      | BDL      | 386.3    | BDL      | 3,639.8   | 1,303.9  | BDL      | 1,185.4  | 2,280.1   |
| DM-8      | Highland Chief Mine                     | BDL      | BDL      | BDL      | BDL      | 177.4     | 0.3      | BDL      | BDL      | 275.3     |
| DM-9      | Moro Tunnel                             | BDL      | BDL      | BDL      | BDL      | 23.4      | 3.4      | BDL      | 2.5      | 20.6      |
| DM-10     | Vulcan Mine                             | 0.4      | BDL      | 225.4    | BDL      | 1,965.7   | 165.1    | BDL      | BDL      | 1,025.5   |
| DM-11     | Lucky Strike Mine                       | BDL      | BDL      | BDL      | BDL      | 594.5     | 24.7     | BDL      | BDL      | 924.8     |
| DM-14     | Pride of America Mine                   | 0.0      | 0.3      | BDL      | BDL      | 21.6      | 6.9      | BDL      | BDL      | 20.5      |
| DM-15     | Pelican Mine                            | BDL      | BDL      | BDL      | BDL      | 59.0      | 2.1      | BDL      | 30.1     | 320.5     |
| DM-18     | Brown Adit                              | BDL      | BDL      | BDL      | BDL      | 35.1      | 0.0      | BDL      | 11.2     | 119.5     |
| BL1       | Blank                                   | 0.0      | BDL      | BDL      | BDL      | BDL       | BDL      | BDL      | BDL      | BDL       |

|           |                                      | Diss. Zn | Tot. Al  | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe  | Tot. Pb | Tot. Mg   | Tot. Mn |
|-----------|--------------------------------------|----------|----------|---------|---------|---------|----------|---------|-----------|---------|
| Site #    | Description                          | g/day    | g/day    | g/day   | g/day   | g/day   | g/day    | g/day   | g/day     | g/day   |
| HC-1      | Henson Headwaters                    | BDL      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 3,779.3   | BDL     |
| HC-2      | Henson below Palmetto                | 527.8    | 366.0    | BDL     | 2.7     | BDL     | BDL      | BDL     | 8,248.1   | 763.8   |
| HC-3      | Henson below Redcloud                | 762.6    | 2,293.4  | BDL     | BDL     | 113.8   | 1,229.2  | BDL     | 18,096.7  | 1,707.2 |
| HC-3      | Henson below Redcloud                | 596.7    | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 11,371.8  | 780.6   |
| HC-4      | Henson below Schafer                 | 953.2    | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 30,330.5  | 1,032.0 |
| HC-5      | Henson above Hanna Mill              | 1,017.1  | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 73,231.2  | 152.6   |
| HC-5      | Henson above Hanna Mill              | 616.2    | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 45,358.5  | 85.6    |
| HC-6      | Henson above North Fork              | 709.5    | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 64,739.6  | 88.7    |
| HC-7      | Henson above Lee Smelter             | 1,161.4  | 35,891.6 | BDL     | BDL     | BDL     | 19,853.8 | BDL     | 203,514.8 | 3,428.8 |
| HC-8      | Henson above Copper                  | 932.8    | 29,851.0 | BDL     | BDL     | BDL     | 14,289.5 | BDL     | 161,975.7 | 3,349.8 |
| HC-9      | Henson above Big Casino              | 1,270.0  | 36,406.0 | BDL     | BDL     | BDL     | 16,207.3 | BDL     | 211,662.7 | 4,293.7 |
| HC-10     | Henson below Big Casino Gulch        | 1,557.3  | 41,504.5 | BDL     | BDL     | BDL     | 17,603.9 | BDL     | 247,131.3 | 5,078.0 |
| HC-11     | Henson above Nellie and Owl Gulch    | 1,745.0  | 38,465.6 | BDL     | BDL     | BDL     | 16,008.4 | BDL     | 265,541.7 | 4,703.9 |
| HC-12     | Henson above Ute-Ule Tailings        | 1,369.6  | 28,533.5 | BDL     | BDL     | BDL     | 12,478.6 | BDL     | 232,833.1 | 3,271.8 |
| HC-13     | Henson below Ute-Ule Tailings        | 1,228.0  | 27,247.1 | BDL     | BDL     | BDL     | 11,666.3 | BDL     | 231,791.9 | 3,146.8 |
| HC-13 DUP | Henson below Ute-Ule Tailings        | 1,228.0  | 29,089.1 | BDL     | BDL     | BDL     | 12,587.4 | BDL     | 236,397.0 | 3,300.3 |
| HC-14     | Henson below Ute-Ule                 | 3,964.4  | 28,807.8 | BDL     | BDL     | BDL     | 13,302.7 | BDL     | 271,339.3 | 5,550.1 |
| HC-15     | Henson above Alpine                  | 5,456.7  | 24,425.3 | BDL     | BDL     | BDL     | 14,118.2 | BDL     | 267,638.9 | 5,023.6 |
| HC-16     | Henson below Alpine                  | 5,343.3  | 39,384.9 | BDL     | BDL     | BDL     | 15,512.7 | BDL     | 271,471.7 | 4,826.2 |
| HC-17     | Henson below Pelican                 | 5,963.2  | 36,129.7 | BDL     | BDL     | BDL     | 14,644.8 | BDL     | 289,388.5 | 4,647.8 |
| HC-18     | Henson above Lake Fork               | 6,790.6  | 35,025.1 | BDL     | BDL     | BDL     | 13,134.4 | BDL     | 282,345.5 | 4,110.1 |
| PG-1      | Palmetto Gulch Headwaters            | 0.1      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 20.5      | 0.0     |
| PG-2      | Palmetto below Sara Woods            | 23.8     | 163.7    | BDL     | 0.2     | 5.2     | 4.0      | BDL     | 228.8     | 53.5    |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 352.4    | 549.9    | BDL     | 2.6     | 33.2    | 701.8    | 1.3     | 1,747.0   | 734.5   |
| PG-3      | South Trib to Palmetto               | 32.0     | 14.0     | BDL     | 0.1     | BDL     | BDL      | BDL     | 332.9     | 20.9    |
| PG-4      | Palmetto Trib below Wyoming          | 1.5      | BDL      | BDL     | 0.0     | BDL     | BDL      | BDL     | 18.3      | BDL     |
| PG-5      | Below Confluence of PG-3 and PG-4    | 17.9     | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 569.2     | 6.9     |
| PG-6      | Palmetto below Roy Pray              | 795.1    | 1,290.9  | BDL     | 5.4     | 72.4    | 306.0    | BDL     | 3,841.5   | 1,514.3 |
| PG-7      | Palmetto below Hough                 | 10.1     | BDL      | BDL     | 0.1     | BDL     | BDL      | BDL     | 430.8     | 8.4     |
| PG-7A     | Palmetto below Palmetto Waste Pile   | 6.3      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 660.4     | 5.9     |
| PG-8      | Palmetto below Palmetto Mine         | 7.3      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 907.2     | 12.8    |
| PG-9      | Palmetto below Tributary Confluence  | 721.1    | 970.7    | BDL     | 4.2     | 54.8    | 239.2    | BDL     | 4,867.1   | 1,144.0 |
| PG-10     | Palmetto above Henson                | 653.4    | 471.7    | BDL     | 3.7     | 33.6    | 124.9    | BDL     | 5,602.2   | 941.5   |

|           |                                         | Diss. Zn | Tot. Al  | Tot. As | Tot. Cd | Tot. Cu | Tot. Fe  | Tot. Pb | Tot. Mg   | Tot. Mn |
|-----------|-----------------------------------------|----------|----------|---------|---------|---------|----------|---------|-----------|---------|
| Site #    | Description                             | g/day    | g/day    | g/day   | g/day   | g/day   | g/day    | g/day   | g/day     | g/day   |
| PG-10 DUP | Palmetto above Henson                   | 656.2    | 462.3    | BDL     | 3.7     | 29.8    | 135.2    | BDL     | 6,198.8   | 1,025.4 |
| RC        | Redcloud Gulch                          | 13.0     | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 371.5     | 5.0     |
| SCG       | Schafer Gulch                           | 601.9    | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 20,829.6  | BDL     |
| BGO       | Below Golconda                          | 189.0    | BDL      | BDL     | 0.5     | BDL     | BDL      | BDL     | 1,413.3   | 1.6     |
| NFHC-1    | North Fork Henson Headwaters            | BDL      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 24,281.6  | 82.8    |
| NFHC-2    | North Fork Henson above Yellowstone     | 290.2    | 51,513.3 | BDL     | BDL     | BDL     | 30,230.8 | BDL     | 117,779.2 | 4,425.8 |
| NFHC-3    | North Fork Henson above Henson          | 399.2    | 46,038.2 | BDL     | BDL     | BDL     | 25,174.6 | BDL     | 125,074.8 | 3,911.9 |
| MHC       | Matterhorn Creek                        | 612.9    | 42,594.7 | BDL     | BDL     | BDL     | 28,621.2 | BDL     | 62,513.1  | 3,720.1 |
| YG        | Yellowstone Gulch                       | 383.6    | BDL      | BDL     | 2.7     | BDL     | BDL      | BDL     | 2,296.3   | 2.7     |
| LSG       | Lee Smelter Gulch                       | 316.9    | 4,484.0  | BDL     | BDL     | BDL     | BDL      | BDL     | 10,266.0  | 1,036.7 |
| EPC       | El Paso Creek                           | 0.0      | 0.0      | BDL     | BDL     | BDL     | BDL      | BDL     | 0.0       | 0.0     |
| BCG-1     | Big Casino Gulch above Pride of America | 29.2     | BDL      | BDL     | 0.3     | BDL     | BDL      | 5.8     | 93.3      | BDL     |
| BCG-2     | Big Casino Gulch below Pride of America | 88.5     | BDL      | BDL     | 1.1     | BDL     | BDL      | BDL     | 112.7     | BDL     |
| NC        | Nellie Creek                            | BDL      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 13,004.4  | 77.8    |
| OG        | Owl Gulch                               | BDL      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 4,132.0   | BDL     |
| AG        | Alpine Gulch                            | 258.2    | 18,505.3 | BDL     | BDL     | BDL     | 7,763.6  | BDL     | 33,051.4  | 464.8   |
| DM-5      | Palmetto Mine                           | 0.1      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 5.3       | 0.2     |
| DM-5 DUP  | Palmetto Mine                           | 0.1      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 5.0       | 0.2     |
| DM-1      | Hough Mine                              | 29.2     | 54.2     | BDL     | 0.3     | 49.3    | 30.5     | 0.1     | 68.1      | 29.3    |
| DM-3      | Roy Pray Mine                           | 153.6    | 22.0     | BDL     | 0.3     | BDL     | 1,790.7  | 0.3     | 1,008.8   | 611.3   |
| DM-4      | Wyoming Mine                            | 49.4     | 11.1     | BDL     | 0.2     | 1.2     | 79.4     | 2.3     | 80.1      | 12.9    |
| DM-6      | BLM Adit below Confluence               | 0.1      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 4.9       | BDL     |
| DM-7      | Chicago Tunnel                          | 573.9    | 170.8    | BDL     | 3.5     | BDL     | 1,743.2  | BDL     | 3,395.8   | 1,262.1 |
| DM-7 DUP  | Chicago Tunnel                          | 589.9    | 172.9    | BDL     | 3.5     | BDL     | 1,750.2  | BDL     | 3,381.8   | 1,262.1 |
| DM-8      | Highland Chief Mine                     | 4.1      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 188.0     | 0.4     |
| DM-9      | Moro Tunnel                             | BDL      | BDL      | BDL     | BDL     | BDL     | 0.6      | BDL     | 23.3      | 5.0     |
| DM-10     | Vulcan Mine                             | 13.6     | BDL      | BDL     | BDL     | BDL     | 209.2    | BDL     | 1,939.3   | 164.7   |
| DM-11     | Lucky Strike Mine                       | BDL      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 575.4     | 25.0    |
| DM-14     | Pride of America Mine                   | 146.4    | 5.7      | BDL     | 1.6     | 4.3     | 27.7     | 1.3     | 24.3      | 7.8     |
| DM-15     | Pelican Mine                            | 1.7      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 58.8      | 2.1     |
| DM-18     | Brown Adit                              | 0.2      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | 36.7      | 0.0     |
| BL1       | Blank                                   | BDL      | BDL      | BDL     | BDL     | BDL     | BDL      | BDL     | BDL       | BDL     |

|           |                                      | Tot.<br>Ni | Tot. K | Tot. Zn | SO4         | Total Alkalinity |
|-----------|--------------------------------------|------------|--------|---------|-------------|------------------|
| Site #    | Description                          | g/day      | g/day  | g/day   | g/day       | g/day            |
| HC-1      | Henson Headwaters                    | BDL        | BDL    | BDL     | 19,493.0    | 103,432.5        |
| HC-2      | Henson below Palmetto                | BDL        | BDL    | 503.9   | 142,153.3   | 116,693.0        |
| HC-3      | Henson below Redcloud                | BDL        | BDL    | 927.6   | 328,358.7   | 218,526.4        |
| HC-3      | Henson below Redcloud                | BDL        | BDL    | 544.2   | 212,424.6   | 162,883.9        |
| HC-4      | Henson below Schafer                 | BDL        | BDL    | 921.7   | 564,856.3   | 231,614.7        |
| HC-5      | Henson above Hanna Mill              | BDL        | BDL    | 813.7   | 1,655,331.1 | 788,252.9        |
| HC-5      | Henson above Hanna Mill              | BDL        | BDL    | 582.0   | 1,186,167.5 | 581,958.1        |
| HC-6      | Henson above North Fork              | BDL        | BDL    | 709.5   | 1,454,423.5 | 713,909.1        |
| HC-7      | Henson above Lee Smelter             | BDL        | BDL    | 1,548.5 | 3,810,373.0 | 1,957,724.3      |
| HC-8      | Henson above Copper                  | BDL        | BDL    | 1,399.3 | 3,074,146.8 | 1,437,428.6      |
| HC-9      | Henson above Big Casino              | BDL        | BDL    | 1,753.8 | 4,124,399.0 | 1,904,964.4      |
| HC-10     | Henson below Big Casino Gulch        | BDL        | BDL    | 2,098.9 | 4,577,007.3 | 2,146,318.5      |
| HC-11     | Henson above Nellie and Owl Gulch    | BDL        | BDL    | 2,048.5 | 5,090,814.3 | 2,480,918.5      |
| HC-12     | Henson above Ute Ulay Tailings       | BDL        | BDL    | 1,597.9 | 4,222,953.9 | 2,480,509.9      |
| HC-13     | Henson below Ute-Ule Tailings        | BDL        | BDL    | 1,535.0 | 4,336,504.3 | 2,532,825.5      |
| HC-13 DUP | Henson below Ute-Ule Tailings        | BDL        | BDL    | 1,611.8 | 4,290,452.9 | 2,525,150.3      |
| HC-14     | Henson below Ute-Ule                 | BDL        | BDL    | 4,228.7 | 4,977,490.3 | 2,889,587.3      |
| HC-15     | Henson above Alpine                  | BDL        | BDL    | 5,629.9 | 4,885,059.7 | 2,892,925.4      |
| HC-16     | Henson below Alpine                  | BDL        | BDL    | 5,515.6 | 5,015,762.4 | 2,602,680.8      |
| HC-17     | Henson below Pelican                 | BDL        | BDL    | 6,840.1 | 5,130,068.8 | 2,674,651.3      |
| HC-18     | Henson above Lake Fork               | BDL        | BDL    | 7,058.6 | 5,182,290.3 | 2,734,104.9      |
| PG-1      | Palmetto Gulch Headwaters            | BDL        | BDL    | 0.1     | 420.0       | 459.1            |
| PG-2      | Palmetto below Sara Woods            | 0.5        | BDL    | 23.2    | 6,093.6     | 379.2            |
| PG-2B     | Below Roy Pray (80ft from sed. pond) | 4.8        | 130.0  | 366.3   | 43,675.9    | BDL              |
| PG-3      | South Trib to Palmetto               | 0.2        | BDL    | 32.2    | 10,088.2    | 1,068.2          |
| PG-4      | Palmetto Trib below Wyoming          | BDL        | BDL    | 1.5     | 623.4       | 211.6            |
| PG-5      | Below Confluence of PG-3 and PG-4    | BDL        | BDL    | 19.3    | 18,540.0    | 3,889.5          |
| PG-6      | Palmetto below Roy Pray              | 9.8        | 263.5  | 801.8   | 93,133.9    | BDL              |
| PG-7      | Palmetto below Hough                 | BDL        | 145.9  | 8.8     | 9,549.1     | 2,680.1          |
| PG-7A     | Palmetto below Palmetto Waste Pile   | BDL        | 259.3  | 6.5     | 13,309.4    | 6,725.6          |
| PG-8      | Palmetto below Palmetto Mine         | BDL        | 297.5  | 5.3     | 16,248.4    | BDL              |
| PG-9      | Palmetto below Tributary Confluence  | 8.3        | BDL    | 682.9   | 121,331.8   | 13,242.5         |
| PG-10     | Palmetto above Henson                | 7.5        | BDL    | 598.4   | 143,551.8   | 22,931.0         |

|           |                                         | Tot.<br>Ni | Tot. K   | Tot. Zn | SO4         | Total Alkalinity |
|-----------|-----------------------------------------|------------|----------|---------|-------------|------------------|
| Site #    | Description                             | g/day      | g/day    | g/day   | g/day       | g/day            |
| PG-10 DUP | Palmetto above Henson                   | 7.5        | BDL      | 644.1   | 143,551.8   | 22,931.0         |
| RC        | Redcloud Gulch                          | BDL        | BDL      | 12.3    | 12,217.8    | 3,903.7          |
| SCG       | Schafer Gulch                           | BDL        | BDL      | 584.6   | 385,412.9   | 63,658.1         |
| BGO       | Below Golconda                          | BDL        | BDL      | 193.1   | 19,776.2    | BDL              |
| NFHC-1    | North Fork Henson Headwaters            | BDL        | BDL      | 165.6   | 71,741.2    | 677,402.1        |
| NFHC-2    | North Fork Henson above Yellowstone     | BDL        | BDL      | 628.8   | 1,562,327.8 | 827,114.7        |
| NFHC-3    | North Fork Henson above Henson          | BDL        | BDL      | 1,011.2 | 1,705,807.9 | 1,000,598.7      |
| MHC       | Matterhorn Creek                        | 30.6       | BDL      | 619.0   | 1,041,884.6 | BDL              |
| YG        | Yellowstone Gulch                       | BDL        | BDL      | 363.2   | 17,579.6    | 55,532.5         |
| LSG       | Lee Smelter Gulch                       | 15.2       | 1,904.8  | 284.9   | 298,370.2   | BDL              |
| EPC       | El Paso Creek                           | BDL        | 0.0      | 0.0     | 0.0         | 0.0              |
| BCG-1     | Big Casino Gulch above Pride of America | BDL        | BDL      | 28.7    | 2,232.9     | 1,537.6          |
| BCG-2     | Big Casino Gulch below Pride of America | BDL        | BDL      | 80.6    | 3,033.8     | 1,597.1          |
| NC        | Nellie Creek                            | BDL        | BDL      | BDL     | 26,675.8    | 331,224.1        |
| OG        | Owl Gulch                               | BDL        | BDL      | BDL     | 117,953.5   | 53,151.9         |
| AG        | Alpine Gulch                            | BDL        | 12,050.0 | 223.8   | 726,442.5   | BDL              |
| DM-5      | Palmetto Mine                           | BDL        | 1.7      | 0.1     | 117.0       | 57.1             |
| DM-5 DUP  | Palmetto Mine                           | BDL        | 1.8      | 0.1     | 117.1       | 57.0             |
| DM-1      | Hough Mine                              | 0.2        | 10.3     | 31.4    | 1,636.8     | BDL              |
| DM-3      | Roy Pray Mine                           | 1.9        | 83.6     | 161.6   | 30,241.4    | 1,767.0          |
| DM-4      | Wyoming Mine                            | BDL        | 29.0     | 48.4    | 3,236.9     | BDL              |
| DM-6      | BLM Adit below Confluence               | BDL        | BDL      | BDL     | 22.1        | 264.5            |
| DM-7      | Chicago Tunnel                          | BDL        | 1,122.6  | 523.0   | 67,357.3    | 46,857.3         |
| DM-7 DUP  | Chicago Tunnel                          | BDL        | 1,143.5  | 520.9   | 67,706.0    | 46,927.0         |
| DM-8      | Highland Chief Mine                     | BDL        | BDL      | 3.8     | 3,164.4     | 6,307.6          |
| DM-9      | Moro Tunnel                             | BDL        | BDL      | BDL     | 479.5       | 228.3            |
| DM-10     | Vulcan Mine                             | BDL        | BDL      | 14.8    | 36,146.1    | 21,119.1         |
| DM-11     | Lucky Strike Mine                       | BDL        | BDL      | BDL     | 60,039.6    | 7,229.7          |
| DM-14     | Pride of America Mine                   | BDL        | BDL      | 168.3   | 970.8       | 241.9            |
| DM-15     | Pelican Mine                            | BDL        | 27.5     | 1.6     | 2,992.6     | 1,062.9          |
| DM-18     | Brown Adit                              | BDL        | 10.3     | 0.2     | 186.8       | 780.5            |
| BL1       | Blank                                   | BDL        | BDL      | BDL     | BDL         | BDL              |

# **APPENDIX 5**

### MINING WASTE RESULTS

| Site # | Description                                         |      | Latitude |       |      | Longitude | e     | рН   | EC    | Acidity | Ag   | AI       | As      |
|--------|-----------------------------------------------------|------|----------|-------|------|-----------|-------|------|-------|---------|------|----------|---------|
|        |                                                     | Deg. | Min.     | Sec.  | Deg. | Min.      | Sec.  | s.u. | uS    | mg/l    | ug/l | ug/l     | ug/l    |
| 1      | Upper Hough Mine                                    | 37   | 58       | 23.09 | 107  | 34        | 57.45 | 2.64 | 2,510 | 1590    | BDL  | 63019.4  | 6994.4  |
| 2      | Lower Hough Mine                                    | 37   | 58       | 23.09 | 107  | 34        | 57.45 | 2.4  | 4,490 | 3750    | BDL  | 148703.3 | 26697.5 |
|        | Ĭ                                                   |      |          |       |      |           |       |      |       |         |      |          |         |
| 3      | Backfilled shaft north of Sara Woods                | 37   | 58       | 16.80 | 107  | 34        | 48.90 | 3.45 | 125   | 42      | BDL  | 214.2    | BDL     |
| 4      | Upper Sara Woods Mine                               | 37   | 58       | 7.99  | 107  | 34        | 46.02 | 4.26 | 50    | 20      | BDL  | 45.8     | BDL     |
| 5      | Lower Sara Woods Mine                               | 37   | 58       | 11.91 | 107  | 34        | 45.37 | 2.49 | 2,700 | 1204    | BDL  | 34537.2  | 4472.8  |
|        |                                                     |      |          |       |      |           |       |      |       |         |      |          |         |
| 6      | Dump East of lower Sara Woods Mine                  | 37   | 58       | 12.65 | 107  | 34        | 42.72 | 3.2  | 154   | 34      | BDL  | 124.3    | BDL     |
| 7      | Dump above Horsethief Trail                         | 37   | 58       | 48.70 | 107  | 34        | 44.10 | 4.63 | 23    | 18      | BDL  | 76.9     | BDL     |
| 8      | Miners Bank Mine                                    | 37   | 58       | 20.90 | 107  | 34        | 36.30 | 3.05 | 699   | 148     | BDL  | 3217.2   | 96.7    |
| 9      | Wyoming Mine                                        | 37   | 58       | 9.62  | 107  | 34        | 32.88 | 3.23 | 337   | 78      | BDL  | 583.1    | BDL     |
| 10     | Engineer Mine                                       | 37   | 58       | 1.46  | 107  | 34        | 28.71 | 6.58 | 24    | 100     | BDL  | 16.8     | 44.4    |
| 11     | Hofman Mine                                         | 37   | 58       | 7.00  | 107  | 34        | 23.00 | 3.3  | 164   | 38      | BDL  | 152.4    | BDL     |
| 12     | Upper Emporer. Wilhelm Mine                         | 37   | 58       | 18.04 | 107  | 34        | 23.49 | 3    | 598   | 106     | BDL  | 593.1    | BDL     |
| 13     | Lower Emperor Wilhelm                               | 37   | 58       | 19.78 | 107  | 34        | 20.83 | 3.85 | 88    | 22      | BDL  | 45.0     | BDL     |
|        | Collapsed Adit between Palmetto and Roy             |      |          |       |      |           |       |      |       |         |      |          |         |
| 14     | Pray                                                | 37   | 58       | 31.60 | 107  | 34        | 30.50 | 3.77 | 170   | 54      | BDL  | 75.8     | BDL     |
|        |                                                     |      |          |       |      |           |       |      |       |         |      |          |         |
| 15     | Second Dump above Palmetto Mine                     | 37   | 58       | 37.50 | 107  | 34        | 28.00 | 3.32 | 179   | 38      | BDL  | 123.8    | BDL     |
|        |                                                     |      |          |       |      |           |       |      |       |         |      |          |         |
| 16     | Dump across stream from Palmetto Mine               | 37   | 58       | 40.30 | 107  | 34        | 26.40 | 5.76 | 2,300 | 52      | 7.3  | 14.1     | BDL     |
| 17     | Palmetto Mine                                       | 37   | 58       | 41.39 | 107  | 34        | 23.49 | 4.8  | 207   | 38      | BDL  | 393.9    | BDL     |
| 18     | Mill across from Thoreau's Cabin                    | 37   | 58       | 54.76 | 107  | 33        | 34.72 | 3.95 | 82    | 34      | 6.0  | 100.0    | BDL     |
| 19     | Mine near Stream in Redcloud                        | 37   | 58       | 22.42 | 107  | 33        | 48.76 | 6.45 | 54    | 24      | BDL  | 32.4     | BDL     |
|        |                                                     |      |          |       |      |           |       |      |       |         |      |          |         |
| 20     | Mine on Southwest side of Redcloud                  | 37   | 58       | 12.70 | 107  | 33        | 50.30 | 6.16 | 24    | 50      | BDL  | 25.5     | BDL     |
|        |                                                     |      |          |       |      |           |       |      |       |         |      |          |         |
| 21     | Mine Near Ridge on North Side of Schafer            | 37   | 58       | 8.05  | 107  | 33        | 32.37 | 4.39 | 35    | 16      | BDL  | 157.2    | 70.4    |
|        | Mine at Headwaters of Northwest Schafer             |      |          |       |      |           |       |      |       |         |      |          |         |
| 22     | Trib                                                | 37   | 57       | 55.14 | 107  | 33        | 49.86 | 4.35 | 32    | 26      | BDL  | 40.8     | BDL     |
| 23     | Mine on Southwest side of Northwest<br>Schafer Trib | 37   | 57       | 46.24 | 107  | 33        | 44.52 | 3.55 | 69    | 12      | BDL  | 75.5     | BDL     |
| 24     | Mine Below Siegel Mountain in Schafer<br>Gulch      | 37   | 57       | 38.54 | 107  | 33        | 36.35 | 3.79 | 51    | 18      | BDL  | 84.7     | BDL     |

| Site # | Description                                                 |      | Latitude |       |      | Longitude | )     | рН   | EC  | Acidity | Ag   | AI     | As   |
|--------|-------------------------------------------------------------|------|----------|-------|------|-----------|-------|------|-----|---------|------|--------|------|
|        |                                                             | Deg. | Min.     | Sec.  | Deg. | Min.      | Sec.  | s.u. | uS  | mg/l    | ug/l | ug/l   | ug/l |
| 25     | Mine on West Side of Henson Between<br>Redcloud and Schafer | 37   | 58       | 28.27 | 107  | 33        | 9.46  | 4.14 | 121 | 20      | BDL  | 174.7  | BDL  |
| 26     | Lower Golconda Mine                                         | 37   | 57       | 20.20 | 107  | 32        | 52.83 | 4.16 | 54  | 28      | BDL  | 12.3   | BDL  |
| 27     | Upper Golconda Mine                                         | 37   | 57       | 15.29 | 107  | 32        | 49.11 | 4.87 | 18  | 20      | BDL  | 808.1  | BDL  |
| 28     | Lower Mine on Northwest Side of Gravel<br>Mountain          | 37   | 57       | 26.62 | 107  | 32        | 29.07 | 5.33 | 26  | 8       | BDL  | 12.6   | BDL  |
| 29     | Upper Mine on Northwest Side of Gravel Mountain             | 37   | 57       | 28.56 | 107  | 32        | 28.25 | 6.42 | 17  | 34      | BDL  | BDL    | BDL  |
| 30     | Chicago Tunnel                                              | 37   | 58       | 20.05 | 107  | 32        | 36.16 | 5.58 | 84  | 18      | BDL  | 27.6   | BDL  |
| 31     | Upper Dolly Varden Fine Waste                               | 37   | 59       | 21.74 | 107  | 32        | 14.64 | 5.69 | 18  | 80      | BDL  | BDL    | BDL  |
| 32     | Upper Dolly Varden Brown Waste                              | 37   | 59       | 21.74 | 107  | 32        | 14.64 | 5.14 | 20  | 12      | BDL  | 27.3   | BDL  |
| 33     | Lower Dolly Varden                                          | 37   | 59       | 13.80 | 107  | 32        | 7.72  | 4.88 | 138 | 29      | BDL  | 170.8  | BDL  |
| 34     | Horseshoe Basin Mine West                                   | 37   | 57       | 30.66 | 107  | 31        | 41.91 | 3.91 | 42  | 36      | BDL  | 14.4   | BDL  |
| 35     | Highland Chief Mine                                         | 37   | 58       | 27.55 | 107  | 31        | 17.11 | 5.13 | 899 | 24      | BDL  | 19.1   | BDL  |
| 36     | Schafer Basin Mine West Side                                | 37   | 57       | 39.91 | 107  | 30        | 28.28 | 3.64 | 228 | 57      | BDL  | 276.0  | BDL  |
| 37     | Schafer Basin Mine East Side Upper                          | 37   | 57       | 31.61 | 107  | 30        | 18.57 | 5.25 | 48  | 30      | BDL  | 25.1   | BDL  |
| 38     | Schafer Basin Mine East Side Lower                          | 37   | 57       | 50.30 | 107  | 30        | 6.51  | 5.13 | 62  | 21      | BDL  | 17.2   | BDL  |
| 39     | Moro Tunnel                                                 | 37   | 59       | 44.16 | 107  | 28        | 45.92 | 4.61 | 46  | 16      | BDL  | 46.4   | BDL  |
| 40     | Hanna Mill Tailings                                         | 37   | 59       | 48.85 | 107  | 28        | 22.93 | 5.58 | 92  | 44      | BDL  | 59.7   | BDL  |
| 41     | Vulcan Mine                                                 | 38   | 0        | 57.62 | 107  | 28        | 51.57 | 6.7  | 73  | 24      | BDL  | 173.2  | BDL  |
| 42     | Yellowstone Mill Tailings East                              | 38   | 0        | 53.96 | 107  | 28        | 17.57 | 5.19 | 219 | 94      | BDL  | 168.8  | BDL  |
| 43     | Yellowstone Mill Tailings West                              | 38   | 0        | 53.05 | 107  | 28        | 19.30 | 3.69 | 291 | 90      | BDL  | 581.7  | BDL  |
| 44     | Capital City Mine                                           | 38   | 1        | 6.60  | 107  | 28        | 14.19 | 4.86 | 955 | 314     | BDL  | 104.0  | BDL  |
| 45     | Yellow Medicine Mine                                        | 38   | 1        | 10.79 | 107  | 28        | 7.79  | 4.32 | 80  | 20      | BDL  | 117.2  | BDL  |
| 46     | Mountain Belle Lode                                         | 38   | 1        | 7.60  | 107  | 28        | 6.70  | 5.2  | 230 | 54      | BDL  | 158.3  | BDL  |
| 47     | Dump at gate below Czarina (Broker Lode)                    | 38   | 0        | 45.90 | 107  | 27        | 57.70 | 3.8  | 321 | 46      | BDL  | 767.2  | BDL  |
| 48     | Excelsior Lode                                              | 38   | 0        | 43.20 | 107  | 27        | 58.30 | 2.84 | 727 | 81      | 5.2  | 3336.5 | BDL  |
| 49     | Lucky Strike Mine                                           | 38   | 0        | 31.70 | 107  | 27        | 54.10 | 5.11 | 65  | 20      | BDL  | 69.6   | BDL  |
| 50     | Vermont Mine                                                | 38   | 0        | 57.52 | 107  | 26        | 21.65 | 4.35 | 41  | 30      | BDL  | 155.6  | BDL  |
| 51     | Four Aces Lode                                              | 38   | 0        | 37.20 | 107  | 25        | 56.79 | 3.99 | 48  | 18      | BDL  | 16.5   | BDL  |
| 52     | Little Casino                                               | 38   | 0        | 37.95 | 107  | 25        | 51.93 | 4.37 | 56  | 38      | BDL  | BDL    | BDL  |

| Site # | Description                         |      | Latitude |       |      | Longitude | )     | рН   | EC    | Acidity | Ag   | AI      | As   |
|--------|-------------------------------------|------|----------|-------|------|-----------|-------|------|-------|---------|------|---------|------|
|        |                                     | Deg. | Min.     | Sec.  | Deg. | Min.      | Sec.  | s.u. | uS    | mg/l    | ug/l | ug/l    | ug/l |
| 53     | Four Aces Lode                      | 38   | 0        | 38.70 | 107  | 25        | 56.20 | 3.84 | 123   | 38      | BDL  | 85.1    | BDL  |
| 54     | Wave of the Ocean                   | 38   | 1        | 7.00  | 107  | 25        | 49.60 | 3.63 | 229   | 66      | BDL  | 358.6   | BDL  |
| 55     | Red Rover Tunnel/Little Hattie Lode | 38   | 0        | 59.61 | 107  | 25        | 45.53 | 4.81 | 678   | 44      | BDL  | 117.1   | BDL  |
| 56     | Pride of America Mine               | 38   | 0        | 53.40 | 107  | 25        | 37.70 | 2.07 | 653   | 74      | BDL  | 12.5    | BDL  |
| 57     | Owl Gulch Mine                      | 38   | 0        | 19.99 | 107  | 24        | 25.19 | 5.91 | 40    | 22      | BDL  | 35.9    | BDL  |
| 58     | Yellow Jacket 2nd Level             | 38   | 1        | 13.57 | 107  | 24        | 21.81 | 3.51 | 104   | 42      | BDL  | 17.9    | BDL  |
| 59     | Yellow Jacket 1st Level             | 38   | 1        | 15.41 | 107  | 24        | 19.02 | 6.46 | 49    | 40      | BDL  | 25.2    | BDL  |
| 60     | Hidden Treasure Tailings            | 38   | 1        | 7.00  | 107  | 21        | 28.00 | 4.67 | 339   | 80      | BDL  | 116.0   | BDL  |
| 61     | Risorgiomento Mine                  | 38   | 1        | 10.20 | 107  | 20        | 37.50 | 2.73 | 1,458 | 370     | BDL  | 10612.3 | BDL  |
| 62     | Mountain Chief Lower                | 38   | 1        | 6.90  | 107  | 21        | 2.00  | 4.54 | 70    | 34      | BDL  | 44.0    | BDL  |
| 63     | Mountain Chief Upper                | 38   | 1        | 15.50 | 107  | 20        | 34.00 | 4.59 | 135   | 32      | BDL  | BDL     | BDL  |
| 64     | Lower Pelican Mine                  | 38   | 1        | 27.07 | 107  | 20        | 23.14 | 4.44 | 280   | 26      | BDL  | 42.2    | BDL  |
| 65     | Middle Pellican Mine                | 38   | 1        | 29.70 | 107  | 20        | 21.31 | 4.59 | 48    | 14      | BDL  | 33.5    | BDL  |
| 66     | Upper Pellic Mine                   | 38   | 1        | 31.20 | 107  | 20        | 20.36 | 4.68 | 32    | 16      | BDL  | 214.4   | BDL  |
| 67     | Iron Bed 1 in Matterhorn Gulch      | 38   | 3        | 2.42  | 107  | 29        | 19.88 | 4.58 | 57    | 14      | BDL  | BDL     | BDL  |
| 68     | Iron Bed 2 in Matterhorn Gulch      | 38   | 2        | 49.64 | 107  | 29        | 16.11 | 5.04 | 21    | 140     | BDL  | 19.5    | BDL  |

| Site | Description                                     | <b>D</b>  | Da         | De         | 0.         | 04         | 0.         | 0          | <b>C</b>   | 5-         | V         | Li         | Ma         | Max        | Ma         |
|------|-------------------------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| #    | Description                                     | B<br>uq/l | Ba<br>uɑ/l | Be<br>uq/l | Ca<br>mg/l | Cd<br>ug/l | Co<br>ug/l | Cr<br>ua/l | Cu<br>ug/l | Fe<br>ug/l | K<br>mg/l | LI<br>ug/l | Mg<br>mg/l | Mn<br>ug/l | Mo<br>ug/l |
| 1    | Upper Hough Mine                                | BDL       | BDL        | 3.7        | 95.1       | 284.3      | 196.7      | 17.8       | 49826.4    | 256510.6   | BDL       | 66.7       | 27.2       | 4090.6     | 15.6       |
| 2    | Lower Hough Mine                                | BDL       | 7.3        | 11.7       | 174.9      | 527.6      | 473.4      | 47.0       | 102096.6   | 688856.0   | B.D.L.    | 146.2      | 59.9       | 11961.4    | 39.8       |
| 3    | Backfilled shaft north of Sara<br>Woods         | 198.9     | BDL        | BDL        | 2.9        | BDL        | BDL        | BDL        | 47.8       | 110.6      | 1.4       | 13.5       | 0.7        | 173.3      | BDL        |
| 4    | Upper Sara Woods Mine                           | 221.9     | 65.8       | BDL        | 3.1        | BDL        | BDL        | BDL        | 11.0       | 19.5       | 1.7       | 3.0        | 0.4        | 149.7      | BDL        |
| 5    | Lower Sara Woods Mine                           | BDL       | 12.2       | 1.1        | 5.3        | 21.5       | 125.4      | 19.9       | 5693.1     | 493956.7   | BDL       | 38.6       | 10.6       | 1331.4     | 72.3       |
| 6    | Dump East of lower Sara Woods<br>Mine           | 50.9      | BDL        | BDL        | 0.7        | BDL        | BDL        | BDL        | 81.2       | 829.1      | 0.7       | 15.1       | 0.4        | 137.8      | BDL        |
| 7    | Dump above Horsethief Trail                     | 69.7      | 9.8        | BDL        | 0.8        | BDL        | BDL        | BDL        | BDL        | 130.5      | 1.3       | BDL        | 0.1        | 37.9       | BDL        |
| 8    | Miners Bank Mine                                | 136.1     | BDL        | BDL        | 3.6        | 31.4       | 10.3       | BDL        | 1151.6     | 5942.2     | 0.3       | 9.6        | 1.9        | 235.0      | BDL        |
| 9    | Wyoming Mine                                    | 247.2     | BDL        | BDL        | 7.2        | 40.4       | 4.0        | BDL        | 179.5      | 302.3      | 0.4       | 6.6        | 0.6        | 138.9      | BDL        |
| 10   | Engineer Mine                                   | 137.5     | 4.7        | BDL        | 1.0        | BDL        | BDL        | BDL        | 11.9       | BDL        | 1.6       | 2.1        | 0.2        | 14.7       | BDL        |
| 11   | Hofman Mine                                     | 188.2     | 6.0        | BDL        | 2.2        | 1.6        | BDL        | BDL        | 16.7       | 213.8      | 0.1       | 6.8        | 0.5        | 1023.5     | BDL        |
| 12   | Upper Emporer. Wilhelm Mine                     | 44.6      | 20.4       | BDL        | 7.6        | 26.6       | 5.5        | BDL        | 246.8      | 1343.1     | 1.2       | 5.3        | 0.8        | 1400.4     | BDL        |
| 13   | Lower Emperor Wilhelm                           | 219.5     | BDL        | BDL        | 3.5        | 3.6        | BDL        | BDL        | 56.5       | 12.0       | 2.9       | 4.1        | 0.3        | 320.6      | BDL        |
| 14   | Collapsed Adit between Palmetto<br>and Roy Pray | 201.7     | BDL        | BDL        | 1.5        | BDL        | BDL        | BDL        | 28.2       | 329.3      | 1.8       | 8.5        | 0.4        | 103.3      | BDL        |
| 15   | Second Dump above Palmetto<br>Mine              | BDL       | BDL        | BDL        | 2.5        | 1.3        | BDL        | BDL        | 45.2       | 561.8      | 0.8       | 7.2        | 0.5        | 74.9       | BDL        |
| 16   | Dump across stream from<br>Palmetto Mine        | BDL       | BDL        | BDL        | 356.0      | BDL        | 11.2       | BDL        | 45.2       | 278.7      | 1.4       | 5.5        |            | 210.8      | 13.0       |
| 17   | Palmetto Mine                                   | 269.4     | 5.3        | BDL        | 19.8       | 5.7        | 8.7        | BDL        | 96.6       | 47.6       | 1.6       | 11.8       | 1.8        | 1597.0     | BDL        |
| 18   | Mill across from Thoreau's Cabin                | 66.9      | BDL        | BDL        | 1.5        | 4.5        | BDL        | BDL        | 22.8       | 88.9       | 0.9       | 1.4        | 0.3        | 45.2       | BDL        |
| 19   | Mine near Stream in Redcloud                    | 64.2      | BDL        | BDL        | 0.4        | BDL        | BDL        | BDL        | 8.3        | 133.1      | 1.4       | 2.2        | 0.1        | 65.3       | BDL        |
| 20   | Mine on Southwest side of<br>Redcloud           | 203.5     | BDL        | BDL        | 2.6        | BDL        | BDL        | BDL        | BDL        | 15.3       | 1.3       | 3.4        | 0.3        | 10.7       | BDL        |
| 21   | Mine Near Ridge on North Side of Schafer        | 150.1     | 11.8       | BDL        | 0.3        | BDL        | BDL        | BDL        | 18.9       | 877.9      | 1.7       | 3.5        | 0.1        | 86.5       | BDL        |
| 22   | Mine at Headwaters of Northwest<br>Schafer Trib | 47.2      | BDL        | BDL        | 0.4        | BDL        | BDL        | BDL        | 13.8       | 85.0       | 1.4       | 4.2        | 0.1        | 68.4       | BDL        |

| Site | Description                                                    | <b>_</b>      | Ва         | Be         | <b>C</b> - | Cd    | 0.         | <b>C</b> 1 | Cu      | Fe         | K         |            | Ma         | Ma         | Ma         |
|------|----------------------------------------------------------------|---------------|------------|------------|------------|-------|------------|------------|---------|------------|-----------|------------|------------|------------|------------|
| #    | Description                                                    | B<br>ug/l     | ва<br>ug/l | ве<br>ug/l | Ca<br>mg/l | ug/l  | Co<br>ug/l | Cr<br>ug/l | ug/l    | re<br>ug/l | K<br>mg/l | Li<br>ug/l | Mg<br>mg/l | Mn<br>ug/l | Mo<br>ug/l |
|      | Mine on Southwest side of                                      | - <u>9</u> ,1 |            |            |            |       | <u></u>    | ~g,:       |         |            |           |            |            |            |            |
| 23   | Northwest Schafer Trib                                         | 68.7          | BDL        | BDL        | 1.8        | 1.4   | BDL        | BDL        | 29.1    | 38.5       | 0.9       | 4.2        | 0.5        | 78.7       | BDL        |
| 24   | Mine Below Siegel Mountain in Schafer Gulch                    | 194.5         | 6.6        | BDL        | 1.9        | BDL   | BDL        | BDL        | 5.5     | 487.2      | 1.5       | 6.3        | 0.5        | 43.6       | BDL        |
| 25   | Mine on West Side of Henson<br>Between Redcloud and<br>Schafer | 153.3         | 12.6       | BDL        | 11.0       | 5.7   | BDL        | BDL        | 46.3    | 10.5       | 2.3       | 9.9        | 1.2        | 1533.9     | BDL        |
| 26   | Lower Golconda Mine                                            | 214.8         | 6.6        | BDL        | 2.7        | 1.4   | BDL        | BDL        | 14.7    | 13.7       | 3.0       | 3.9        | 0.3        | 221.0      | BDL        |
| 27   | Upper Golconda Mine                                            | 116.7         | 13.4       | BDL        | 123.5      | 826.9 | 49.4       | BDL        | 10925.2 | 69.2       | 6.1       | 14.5       | 3.6        | 3297.3     | BDL        |
| 28   | Lower Mine on Northwest Side<br>of Gravel Mountain             | 185.2         | BDL        | BDL        | 0.9        | BDL   | BDL        | BDL        | BDL     | BDL        | 1.3       | 8.3        | 0.2        | 40.1       | 7.0        |
| 29   | Upper Mine on Northwest Side<br>of Gravel Mountain             | 64.5          | BDL        | BDL        | 0.3        | BDL   | BDL        | BDL        | 12.1    | 65.5       | 0.9       | BDL        | 0.0        | 16.6       | BDL        |
| 30   | Chicago Tunnel                                                 | 220.1         | BDL        | BDL        | 11.3       | BDL   | BDL        | BDL        | BDL     | 54.5       | 2.5       | 4.4        | 0.6        | 8.7        | BDL        |
| 31   | Upper Dolly Varden Fine<br>Waste                               | 131.5         | BDL        | BDL        | 0.8        | BDL   | BDL        | BDL        | 9.9     | 18.3       | 1.5       | 2.4        | 0.1        | 12.9       | BDL        |
| 32   | Upper Dolly Varden Brown<br>Waste                              | 123.5         | BDL        | BDL        | 0.7        | BDL   | BDL        | BDL        | 10.0    | 37.5       | 1.5       | 1.4        | 0.1        | 41.6       | BDL        |
| 33   | Lower Dolly Varden                                             | 266.2         | 5.4        | BDL        | 2.0        | BDL   | BDL        | BDL        | 210.7   | 224.4      | 4.3       | 5.2        | 0.5        | 223.0      | BDL        |
| 34   | Horseshoe Basin Mine West                                      | 286.5         | BDL        | BDL        | 0.6        | BDL   | BDL        | BDL        | 43.2    | 62.1       | 2.1       | 1.7        | 0.1        | 107.2      | BDL        |
| 35   | Highland Chief Mine                                            | 212.6         | 9.7        | BDL        | 157.3      | 24.2  | BDL        | BDL        | 52.2    | BDL        | 4.3       | 10.8       | 4.9        | 4007.9     | BDL        |
| 36   | Schafer Basin Mine West Side                                   | 220.5         | 49.5       | 0.4        | 11.6       | 62.5  | 4.1        | BDL        | 3496.1  | 21.2       | 3.3       | 26.1       | 2.1        | 1948.0     | BDL        |
| 37   | Schafer Basin Mine East Side<br>Upper                          | 266.2         | BDL        | BDL        | 6.9        | BDL   | BDL        | BDL        | 4.0     | 15.8       | 1.9       | 1.6        | 0.1        | 4.1        | 6.8        |
| 38   | Schafer Basin Mine East Side<br>Lower                          | 225.2         | BDL        | BDL        | 2.0        | 6.1   | BDL        | BDL        | 206.4   | 11.7       | 4.2       | 4.0        | 0.1        | 115.2      | BDL        |
| 39   | Moro Tunnel                                                    | 238.1         | 11.1       | BDL        | 2.3        | 2.0   | BDL        | BDL        | 12.2    | 61.2       | 1.6       | 16.5       | 0.3        | 265.5      | 26.1       |
| 40   | Hanna Mill Tailings                                            | 260.1         | 79.4       | BDL        | 2.5        | 56.5  | BDL        | BDL        | 1594.9  | 38.3       | 1.5       | 6.2        | 0.5        | 153.5      | BDL        |
| 41   | Vulcan Mine                                                    | 150.8         | 16.1       | BDL        | 0.7        | 13.1  | BDL        | BDL        | 128.0   | 47.7       | 1.6       | 14.1       | 0.1        | 24.0       | 24.6       |
| 42   | Yellowstone Mill Tailings East                                 | 153.5         | 15.0       | BDL        | 7.4        | 309.5 | 16.1       | BDL        | 3361.9  | 394.1      | 2.9       | 4.4        | 1.9        | 1150.9     | BDL        |
| 43   | Yellowstone Mill Tailings West                                 | 128.4         | 17.8       | BDL        | 5.3        | 180.6 | 4.1        | BDL        | 4104.7  | 312.0      | 1.4       | 8.0        | 2.3        | 346.4      | BDL        |

| Site |                                             |           |            | _          |            |            |            | •          |            | _          |           |            |            |            |            |
|------|---------------------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| #    | Description                                 | B<br>ug/l | Ba<br>ug/l | Be<br>ug/l | Ca<br>mg/l | Cd<br>ug/l | Co<br>ug/l | Cr<br>ug/l | Cu<br>ug/l | Fe<br>ug/l | K<br>ma/l | Li<br>ug/l | Mg<br>mg/l | Mn<br>ug/l | Mo<br>ug/l |
| 44   | Capital City Mine                           | 117.9     | BDL        | BDL        | 3.0        | 6.2        | BDL        | BDL        | 20.7       | 63.0       | 1.4       | 9.1        | 0.6        | 528.8      | 4.8        |
| 44   | Yellow Medicine Mine                        | BDL       | 17.9       | BDL        | 1.7        | 7.8        | BDL        | BDL        | 155.9      | 74.5       | 1.4       | 6.6        | 0.0        | 137.7      | 4.0<br>5.5 |
| 45   | Mountain Belle Lode                         | 268.4     | 55.9       | BDL        | 22.3       | 48.6       | BDL        | BDL        | 155.6      | 74.3       | 4.7       | 5.7        | 1.1        | 573.1      | BDL        |
| 40   | Dump at gate below Czarina<br>(Broker Lode) | 221.1     | 175.7      | 2.5        | 24.4       | 87.6       | 39.2       | BDL        | 3854.0     | 84.7       | 6.4       | 6.4        | 4.7        | 10310.9    | BDL        |
| 48   | Excelsior Lode                              | 182.0     | 30.9       | BDL        | 4.8        | 152.9      | 25.7       | BDL        | 10694.5    | 1951.6     | 1.1       | 8.9        | 2.1        | 426.2      | BDL        |
| 49   | Lucky Strike Mine                           | 257.1     | BDL        | BDL        | 4.2        | BDL        | BDL        | BDL        | 4.8        | 10.0       | 2.8       | 8.0        | 0.5        | 379.7      | BDL        |
| 50   | Vermont Mine                                | 65.9      | 17.3       | BDL        | 0.6        | 10.4       | BDL        | BDL        | 118.6      | 26.9       | 1.5       | 1.5        | 0.1        | 21.5       | BDL        |
| 51   | Four Aces Lode                              | 47.1      | 9.4        | BDL        | 0.7        | BDL        | BDL        | BDL        | 8.4        | 80.6       | 1.2       | 3.8        | 0.2        | 33.7       | BDL        |
| 52   | Little Casino                               | 254.8     | 37.2       | BDL        | 0.4        | 14.0       | BDL        | BDL        | 23.5       | BDL        | 1.4       | 1.9        | 0.1        | 230.2      | BDL        |
| 53   | Four Aces Lode                              | 50.2      | 52.0       | BDL        | 2.8        | 80.7       | BDL        | BDL        | 48.7       | 159.6      | 2.7       | 3.3        | 0.4        | 679.4      | BDL        |
| 54   | Wave of the Ocean                           | 258.0     | 27.3       | 1.1        | 7.4        | 54.2       | 19.6       | BDL        | 3234.7     | 119.2      | 2.9       | 6.2        | 1.2        | 2822.9     | BDL        |
| 55   | Red Rover Tunnel/Little Hattie<br>Lode      | 283.4     | 118.4      | BDL        | 102.6      | 73.3       | 12.8       | BDL        | 187.7      | BDL        | 4.9       | 15.0       | 4.7        | 2177.8     | BDL        |
| 56   | Pride of America Mine                       | 110.3     | 28.0       | BDL        | 97.9       | 391.8      | 4.2        | BDL        | 123.7      | 7.3        | 1.7       | 8.9        | 4.0        | 4191.8     | BDL        |
| 57   | Owl Gulch Mine                              | 157.8     | 15.4       | BDL        | 2.6        | BDL        | BDL        | BDL        | 37.9       | 16.3       | 2.9       | BDL        | 0.4        | 79.3       | BDL        |
| 58   | Yellow Jacket 2nd Level                     | 307.8     | 25.3       | BDL        | 0.5        | BDL        | BDL        | BDL        | 15.1       | 80.9       | 1.0       | 17.0       | 0.1        | 289.9      | 27.4       |
| 59   | Yellow Jacket 1st Level                     | 217.6     | 19.2       | BDL        | 1.9        | BDL        | BDL        | BDL        | 9.7        | 31.5       | 2.1       | 2.4        | 0.2        | 223.9      | BDL        |
| 60   | Hidden Treasure Tailings                    | 262.0     | 21.6       | BDL        | 12.8       | 365.5      | 4.7        | BDL        | 132.4      | BDL        | 1.5       | 4.2        | 2.9        | 38469.1    | BDL        |
| 61   | Risorgiomento Mine                          | 226.0     | BDL        | 19.3       | 85.7       | 50.2       | 42.9       | BDL        | 1610.4     | 27776.2    | 0.3       | 30.1       | 5.4        | 13916.4    | 44.2       |
| 62   | Mountain Chief Lower                        | 264.4     | 56.8       | BDL        | 2.7        | 5.7        | BDL        | BDL        | 13.9       | 10.8       | 3.5       | 2.9        | 0.4        | 2665.5     | BDL        |
| 63   | Mountain Chief Upper                        | 267.3     | 37.5       | BDL        | 9.0        | 12.5       | BDL        | BDL        | BDL        | 5.1        | 2.9       | 2.8        | 1.6        | 6470.6     | BDL        |
| 64   | Lower Pelican Mine                          | 258.4     | 84.1       | BDL        | 34.4       | 13.3       | BDL        | BDL        | 15.2       | 18.4       | 5.4       | 11.4       | 3.5        | 2730.7     | 6.2        |
| 65   | Middle Pellican Mine                        | 126.9     | 96.5       | BDL        | 1.5        | 7.2        | BDL        | BDL        | 89.1       | 12.2       | 2.8       | 2.2        | 0.2        | 351.9      | BDL        |
| 66   | Upper Pellic Mine                           | 151.6     | 29.7       | BDL        | 0.8        | BDL        | BDL        | BDL        | 8.3        | 435.3      | 3.8       | BDL        | 0.2        | 200.1      | BDL        |
| 67   | Iron Bed 1 in Matterhorn Gulch              | 117.0     | BDL        | BDL        | 0.7        | BDL        | BDL        | BDL        | 3.4        | 37.5       | 0.9       | 2.7        | 0.1        | 29.9       | BDL        |
| 68   | Iron Bed 2 in Matterhorn Gulch              | 117.9     | 31.7       | BDL        | 0.5        | BDL        | BDL        | BDL        | 4.1        | 74.7       | 1.1       | 2.4        | 0.1        | 10.5       | BDL        |

| Site<br># | Description                                         | Na   | Ni    | Р         | Pb    | s         | Sb   | Se   | Si     | Sn    | Sr    | Ti   | v         | Zn      |
|-----------|-----------------------------------------------------|------|-------|-----------|-------|-----------|------|------|--------|-------|-------|------|-----------|---------|
| #         | Description                                         | mg/l | ug/l  | r<br>mg/l | ug/l  | ug/l      | ug/l | ug/l | ug/l   | ug/l  | ug/l  | ug/l | v<br>ug/l | ug/l    |
| 1         | Upper Hough Mine                                    | BDL  | 129.6 | 7.7       | 337.8 | 510612.4  | BDL  | BDL  | 1097.4 | 61.8  | 183.9 | BDL  | 58.1      | 34863.2 |
| 2         | Lower Hough Mine                                    | 0.5  | 306.1 | 46.2      | 619.2 | 1320090.7 | BDL  | 62.4 | 2137.4 | 159.1 | 398.0 | BDL  | 345.3     | 63968.0 |
| 3         | Backfilled shaft north of Sara Woods                | 0.0  | BDL   | BDL       | BDL   | 9936.7    | BDL  | BDL  | 832.6  | BDL   | 7.9   | BDL  | BDL       | 280.5   |
| 4         | Upper Sara Woods Mine                               | 0.2  | BDL   | 0.2       | BDL   | 1761.0    | BDL  | BDL  | 688.4  | BDL   | 8.0   | BDL  | BDL       | 22.9    |
| 5         | Lower Sara Woods Mine                               | 0.1  | 75.2  | 4.9       | 181.2 | 518155.9  | 11.9 | 61.9 | 668.8  | 62.6  | 119.8 | BDL  | 240.9     | 1296.4  |
|           |                                                     |      |       |           |       |           |      |      |        |       |       |      |           |         |
| 6         | Dump East of lower Sara Woods Mine                  | 0.2  | BDL   | BDL       | BDL   | 8291.2    | 13.1 | BDL  | 404.5  | BDL   | 2.0   | BDL  | BDL       | 136.6   |
| 7         | Dump above Horsethief Trail                         | 0.2  | BDL   | 0.2       | BDL   | 516.7     | BDL  | BDL  | 566.1  | BDL   | 2.7   | 1.0  | BDL       | 4.9     |
| 8         | Miners Bank Mine                                    | 0.0  | 9.9   | BDL       | BDL   | 49979.8   | 14.4 | BDL  | 105.2  | BDL   | 3.4   | BDL  | 13.8      | 5494.7  |
| 9         | Wyoming Mine                                        | 0.1  | BDL   | BDL       | BDL   | 24763.8   | BDL  | BDL  | 1370.5 | BDL   | 41.7  | BDL  | BDL       | 6613.9  |
| 10        | Engineer Mine                                       | BDL  | BDL   | BDL       | BDL   | BDL       | 20.3 | 0.3  | BDL    | 3.9   | 3.7   | BDL  | BDL       | 46.9    |
| 11        | Hofman Mine                                         | 0.4  | BDL   | BDL       | BDL   | 9809.2    | BDL  | BDL  | 506.2  | BDL   | 0.5   | BDL  | BDL       | 372.0   |
| 12        | Upper Emporer. Wilhelm Mine                         | 0.0  | 6.1   | BDL       | 88.2  | 26166.5   | BDL  | BDL  | 225.7  | BDL   | 5.4   | BDL  | BDL       | 4158.6  |
| 13        | Lower Emperor Wilhelm                               | 0.1  | BDL   | BDL       | BDL   | 7512.8    | BDL  | BDL  | 625.4  | BDL   | 14.8  | BDL  | BDL       | 555.1   |
| 14        | Collapsed Adit between Palmetto and Roy Pray        | 0.3  | BDL   | BDL       | BDL   | 11485.3   | BDL  | BDL  | 496.4  | BDL   | 3.4   | BDL  | BDL       | 211.0   |
| 15        | Second Dump above Palmetto Mine                     | 0.1  | BDL   | BDL       | BDL   | 9325.5    | BDL  | BDL  | 242.9  | BDL   | 1.9   | BDL  | BDL       | 465.7   |
| 16        | Dump across stream from Palmetto Mine               | 1.3  | 11.9  | BDL       | BDL   | 470861.7  | BDL  | BDL  | 799.3  | 69.7  | 259.9 | BDL  | BDL       | 20.9    |
| 17        | Palmetto Mine                                       | 0.1  | 8.8   | BDL       | BDL   | 26985.1   | BDL  | BDL  | 1390.6 | BDL   | 14.9  | BDL  | BDL       | 879.1   |
| 18        | Mill across from Thoreau's Cabin                    | 0.3  | BDL   | BDL       | BDL   | 6884.9    | BDL  | BDL  | 621.5  | BDL   | 7.0   | BDL  | BDL       | 819.3   |
| 19        | Mine near Stream in Redcloud                        | 0.1  | BDL   | BDL       | BDL   | 3599.8    | BDL  | BDL  | 458.2  | BDL   | 1.1   | BDL  | BDL       | 48.7    |
| 20        | Mine on Southwest side of Redcloud                  | 0.5  | BDL   | 0.1       | BDL   | 1015.5    | BDL  | BDL  | 765.4  | BDL   | 5.8   | BDL  | BDL       | BDL     |
| 21        | Mine Near Ridge on North Side of Schafer            | BDL  | BDL   | BDL       | 130.0 | 2152.5    | BDL  | BDL  | 702.1  | BDL   | 2.4   | BDL  | BDL       | 166.7   |
| 22        | Mine at Headwaters of Northwest<br>Schafer Trib     | 0.1  | BDL   | BDL       | BDL   | 2057.2    | 10.7 | BDL  | 530.0  | BDL   | 0.4   | BDL  | BDL       | 28.2    |
| 23        | Mine on Southwest side of Northwest<br>Schafer Trib | 0.4  | BDL   | BDL       | BDL   | 4987.1    | BDL  | BDL  | 441.9  | BDL   | 7.4   | BDL  | BDL       | 478.5   |

| Site<br># | Description                                              | Na   | Ni   | Р    | Pb     | s        | Sb   | Se   | Si     | Sn   | Sr    | Ti   | v    | Zn       |
|-----------|----------------------------------------------------------|------|------|------|--------|----------|------|------|--------|------|-------|------|------|----------|
|           |                                                          | mg/l | ug/l | mg/l | ug/l   | ug/l     | ug/l | ug/l | ug/l   | ug/l | ug/l  | ug/l | ug/l | ug/l     |
| 24        | Mine Below Siegel Mountain in Schafer<br>Gulch           | 0.5  | BDL  | BDL  | BDL    | 3781.9   | BDL  | BDL  | 1032.4 | BDL  | 2.5   | BDL  | BDL  | 20.6     |
| 25        | Mine on West Side of Henson Between Redcloud and Schafer | 0.6  | BDL  | BDL  | BDL    | 15255.8  | BDL  | BDL  | 1059.5 | BDL  | 22.1  | BDL  | BDL  | 674.8    |
| 26        | Lower Golconda Mine                                      | 0.1  | BDL  | BDL  | 29.3   | 4310.0   | BDL  | BDL  | 714.5  | BDL  | 4.5   | BDL  | BDL  | 290.5    |
| 27        | Upper Golconda Mine                                      | 0.3  | 75.5 | 0.1  | 2935.9 | 183007.0 | BDL  | BDL  | 760.6  | BDL  | 111.8 | BDL  | BDL  | 120377.2 |
| 28        | Lower Mine on Northwest Side of Gravel Mountain          | 0.3  | BDL  | BDL  | BDL    | 1711.7   | BDL  | BDL  | 596.9  | BDL  | 0.4   | BDL  | BDL  | 53.9     |
| 29        | Upper Mine on Northwest Side of Gravel<br>Mountain       | BDL  | 7.1  | BDL  | BDL    | 840.2    | BDL  | BDL  | 372.6  | BDL  | BDL   | BDL  | BDL  | 14.3     |
| 30        | Chicago Tunnel                                           | 0.2  | BDL  | BDL  | BDL    | 3406.7   | BDL  | BDL  | 1007.4 | BDL  | 32.3  | BDL  | BDL  | 35.1     |
| 31        | Upper Dolly Varden Fine Waste                            | 0.1  | BDL  | BDL  | BDL    | 257.1    | BDL  | BDL  | 479.1  | BDL  | 3.6   | BDL  | BDL  | 50.6     |
| 32        | Upper Dolly Varden Brown Waste                           | 0.1  | BDL  | 0.2  | BDL    | 634.3    | BDL  | BDL  | 628.8  | BDL  | 2.3   | BDL  | BDL  | 37.1     |
| 33        | Lower Dolly Varden                                       | 0.3  | BDL  | 0.3  | BDL    | 1876.6   | 20.5 | BDL  | 1406.7 | BDL  | 9.0   | BDL  | BDL  | 180.9    |
| 34        | Horseshoe Basin Mine West                                | 0.0  | BDL  | BDL  | 54.4   | 2424.5   | BDL  | BDL  | 715.8  | BDL  | 0.7   | BDL  | BDL  | 108.9    |
| 35        | Highland Chief Mine                                      | 0.2  | BDL  | BDL  | BDL    | 159584.9 | BDL  | BDL  | 922.4  | 29.4 | 244.2 | BDL  | BDL  | 4043.1   |
| 36        | Schafer Basin Mine West Side                             | 0.2  | BDL  | 0.1  | 2778.0 | 27764.0  | BDL  | BDL  | 1145.6 | BDL  | 23.4  | BDL  | BDL  | 8430.1   |
| 37        | Schafer Basin Mine East Side Upper                       | 0.1  | BDL  | BDL  | BDL    | 1150.6   | BDL  | BDL  | 528.5  | BDL  | 11.6  | BDL  | BDL  | 6.0      |
| 38        | Schafer Basin Mine East Side Lower                       | 0.2  | BDL  | BDL  | 136.1  | 4329.9   | BDL  | BDL  | 1225.0 | BDL  | 2.6   | BDL  | BDL  | 548.3    |
| 39        | Moro Tunnel                                              | 0.3  | BDL  | 0.2  | 24.1   | 3913.9   | BDL  | BDL  | 456.9  | BDL  | 6.2   | BDL  | BDL  | 376.8    |
| 40        | Hanna Mill Tailings                                      | 0.4  | BDL  | BDL  | 1071.0 | 7297.7   | BDL  | BDL  | 987.5  | BDL  | 29.4  | BDL  | BDL  | 8919.4   |
| 41        | Vulcan Mine                                              | 0.1  | BDL  | BDL  | 539.6  | 2336.6   | BDL  | BDL  | 842.2  | BDL  | 4.5   | BDL  | BDL  | 888.4    |
| 42        | Yellowstone Mill Tailings East                           | 1.6  | 9.2  | BDL  | 5029.3 | 39453.3  | BDL  | BDL  | 895.3  | BDL  | 32.8  | BDL  | BDL  | 49854.1  |
| 43        | Yellowstone Mill Tailings West                           | 0.4  | 10.5 | BDL  | 4676.3 | 33752.7  | BDL  | BDL  | 308.6  | BDL  | 18.8  | BDL  | BDL  | 30490.5  |
| 44        | Capital City Mine                                        | 0.6  | BDL  | BDL  | BDL    | 6173.6   | BDL  | BDL  | 792.8  | BDL  | 6.5   | BDL  | BDL  | 1016.0   |
| 45        | Yellow Medicine Mine                                     | 0.1  | BDL  | BDL  | 719.9  | 4182.3   | BDL  | BDL  | 691.4  | BDL  | 6.1   | BDL  | BDL  | 1656.9   |
| 46        | Mountain Belle Lode                                      | 0.1  | BDL  | BDL  | 137.8  | 28538.9  | BDL  | BDL  | 1663.0 | BDL  | 52.8  | BDL  | BDL  | 6029.4   |
| 47        | Dump at gate below Czarina (Broker Lode)                 | 0.9  | 7.5  | BDL  | 2330.8 | 52382.8  | BDL  | BDL  | 720.6  | BDL  | 111.9 | BDL  | BDL  | 13620.0  |
| 48        | Excelsior Lode                                           | 1.0  | 6.9  | 0.5  | 1386.7 | 60751.6  | 18.9 | BDL  | 424.5  | BDL  | 22.8  | BDL  | BDL  | 29081.3  |

| Site | -                                   |      |      | _    | _      |          |      | _    | <b>.</b> |      |       |      |      | _       |
|------|-------------------------------------|------|------|------|--------|----------|------|------|----------|------|-------|------|------|---------|
| #    | Description                         | Na   | Ni   | Р    | Pb     | S        | Sb   | Se   | Si       | Sn   | Sr    | Ti   | V    | Zn      |
|      |                                     | mg/l | ug/l | mg/l | ug/l   | ug/l     | ug/l | ug/l | ug/l     | ug/l | ug/l  | ug/l | ug/l | ug/l    |
| 49   | Lucky Strike Mine                   | 0.2  | BDL  | BDL  | BDL    | 6385.0   | BDL  | BDL  | 702.7    | BDL  | 14.0  | BDL  | BDL  | 38.0    |
| 50   | Vermont Mine                        | BDL  | BDL  | BDL  | 517.1  | 2134.6   | BDL  | BDL  | 785.0    | BDL  | 2.6   | BDL  | BDL  | 842.4   |
| 51   | Four Aces Lode                      | 0.5  | BDL  | BDL  | BDL    | 3556.4   | BDL  | BDL  | 399.0    | BDL  | 2.7   | BDL  | BDL  | 40.8    |
| 52   | Little Casino                       | 0.1  | BDL  | BDL  | 6407.9 | 3988.6   | BDL  | BDL  | 426.0    | BDL  | 6.1   | BDL  | BDL  | 1787.3  |
| 53   | Four Aces Lode                      | 0.4  | BDL  | BDL  | 6317.3 | 10750.1  | 10.5 | BDL  | 363.9    | BDL  | 19.8  | BDL  | BDL  | 9810.4  |
| 54   | Wave of the Ocean                   | 0.0  | BDL  | BDL  | 6343.3 | 24884.4  | BDL  | BDL  | 556.8    | BDL  | 31.4  | BDL  | BDL  | 6872.3  |
| 55   | Red Rover Tunnel/Little Hattie Lode | 0.3  | BDL  | BDL  | 1481.3 | 109822.7 | BDL  | BDL  | 766.3    | BDL  | 425.5 | BDL  | BDL  | 6815.6  |
| 56   | Pride of America Mine               | 0.2  | BDL  | BDL  | 1828.2 | 104091.8 | BDL  | BDL  | 198.0    | 26.9 | 281.4 | BDL  | BDL  | 22942.2 |
| 57   | Owl Gulch Mine                      | 0.5  | BDL  | 0.3  | BDL    | 1639.2   | BDL  | BDL  | 1084.1   | BDL  | 16.9  | BDL  | BDL  | 25.2    |
| 58   | Yellow Jacket 2nd Level             | 0.1  | BDL  | 0.2  | 71.1   | 4958.8   | BDL  | BDL  | 481.1    | BDL  | 3.1   | BDL  | BDL  | 56.7    |
| 59   | Yellow Jacket 1st Level             | 0.1  | BDL  | 0.2  | BDL    | 2150.6   | BDL  | BDL  | 712.9    | BDL  | 7.1   | BDL  | BDL  | 128.2   |
| 60   | Hidden Treasure Tailings            | 0.2  | BDL  | BDL  | 4354.7 | 54371.4  | BDL  | BDL  | 282.7    | BDL  | 41.0  | BDL  | BDL  | 26528.6 |
| 61   | Risorgiomento Mine                  | 0.1  | 18.7 | 0.4  | BDL    | 186404.0 | BDL  | BDL  | 153.1    | BDL  | 70.7  | BDL  | BDL  | 13103.6 |
| 62   | Mountain Chief Lower                | 0.1  | BDL  | BDL  | 19.0   | 6628.4   | BDL  | BDL  | 437.8    | BDL  | 26.8  | BDL  | BDL  | 1314.8  |
| 63   | Mountain Chief Upper                | 0.1  | BDL  | BDL  | BDL    | 15467.4  | BDL  | BDL  | 722.7    | BDL  | 39.3  | BDL  | BDL  | 3970.7  |
| 64   | Lower Pelican Mine                  | 0.6  | BDL  | 0.2  | BDL    | 41617.2  | BDL  | BDL  | 728.0    | BDL  | 177.8 | BDL  | BDL  | 1917.1  |
| 65   | Middle Pellican Mine                | 0.1  | BDL  | BDL  | 201.0  | 4752.4   | BDL  | BDL  | 572.8    | BDL  | 15.1  | BDL  | BDL  | 1038.6  |
| 66   | Upper Pellic Mine                   | 0.2  | BDL  | BDL  | 90.4   | 2959.3   | BDL  | BDL  | 1262.4   | BDL  | 4.2   | 1.2  | BDL  | 187.4   |
| 67   | Iron Bed 1 in Matterhorn Gulch      | 0.1  | BDL  | BDL  | BDL    | 567.8    | BDL  | BDL  | 634.5    | BDL  | 1.3   | BDL  | BDL  | 19.4    |
| 68   | Iron Bed 2 in Matterhorn Gulch      | 0.1  | BDL  | BDL  | BDL    | 715.3    | BDL  | BDL  | 577.5    | BDL  | 2.1   | BDL  | BDL  | 4.1     |

### **APPENDIX 6**

#### **MINE WASTE RANKING**

|           |                                              | Individual Chemical Rank |    |         |    |    |    |    |    |    |    |    |     |                  |
|-----------|----------------------------------------------|--------------------------|----|---------|----|----|----|----|----|----|----|----|-----|------------------|
| Site<br># | Description                                  | рН                       | EC | Acidity | AI | As | Cd | Cu | Fe | Mn | Pb | Zn | Sum | Chemical<br>Rank |
| 1         | Upper Hough Mine                             | 4                        | 3  | 2       | 2  | 2  | 6  | 2  | 3  | 7  | 18 | 4  | 53  | 2                |
| 2         | Lower Hough Mine                             | 2                        | 1  | 1       | 1  | 1  | 2  | 1  | 1  | 3  | 15 | 2  | 30  | 1                |
| 3         | Backfilled shaft north of Sara Woods         | 13                       | 30 | 26      | 16 | 7  | 42 | 32 | 25 | 39 | 31 | 42 | 303 | 26               |
| 4         | Upper Sara Woods Mine                        | 30                       | 50 | 54      | 41 | 7  | 42 | 53 | 50 | 41 | 31 | 61 | 460 | 54               |
| 5         | Lower Sara Woods Mine                        | 3                        | 2  | 3       | 3  | 3  | 21 | 5  | 2  | 19 | 20 | 26 | 107 | 5                |
| 6         | Dump East of lower Sara Woods Mine           | 9                        | 26 | 35      | 25 | 7  | 42 | 27 | 9  | 43 | 31 | 47 | 301 | 24               |
| 7         | Dump above Horsethief Trail                  | 42                       | 65 | 59      | 35 | 7  | 42 | 66 | 23 | 58 | 31 | 68 | 496 | 60               |
| 8         | Miners Bank Mine                             | 8                        | 9  | 6       | 6  | 4  | 18 | 13 | 5  | 32 | 31 | 18 | 150 | 9                |
| 9         | Wyoming Mine                                 | 10                       | 14 | 15      | 10 | 7  | 17 | 18 | 16 | 42 | 31 | 16 | 196 | 13               |
| 10        | Engineer Mine                                | 69                       | 63 | 9       | 59 | 6  | 42 | 52 | 65 | 65 | 31 | 54 | 515 | 63               |
| 11        | Hofman Mine                                  | 11                       | 25 | 29      | 24 | 7  | 37 | 44 | 20 | 21 | 31 | 40 | 289 | 22               |
| 12        | Upper Emporer. Wilhelm Mine                  | 7                        | 12 | 8       | 9  | 7  | 19 | 14 | 7  | 18 | 25 | 19 | 145 | 8                |
| 13        | Lower Emperor Wilhelm                        | 23                       | 35 | 51      | 42 | 7  | 35 | 29 | 58 | 29 | 31 | 34 | 374 | 40               |
| 14        | Collapsed Adit between Palmetto and Roy Pray | 19                       | 24 | 19      | 36 | 7  | 42 | 39 | 14 | 47 | 31 | 43 | 321 | 28               |
| 15        | Second Dump above Palmetto Mine              | 12                       | 23 | 29      | 26 | 7  | 41 | 34 | 10 | 51 | 31 | 37 | 301 | 24               |
| 16        | Dump across stream from Palmetto Mine        | 63                       | 4  | 21      | 62 | 7  | 42 | 34 | 17 | 37 | 31 | 62 | 380 | 41               |
| 17        | Palmetto Mine                                | 45                       | 22 | 29      | 12 | 7  | 31 | 25 | 41 | 15 | 31 | 30 | 288 | 21               |
| 18        | Mill across from Thoreau's Cabin             | 26                       | 37 | 35      | 31 | 7  | 34 | 41 | 26 | 54 | 31 | 32 | 354 | 33               |
| 19        | Mine near Stream in Redcloud                 | 67                       | 47 | 46      | 48 | 7  | 42 | 58 | 22 | 53 | 31 | 53 | 474 | 57               |
| 20        | Mine on Southwest side of Redcloud           | 65                       | 63 | 22      | 51 | 7  | 42 | 66 | 55 | 67 | 31 | 70 | 539 | 69               |
| 21        | Mine Near Ridge on North Side of Schafer     | 35                       | 59 | 63      | 22 | 5  | 42 | 43 | 8  | 48 | 23 | 46 | 394 | 43               |
| 22        | Mine at Headwaters of Northwest Schafer Trib | 32                       | 60 | 44      | 45 | 7  | 42 | 49 | 27 | 52 | 31 | 59 | 448 | 52               |

|           |                                                          | Individual Chemical Rank |    |         |    |    |    |    |    |    |    |    |     |                  |
|-----------|----------------------------------------------------------|--------------------------|----|---------|----|----|----|----|----|----|----|----|-----|------------------|
| Site<br># | Description                                              | рН                       | EC | Acidity | AI | As | Cd | Cu | Fe | Mn | Pb | Zn | Sum | Chemical<br>Rank |
| 23        | Mine on Southwest side of Northwest Schafer Trib         | 14                       | 41 | 68      | 37 | 7  | 39 | 38 | 42 | 50 | 31 | 36 | 403 | 45               |
| 24        | Mine Below Siegel Mountain in Schafer Gulch              | 20                       | 49 | 59      | 34 | 7  | 42 | 61 | 11 | 55 | 31 | 63 | 432 | 50               |
| 25        | Mine on West Side of Henson Between Redcloud and Schafer | 28                       | 32 | 54      | 17 | 7  | 31 | 33 | 61 | 17 | 31 | 33 | 344 | 32               |
| 26        | Lower Golconda Mine                                      | 29                       | 47 | 43      | 65 | 7  | 39 | 47 | 56 | 36 | 28 | 41 | 438 | 51               |
| 27        | Upper Golconda Mine                                      | 49                       | 68 | 54      | 7  | 7  | 1  | 3  | 34 | 9  | 7  | 1  | 240 | 17               |
| 28        | Lower Mine on Northwest Side of Gravel Mountain          | 59                       | 62 | 70      | 63 | 7  | 42 | 66 | 65 | 57 | 31 | 51 | 573 | 70               |
| 29        | Upper Mine on Northwest Side of Gravel Mountain          | 66                       | 70 | 35      | 66 | 7  | 42 | 51 | 35 | 64 | 31 | 65 | 532 | 67               |
| 30        | Chicago Tunnel                                           | 61                       | 36 | 59      | 49 | 7  | 42 | 66 | 39 | 69 | 31 | 58 | 517 | 64               |
| 31        | Upper Dolly Varden Fine Waste                            | 62                       | 68 | 13      | 66 | 7  | 42 | 55 | 52 | 66 | 31 | 52 | 514 | 62               |
| 32        | Upper Dolly Varden Brown Waste                           | 55                       | 67 | 68      | 50 | 7  | 42 | 54 | 44 | 56 | 31 | 57 | 531 | 66               |
| 33        | Lower Dolly Varden                                       | 50                       | 27 | 42      | 19 | 7  | 42 | 15 | 19 | 35 | 31 | 45 | 332 | 30               |
| 34        | Horseshoe Basin Mine West                                | 24                       | 56 | 34      | 61 | 7  | 42 | 36 | 37 | 46 | 27 | 49 | 419 | 47               |
| 35        | Highland Mine                                            | 53                       | 7  | 46      | 56 | 7  | 20 | 30 | 65 | 8  | 31 | 20 | 343 | 31               |
| 36        | Schafer Basin Mine West Side                             | 17                       | 20 | 18      | 14 | 7  | 12 | 8  | 49 | 14 | 8  | 13 | 180 | 12               |
| 37        | Schafer Basin Mine East Side Upper                       | 58                       | 52 | 40      | 53 | 7  | 42 | 64 | 54 | 70 | 31 | 67 | 538 | 68               |
| 38        | Schafer Basin Mine East Side Lower                       | 53                       | 44 | 53      | 58 | 7  | 30 | 16 | 59 | 45 | 22 | 35 | 422 | 48               |
| 39        | Moro Tunnel                                              | 41                       | 55 | 63      | 40 | 7  | 36 | 50 | 38 | 31 | 29 | 39 | 429 | 49               |
| 40        | Hanna Mill Tailings                                      | 60                       | 34 | 24      | 39 | 7  | 13 | 12 | 43 | 40 | 13 | 12 | 297 | 23               |
| 41        | Vulcan Mine                                              | 70                       | 39 | 46      | 18 | 7  | 24 | 22 | 40 | 61 | 16 | 29 | 372 | 39               |
| 42        | Yellowstone Mill Tailings East                           | 56                       | 21 | 10      | 20 | 7  | 5  | 9  | 13 | 20 | 4  | 3  | 168 | 11               |
| 43        | Yellowstone Mill Tailings West                           | 18                       | 16 | 11      | 11 | 7  | 7  | 6  | 15 | 28 | 5  | 5  | 129 | 6                |
| 44        | Capital City Mine                                        | 48                       | 6  | 5       | 30 | 7  | 29 | 42 | 36 | 24 | 31 | 28 | 286 | 20               |
| 45        | Yellow Medicine Mine                                     | 31                       | 38 | 54      | 27 | 7  | 27 | 19 | 32 | 44 | 14 | 24 | 317 | 27               |
| 46        | Mountain Belle Lode                                      | 57                       | 18 | 19      | 21 | 7  | 16 | 20 | 33 | 23 | 21 | 17 | 252 | 19               |

|           |                                          |    |    |         | Indi | vidua | l Cher | nical | Rank |    |    |    |     |                  |
|-----------|------------------------------------------|----|----|---------|------|-------|--------|-------|------|----|----|----|-----|------------------|
| Site<br># | Description                              | рН | EC | Acidity | AI   | As    | Cd     | Cu    | Fe   | Mn | Pb | Zn | Sum | Chemical<br>Rank |
|           |                                          |    |    |         |      | _     |        | _     |      |    |    |    |     | _                |
| 47        | Dump at gate below Czarina (Broker Lode) | 21 | 15 | 23      | 8    | 7     | 9      | 7     | 28   | 4  | 9  | 9  | 140 | 7                |
| 48        | Excelsior Lode                           | 6  | 8  | 12      | 5    | 7     | 8      | 4     | 6    | 25 | 12 | 6  | 99  | 4                |
| 49        | Lucky Strike Mine                        | 52 | 42 | 54      | 38   | 7     | 42     | 62    | 62   | 26 | 31 | 56 | 472 | 56               |
| 50        | Vermont Mine                             | 32 | 57 | 40      | 23   | 7     | 26     | 24    | 47   | 62 | 17 | 31 | 366 | 36               |
| 51        | Four Aces Lode                           | 27 | 52 | 59      | 60   | 7     | 42     | 57    | 30   | 59 | 31 | 55 | 479 | 58               |
| 52        | Little Casino                            | 34 | 46 | 29      | 66   | 7     | 22     | 40    | 65   | 33 | 1  | 23 | 366 | 36               |
| 53        | Four Aces Lode                           | 22 | 31 | 29      | 33   | 7     | 10     | 31    | 21   | 22 | 3  | 11 | 220 | 16               |
| 54        | Wave of the Ocean                        | 16 | 19 | 17      | 13   | 7     | 14     | 10    | 34   | 10 | 2  | 14 | 156 | 10               |
| 55        | Red Rover Tunnel/Little Hattie Lode      | 47 | 10 | 24      | 28   | 7     | 11     | 17    | 65   | 13 | 11 | 15 | 248 | 18               |
| 56        | Pride of America Mine                    | 1  | 11 | 16      | 54   | 7     | 3      | 23    | 63   | 6  | 10 | 8  | 202 | 14               |
| 57        | Owl Gulch Mine                           | 64 | 58 | 51      | 46   | 7     | 42     | 37    | 53   | 49 | 31 | 60 | 498 | 61               |
| 58        | Yellow Jacket 2nd Level                  | 14 | 33 | 26      | 57   | 7     | 42     | 46    | 29   | 30 | 26 | 50 | 360 | 35               |
| 59        | Yellow Jacket 1st Level                  | 68 | 51 | 28      | 52   | 7     | 42     | 56    | 46   | 34 | 31 | 48 | 463 | 55               |
| 60        | Hidden Treasure Tailings                 | 43 | 13 | 13      | 29   | 7     | 4      | 21    | 65   | 1  | 6  | 7  | 209 | 15               |
| 61        | Risorgiomento Mine                       | 5  | 5  | 4       | 4    | 7     | 15     | 11    | 4    | 2  | 31 | 10 | 98  | 3                |
| 62        | Mountain Chief Lower                     | 37 | 40 | 35      | 43   | 7     | 31     | 48    | 60   | 12 | 30 | 25 | 368 | 38               |
| 63        | Mountain Chief Upper                     | 39 | 28 | 39      | 66   | 7     | 25     | 66    | 64   | 5  | 31 | 21 | 391 | 42               |
| 64        | Lower Pelican Mine                       | 36 | 17 | 44      | 44   | 7     | 23     | 45    | 51   | 11 | 31 | 22 | 331 | 29               |
| 65        | Middle Pellican Mine                     | 39 | 52 | 66      | 47   | 7     | 28     | 26    | 57   | 27 | 19 | 27 | 395 | 44               |
| 66        | Upper Pellic Mine                        | 44 | 60 | 63      | 15   | 7     | 42     | 58    | 12   | 38 | 24 | 44 | 407 | 46               |

|           |                                                          |         | Individual                 | Physical Rank           |            |     |                  |                |                 |
|-----------|----------------------------------------------------------|---------|----------------------------|-------------------------|------------|-----|------------------|----------------|-----------------|
| Site<br># | Description                                              | Erosion | Distance<br>to<br>Drainage | Vegetation<br>Kill Zone | Vegetation | Sum | Physical<br>Rank | Overall<br>Sum | Overall<br>Rank |
| 1         | Upper Hough Mine                                         | 5       | 5                          | 5                       | 5          | 20  | 1                | 3              | 2               |
| 2         | Lower Hough Mine                                         | 5       | 5                          | 5                       | 5          | 20  | 1                | 2              | 1               |
| 3         | Backfilled shaft north of Sara Woods                     | 1       | 4                          | 4                       | 5          | 14  | 17               | 43             | 20              |
| 4         | Upper Sara Woods Mine                                    | 5       | 5                          | 3                       | 5          | 18  | 4                | 58             | 31              |
| 5         | Lower Sara Woods Mine                                    | 5       | 5                          | 5                       | 5          | 20  | 1                | 6              | 3               |
| 6         | Dump East of lower Sara Woods Mine                       | 2       | 3                          | 3                       | 5          | 13  | 21               | 45             | 21              |
| 7         | Dump above Horsethief Trail                              | 1       | 1                          | 2                       | 3          | 7   | 57               | 117            | 60              |
| 8         | Miners Bank Mine                                         | 2       | 3                          | 5                       | 5          | 15  | 14               | 23             | 7               |
| 9         | Wyoming Mine                                             | 2       | 5                          | 5                       | 3          | 15  | 14               | 27             | 11              |
| 10        | Engineer Mine                                            | 4       | 4                          | 3                       | 5          | 16  | 12               | 75             | 39              |
| 11        | Hofman Mine                                              | 4       | 5                          | 3                       | 5          | 17  | 9                | 31             | 14              |
| 12        | Upper Emporer. Wilhelm Mine                              | 1       | 4                          | 4                       | 5          | 14  | 17               | 25             | 10              |
| 13        | Lower Emperor Wilhelm                                    | 3       | 3                          | 3                       | 3          | 12  | 28               | 68             | 34              |
| 14        | Collapsed Adit between Palmetto and Roy Pray             | 2       | 5                          | 5                       | 5          | 17  | 9                | 37             | 18              |
| 15        | Second Dump above Palmetto Mine                          | 5       | 5                          | 3                       | 5          | 18  | 4                | 28             | 12              |
| 16        | Dump across stream from Palmetto Mine                    | 5       | 5                          | 1                       | 3          | 14  | 17               | 58             | 31              |
| 17        | Palmetto Mine                                            | 2       | 5                          | 5                       | 1          | 13  | 21               | 42             | 19              |
| 18        | Mill across from Thoreau's Cabin                         | 2       | 3                          | 3                       | 5          | 13  | 21               | 54             | 28              |
| 19        | Mine near Stream in Redcloud                             | 1       | 4                          | 1                       | 5          | 11  | 37               | 94             | 49              |
| 20        | Mine on Southwest side of Redcloud                       | 1       | 4                          | 1                       | 3          | 9   | 47               | 116            | 58              |
| 21        | Mine Near Ridge on North Side of Schafer                 | 1       | 2                          | 1                       | 2          | 6   | 62               | 105            | 55              |
| 22        | Mine at Headwaters of Northwest Schafer Trib             | 1       | 2                          | 1                       | 3          | 7   | 57               | 109            | 56              |
| 23        | Mine on Southwest side of Northwest Schafer Trib         | 3       | 2                          | 4                       | 3          | 12  | 28               | 73             | 37              |
| 24        | Mine Below Siegel Mountain in Schafer Gulch              | 1       | 1                          | 1                       | 5          | 8   | 49               | 99             | 52              |
| 25        | Mine on West Side of Henson Between Redcloud and Schafer | 4       | 1                          | 3                       | 5          | 13  | 21               | 53             | 26              |
| 26        | Lower Golconda Mine                                      | 2       | 2                          | 2                       | 5          | 11  | 37               | 88             | 46              |
| 27        | Upper Golconda Mine                                      | 1       | 5                          | 1                       | 5          | 12  | 28               | 45             | 21              |

|           |                                                                 |         | Individual                 | Physical Rank           |            |         |                  |                |                 |
|-----------|-----------------------------------------------------------------|---------|----------------------------|-------------------------|------------|---------|------------------|----------------|-----------------|
| Site<br># | Description                                                     | Erosion | Distance<br>to<br>Drainage | Vegetation<br>Kill Zone | Vegetation | Sum     | Physical<br>Rank | Overall<br>Sum | Overall<br>Rank |
| 28        | Lower Mine on Northwest Side of Gravel Mountain                 | 1       | 1                          | 1                       | 5          | 8       | 49               | 119            | 64              |
| 29        | Upper Mine on Northwest Side of Gravel Mountain                 | 1       | 1                          | 1                       | 5          | 8       | 49               | 116            | 59              |
| 30<br>31  | Chicago Tunnel                                                  | 3       | 5<br>2                     | 1                       | 2          | 11<br>7 | 37<br>57         | 101<br>119     | 53<br>64        |
| 31        | Upper Dolly Varden Fine Waste<br>Upper Dolly Varden Brown Waste | 2       | 2                          | 1                       | 2          | 7       | 57               | 123            | 66              |
| 33        | Lower Dolly Varden                                              | 2       | 2                          | 1                       | 2          | 7       | 57               | 87             | 45              |
| 34        | Horseshoe Basin Mine West                                       | 1       | 2                          | 1                       | 2          | 6       | 62               | 109            | 56              |
| 35        | Highland Mine                                                   | 2       | 2                          | 3                       | 1          | 8       | 49               | 80             | 41              |
| 36        | Schafer Basin Mine West Side                                    | 1       | 1                          | 1                       | 3          | 6       | 62               | 74             | 37              |
| 37        | Schafer Basin Mine East Side Upper                              | 1       | 1                          | 1                       | 5          | 8       | 49               | 117            | 60              |
| 38        | Schafer Basin Mine East Side Lower                              | 1       | 1                          | 3                       | 5          | 10      | 42               | 90             | 47              |
| 39        | Moro Tunnel                                                     | 1       | 2                          | 3                       | 2          | 8       | 49               | 98             | 51              |
| 40        | Hanna Mill Tailings                                             | 2       | 4                          | 1                       | 5          | 12      | 28               | 51             | 25              |
| 41        | Vulcan Mine                                                     | 2       | 2                          | 1                       | 5          | 10      | 42               | 81             | 42              |
| 42        | Yellowstone Mill Tailings East                                  | 2       | 4                          | 5                       | 5          | 16      | 12               | 23             | 7               |
| 43        | Yellowstone Mill Tailings West                                  | 4       | 4                          | 5                       | 5          | 18      | 4                | 10             | 5               |
| 44        | Capital City Mine                                               | 3       | 2                          | 1                       | 5          | 11      | 37               | 57             | 29              |
| 45        | Yellow Medicine Mine                                            | 2       | 5                          | 1                       | 5          | 13      | 21               | 48             | 24              |
| 46        | Mountain Belle Lode                                             | 3       | 5                          | 1                       | 3          | 12      | 28               | 47             | 23              |
| 47        | Dump at gate below Czarina (Broker Lode)                        | 2       | 4                          | 1                       | 5          | 12      | 28               | 35             | 17              |
| 48        | Excelsior Lode                                                  | 3       | 5                          | 5                       | 5          | 18      | 4                | 8              | 4               |
| 49        | Lucky Strike Mine                                               | 2       | 1                          | 1                       | 2          | 6       | 62               | 118            | 63              |
| 50        | Vermont Mine                                                    | 3       | 5                          | 1                       | 5          | 14      | 17               | 53             | 26              |
| 51        | Four Aces Lode                                                  | 4       | 1                          | 4                       | 3          | 12      | 28               | 86             | 44              |
| 52        | Little Casino                                                   | 5       | 1                          | 4                       | 3          | 13      | 21               | 57             | 29              |
| 53        | Four Aces Lode                                                  | 3       | 1                          | 3                       | 3          | 10      | 42               | 58             | 31              |
| 54        | Wave of the Ocean                                               | 3       | 4                          | 1                       | 5          | 13      | 21               | 31             | 14              |
| 55        | Red Rover Tunnel/Little Hattie Lode                             | 5       | 5                          | 3                       | 5          | 18      | 4                | 22             | 6               |
| 56        | Pride of America Mine                                           | 5       | 5                          | 4                       | 3          | 17      | 9                | 23             | 7               |
| 57        | Owl Gulch Mine                                                  | 2       | 4                          | 1                       | 3          | 10      | 42               | 103            | 54              |

|           |                          |         | Individual                 | Physical Rank           |            |     |                  |                |                 |
|-----------|--------------------------|---------|----------------------------|-------------------------|------------|-----|------------------|----------------|-----------------|
| Site<br># | Description              | Erosion | Distance<br>to<br>Drainage | Vegetation<br>Kill Zone | Vegetation | Sum | Physical<br>Rank | Overall<br>Sum | Overall<br>Rank |
| 58        | Yellow Jacket 2nd Level  | 3       | 2                          | 1                       | 2          | 8   | 49               | 84             | 43              |
| 59        | Yellow Jacket 1st Level  | 1       | 2                          | 1                       | 2          | 6   | 62               | 117            | 62              |
| 60        | Hidden Treasure Tailings | 4       | 5                          | 1                       | 5          | 15  | 14               | 29             | 13              |
| 61        | Risorgiomento Mine       | 2       | 4                          | 1                       | 5          | 12  | 28               | 31             | 14              |
| 62        | Mountain Chief Lower     | 2       | 5                          | 3                       | 2          | 12  | 28               | 66             | 34              |
| 63        | Mountain Chief Upper     | 2       | 3                          | 3                       | 3          | 11  | 37               | 79             | 40              |
| 64        | Lower Pelican Mine       | 2       | 5                          | 1                       | 2          | 10  | 42               | 71             | 36              |
| 65        | Middle Pellican Mine     | 2       | 3                          | 1                       | 3          | 9   | 47               | 91             | 48              |
| 66        | Upper Pellic Mine        | 3       | 2                          | 1                       | 2          | 8   | 49               | 95             | 50              |