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ABSTRACT

The principal Upper Cretaceous coal-bearing horizons and coalbed gas exploration and
production targets in the Piceance Basin occur in the Williams Fork Formation, Mesaverde
Group, and are associated with the progradational Rollins-Trout Creek shale and sandstone
shoreline sequence. We have genetically defined the bottom of the Williams Fork Formation as
the base of the Rollins-Trout Creek Shale (Mancos Tongue, maximum flooding surface), above
which a series of at least seven seaward-stepping, progradational sequences extend the Rollins-
Trout Creek shoreline sandstone from R97W to R89W. Coal-bearing strata extend upsection
above the progradational Rollins-Trout Creek Sandstone for approximately 1,500 to 2,000 ft
(460 to 600 m) and are divided into three coal zones (Cameo-Wheeler-Fairfield, South Canyon,
and Coal Ridge) by Mancos tongues (flooding surfaces); net coal thickness averages 80 to 120 ft.
In the absence of the Lewis Shale, the top of the Willlams Fork is defined above coal zone 3
coals and below a thick sequence of fluvial, undifferentiated Upper Cretaceous strata. The
undifferentiated Upper Cretaceous strata above the Williams Fork coals are 1,500 ft (460 m)
thick and locally contain thin, discontinuous coals. The undifferentiated Upper Cretaceous
strata have been assigned Lance Formation status.

The Williams Fork Formation can be further subdivided into several genetic depositional
sequences bounded by regionally extensive, low-resistivity shale markers that represent marine
flooding surfaces. The first regionally correlatable genetic depositional sequence, genetic unit 1,
is a clastic wedge that extended coal-bearing coastal plain deposits beyond the present-day
basin margin. Three depositional systems are recognized in genetic unit 1: (1) a linear shoreline
(strandplain/delta plain) system, backed landward by (2) a coastal plain system, traversed by
fluvial systems feeding the advancing shoreline, which in turn grade into (3) an alluvial plain
system. Genetic unit 1 contains the thickest, most laterally extensive coals (Cameo-Wheeler-

Fairfield coal zone, Bowie Shale Member). Maximum thickness of individual Cameo-Wheeler-



Fairfield coal beds is 20 to 35 ft (6 to 11 m), and net coal thickness ranges from less than 20 ft
(<6 m) to more than 80 ft (>24 m). The most continuous Cameo-Wheeler-Fairfield coal beds
formed landward (westward) of the Rollins-Trout Creek progradational shoreline sandstones and
have extended northward, along depositional strike, for more than 10 mi (16 km) in the
southeastern Piceance Basin. Less continuous, fluvial Williams Fork coal beds occur up the
paleoslope to the west. The western limit of coal occurrence is controlled by the transition
from coastal plain to alluvial plain deposition. To the east, coal beds pinch out against and/or
override the progradational Rollins-Trout Creek shoreline sequences; their ultimate lateral
extent is limited by the final shoreline position beyond which marine conditions prevailed.
Genetic units 2 and 3 are clastic wedges displaying a similar arrangement of depositional systems
to unit 1. Although genetic unit 2 did not prograde as far basinward as unit 1, unit 3 prograded

farther basinward than both units 1 and 2.

Introduction

A regional assessment of coal-bearing stratigraphic units of the Piceance Basin was
undertaken to target those horizons with greatest potential for coalbed gas exploration and
production (Tyler and others, 1994). The Cameo-Wheeler-Fairfield coal zone, Williams Fork
Formation, Mesaverde Group (fig. 1), was identified as containing the thickest, most extensive,
and greatest number of coal seams and was thus selected as the principal focus of this study.

Our approach was to review the existing literature of the Mesaverde Group in the
Piceance Basin and to establish a genetic stratigraphic framework in which detailed analysis of
the coals, and their host sediments, could be carried out. The genetic stratigraphic framework
then provided the basis for delineation of the major depositional systems and mapping of the
distribution and thickness of the coals. This stratigraphic framework further provided a basis for
investigating the depositional controls on coal occurrence and provided a rationale for arriving
at coal and coalbed gas exploration targets and resource estimates. The genetic approach and

concepts applied in the stratigraphic analysis of the Piceance Basin were similar to that used by



Figure 1. Coal-bearing stratigraphic
and confining units in the Piceance
Basin. Modified from Rocky Mountain
Association of Geologists (1977) and
Finley (1984).
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Hamilton (1993, 1994) for the Williams Fork Formation, Mesaverde Group, in the Sand Wash
Basin. The genetic stratigraphy, depositional controls, and lessons learned in the Sand Wash

Basin study have been transferred to the Piceance Basin.

STRATIGRAPHIC SETTING OF THE MESAVERDE GROUP,
PICEANCE BASIN, COLORADO: A REVIEW

The following review of the stratigraphic setting of the Mesaverde Group, Piceance Basin,
Colorado, relies heavily on published regional and field studies and cross sections (fig. 2),
although they were interpreted with insight gained In this study. The Mesaverde Group was
first named by Holmes (1877) for Upper Cretaceous outcrop exposures of interbedded
sandstone, shale, and coal in the San Juan Basin of the Four Corners area. Mesaverde strata
exposed in the Piceance Basin, northwest Colorado, are lithologically similar to but younger
than the Mesaverde at its type section (Weimer, 1960; Collins, 1976). The Mesaverde in
northwest Colorado was deposited in the Eagle Basin of Utah and Colorado. The Eagle Basin was
destroyed by the Late Cretaceous—early Tertiary Laramide Orogeny that formed the Uinta,
White River, Sawatch, and Uncompahgre Uplifts, and the Douglas Creek Arch, which define
the margins of the Piceance Basin (Quigley, 1965; Kauffman, 1977; Johnson and Keighin, 1981).

During the Cretaceous Period, the region now occupied by the Piceance Basin was covered
by the Cretaceous Interior Seaway (Quigley, 1965; Kauffman, 1977). More than 5,000 ft (>1,525
m) of intertonguing marine (shoreface and shelf) and nonmarine (deltaic and fluvial) sediments
was deposited in the Piceance Basin during the Late Cretaceous. Intertonguing of these
deposits resulted from southeastward progradation of the shoreline, which was interrupted by
northwestward shoreline retreat during periods of relative sea-level rise (Spieker, 1949; Young,
1955; Weimer, 1960; Gunter, 1962; Warner, 1964), resulting in the fluvial, paludal,
strandplain/deltaic, and paralic depositional systems (Young, 1955; Warner, 1964; Quigley,

1965; Collins, 1976; Lorenz and Rutledge, 1985; Johnson, 1987, 1989). The coal-bearing
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sequences have been interpreted as wave-dominated linear clastic shoreline (Young, 1966) or
as deltaic deposits (Collins, 1970, 1976).

Collins (1976), Johnson (1987, 1989), Lorenz (1989), and Sandia National Laboratories and
CER Corporation (1987-1990) divide the Mesaverde Group into the two formations first
proposed by Hancock (1925): the basal Iles Formation and the overlying Williams Fork
Formation (fig. 1). Collins (1976) and Johnson (1987, 1989) demonstrated the regressive and
transgressive interfingering relationships between the Mancos Shale and the Morapos,
Castlegate, Lloyd, Sego, Corcoran, Cozzette, and Rollins-Trout Creek sandstones (figs. 3 and 4).
In the southern Piceance Basin, Johnson (1987), Lorenz (1989), Nowak (1990, 1991), Reinecke
and others (1991), and other authors have further subdivided the Williams Fork Formation into
the Bowie Shale Member (Cameo-Wheeler-Fairfield and South Canyon coal zones), the Paonia
Shale Member (Coal Ridge coal zone), and the “undifferentiated” Williams Fork Formation
(Lorenz, 1983b; Johnson, 1989) or fluvial Mesaverde (Reinecke and others, 1991) (figs. S
through 7). The traditionally defined Willlams Fork Formation ranges from 4,600 to 6,400 ft
(1,400 to 2,000 m) thick and is overlain by conglomerates of the Ohio Creek Conglomerate and
sandstone member (Collins, 1976; Dunn and Irwin, 1977; Lorenz, 1989; Johnson, 1987, 1989,
and references therein). This traditional thickness of the Williams Fork Formation is most
certainly too thick. Palynological data and correlation at outcrop between the Sand Wash Basin
and the northern Piceance Basin confirm the presence of equivalent Lewis and Lance
sediments (Newman, 1964; Tyler and others, 1994).

The principal coal-bearing zones in the Mesaverde Group are associated with regressive
shoreline sequences (figs. 3 and 7) (Johnson, 1987, 1989, and references therein; Reinecke and
others, 1991). Thin coal beds in the Iles Formation (Black Diamond coal zone) overlie the
regressive Sego, Corcoran, and Cozzette sandstones. However, the thickest coal beds in the
basin occur in the Willlams Fork Formation (Bowie Shale Member, Cameo-Wheeler-Fairfield coal
zone; Reinecke and others, 1991), which overlies the Rollins-Trout Creek progradational shale

and sandstone sequence. We have operationally defined the base of the Williams Fork
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Formation as the base of the progradational Rollins-Trout Creek shale (maximum flooding
surface of the Mancos Tongue), to be consistent with the sequence stratigraphy defined in the
Sand Wash Basin study (Kaiser and others, 1994). Other coal beds are found in the South
Canyon coal zone (Bowie Shale Member, Williams Fork Formation; Reinecke and others, 1991),
the Coal Ridge coal zone (Paonia Shale Member, Williams Fork Formation; Reinecke and others,
1991) and in the upper, undifferentiated Upper Cretaceous strata (Willlams Fork Formation;
McFall and others, 1986; Lorenz, 1989). This overall regressive package overlies and
intertongues with the Mancos Shale and is probably overlain by the Lance Formation, the Ohio
Creek Conglomerate, and/or the Lewis Shale in various parts of the basin (Collins, 1976; Lorenz,
1989). Detailed descriptions of the coal-bearing formations and their component members

follow.

Iles Formation (Black Diamond Coal Zone)

Interbedded sandstones, siltstones, coals, and shales, having a combined thickness ranging
from 890 to 1,600 ft (270 to 490 m), compose the Iles Formation (Collins, 1976) (figs. 5 and 6).
Sandstones and coalbeds of the Iles Formation were deposited in a regressive, wave-dominated
coastal setting (Young, 1966; Collins, 1976; Finley and Ladwig, 1985; Madden, 198S; Johnson,
1987, 1989; Lorenz, 1989). Marine deposits (shelf, shoreface, barrier-island, strandplain, delta-
front, bay-lagoon, and tidal-inlet) in the Iles Formation grade northwestward (up paleoslope)
into nonmarine deposits (coastal plain marsh and swamp, fluvial, and floodplain). The thickest
coal beds occur landward (northwestward) of thick, northeast-trending barrier-strandplain
sequences (fig. 8) (Finley and others, 1983). These coal beds override the barrier-strandplain
sandstones and pinch out seaward (southeastward) into transgressive mudstones (Finley, 1985).

Black Diamond coal zone. Coal beds in the Black Diamond coal zone overlie progradational
sandstones in the Iles Formation (fig. 6). These sandstones (Sego, Corcoran, and Cozzette
Members) are each 0 to 220 ft (0 to 67 m) thick and contain individual sandstone units that

range from 0 to 100 ft (O to 30 m) thick (fig. 6). Iles sandstones exhibit excellent continuity (S0
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by 75 mi [80 by 120 km]) and are described as blanket sandstones (Lorenz, 1983a). They trend
northeastward and intertongue to the southeast with marine Mancos Shale wedges and to the
northwest with the terrestrial coal-bearing deposits (Young, 1955; Warner, 1964; Finley, 1985)
(figs. 3, 4, and 8). Iles paleoshorelines advanced to the southeast; the greatest advance of the
shoreline was approximately 15 mi (24 km) northwest of the present southeast margin of the
basin (fig. 3). Black Diamond coal beds are interbedded with carbonaceous mudstones or thin
sandstones (Madden, 1985). Two to four Black Diamond coal beds typically occur in the 300-ft
(90-m) thick interval (McFall and others, 1986). Individual coal beds are commonly less than 3
ft (<1 m) thick, although some are as thick as 10 ft (3 m) (fig. 6) (Madden, 1985). Net coal
thickness is also commonly less than 10 ft (<3 m), but in the northeast part of the basin it is
more than 30 ft (>9 m). Black Diamond coal beds are thin or absent in the far west and
southeast parts of the basin (McFall and others, 1986; Johnson, 1989). Black Diamond net coal
thickness trends contain both strike- and dip-parallel elements (McFall and others, 1986). The
Black Diamond coal zone contains the most deeply burled Mesaverde coal beds in the Piceance
Basin; in Rio Blanco and Garfield Counties, these coal beds are more than 12,000 ft (>3,660 m)

deep.

Williams Fork Formation (Cameo-Wheeler-Fairfield, South Canyon, and Coal Ridge Coal Zones)

The Williams Fork Formation overlies the Iles Formation and consists of a series of marine
and nonmarine conglomerates, sandstones, siltstones, mudstones, claystones, coals, and rare
fresh water algal limestones (Collins, 1976). The Willlams Fork Formation, as defined here,
varies from the traditional stratigraphy of Collins (1976), Johnson (1987, 1989), Lorenz (1989),
and Reinecke and others (1991) (figs. S through 7). In this study, the Rollins-Trout Creek shale
and overlying sandstone member, which are traditionally assigned to the uppermost part of the
underlying Iles Formation, are included with the Williams Fork Formation. Depositionally, the
Rollins-Trout Creek shale/sandstone couplet records an episode of marine transgression and

subsequent progradation. Thus, the progradational Rollins-Trout Creek sequence is genetically
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coupled with the Williams Fork to define progradational/aggradational couplets. Above the
Rollins-Trout Creek, in the southeastern Piceance Basin, the Willlams Fork has been divided
into major coal-bearing packages: coal package 1, the Cameo-Wheeler-Fairfield coal zone (Bowie
Shale Member); coal package 2, the South Canyon coal zone (Bowie Shale Member); coal
package 3, the Coal Ridge coal zone (Paonia Shale Member), and finally an upper (very minor)
coal package of undifferentiated fluvial sediments (fig. 7). The Cameo-Wheeler-Fairfield and
Coal Ridge coal zone intervals are separated by marine tongues of the Mancos Shale and
progradational shoreline sandstones of the Middle and Upper Sandstone Members (Reinecke
and others, 1991) (fig. 7). Each sequence consists of a basal marine shale and sandstone that is

overlain by nonmarine coal-bearing rocks.

Rollins-Trout Creek Shale and Sandstone Progradational Sequence

The Rollins-Trout Creek shale and sandstone consists of a major transgressive tongue of the
Mancos Shale (Young, 1955) and a thick progradational shoreline sandstone sequence, which
Collins (1976) interpreted as a prograding bar-beach-delta-front sand complex. This sequence is
less than 100 ft (<30 m) thick in northwestern Mesa County (Dunn and Irwin, 1977), and the
sandstone (Rollins-Trout Creek) can reach 125 ft (38 m) in thickness (Warner, 1964). In the
southeastern Piceance Basin (T10S; R89W), the Rollins-Trout Creek shale and sandstone

progradational sequence is greater than 900 ft (>275 m) thick.

Cameo-Wheeler-Fairfield Coal Zone (Bowie Shale Member)

The Cameo-Wheeler-Fairfield coal zone is the major coal-bearing horizon in the Mesaverde
Group and composes the lowermost 680 ft (207 m) of the Williams Fork Formation above the
Rollins-Trout Creek sandstone member (figs. 5 and 6). It generally consists mostly of shale,
interbedded with sandstone and coal beds. Fresh-water swamps in the coal zone formed

landward of wave-dominated shoreline deposits of the Rollins-Trout Creek sandstone (Lorenz,
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1983b, 1989). These swamp deposits overrode the Rollins-Trout Creek sandstone and, with
continued progradation of the shoreline, resulted in thick, somewhat continuous coal beds
(Collins, 1976). Peat formation was periodically interrupted by transgressions; some lower coal
beds are overlain by nearshore-marine and distributary-mouth-bar sandstones that formed the
platform for subsequent peat swamps (Bell and Wiman, 198S). These sandstones in the Cameo-
Wheeler-Fairfield coal zone are thin, averaging less than 20 ft (<6 m), and occur in strike-
elongate sheets crosscut by lenticular sandstone pods, 370 to 520 ft (113 to 159 m) wide (fig. 6)
(Lorenz, 1989). Maximum sandstone thickness is 35 ft (11 m), and net sandstone thickness is 70
to 110 ft (21 to 34 m) in the eastern part of the Piceance Basin (Madden, 1985; Lorenz, 1989).
Coal beds compose 10 to 15 percent of the Cameo-Wheeler-Fairfield coal zone (Lorenz, 1989).
Thickness of individual seams is as great as 35 ft (11 m) on the eastern margin of the basin
(Collins, 1976). Net coal thickness ranges from less than 20 ft (<6 m) in the southeast part of
the basin to more than 60 ft (>18 m) in the east-central part of the basin (Johnson 1987, 1989).
At the Red Mountain site in northeastern Mesa County, at least five coal beds have a net
thickness of more than 50 ft (>15 m). The thickest coal bed (D coal seam, 16 to 20 ft [4.9 to 6.1
m] thick) at the Red Mountain site is in the lower part of the group, S0 to 150 ft (15 to 46 m)
above the A coal seam (12 ft [3.7 m] thick) that directly overlies the Rollins Sandstone (Bell and
Wiman, 1985). Lower coal beds at the Red Mountain site extend for more than 4 mi (>6.4 km)
parallel to depositional strike (Bell and Wiman, 1985). However, these coal beds are locally
truncated by crosscutting channel-sandstone deposits (Lorenz, 1983b). Coal-seam splits also
occur along margins of channel sandstones. Collins (1976), for example, reported a 35-ft-thick
(11-m) coal seam in the east part of the basin splitting into four thinner coal seams over a
distance of less than 3,000 ft (<1,200 m). Cameo-Wheeler-Fairfield net coal thickness decreases
to less than 20 ft (<6 m) in the southeast part of the Piceance Basin because of seaward pinch-
out of the underlying Rollins sandstone platform into the marine Mancos Shale (Murray and

others, 1977).
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Although coal beds in the Cameo-Wheeler-Fairfield coal zone are thickest and most
continuous in the Piceance Basin, they are more than 6,000 ft (>1,800 m) deep throughout
much of the basin, and as much as 10,000 ft (3,050 m) deep in the northeast part of the basin.
However, Cameo-Wheeler-Fairfield net coal thickness of more than 40 ft (>12 m) is present in
the center and southeast part of the basin, where these coal beds are less than 6,000 ft (<1,800

m) deep (McFall and others, 1986).

South Canyon Coal Zone (Bowie Shale Member)

The South Canyon coal zone occurs directly above the first persistent sandstone outcrop
within the Bowie Shale Member (Collins, 1976), locally known as the middle sandstone. Collins
(1976) separated the South Canyon coal zone from the Cameo-Wheeler-Fairfield coal zone
because of the thick development of coals in that area. Two major coal seams occur in the basal
100 ft (31 m) of the South Canyon coal zone. However, coals in the South Canyon are much
less persistent than those in the Cameo-Wheeler-Fairfield, varying widely in thickness from 3

to more than 20 ft (>1 to 6 m) (Collins, 1976).

Coal Ridge Coal Zone (Paonia Shale Member)

The Coal Ridge Group consists of basal marine shale and sandstone that grades upward into
nonmarine sandstone, siltstone, shale, and coal (fig. 6) (Lorenz, 1983a). This group has a
gradational upper contact with the overlying, undifferentiated sediments and averages 560 ft
(170 m) in thickness in the east part of the basin (Collins, 1976). Sandstone bedding is variable;
the thickest sandstones (12 to 60 ft [3.7 to 18 m] thick, 400 to 600 ft [120 to 180 m] wide) are
lenticular in cross section, linear in plan view (Lorenz, 1989) (fig. 6), and are associated laterally
with thin-bedded sandstone and siltstone. Coal beds in the Coal Ridge Group vary greatly in
thickness over relatively small distances (Collins, 1976). Individual coal beds are commonly less

than S ft (<1.5 m) thick (Lorenz, 1983b) and occur only in the southeast part of the basin,
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where as many as 10 coal seams have a net thickness of as much as 40 ft (12 m) (McFall and
others, 1986). The coal beds are also discontinuous as a result of having formed in restricted
swamps between low-sinuosity distributaries on a low-gradient coastal plain (Lorenz, 1989).

These coal beds commonly contain siltstone partings of overbank (levee and splay) origin.

Undifferentiated Upper Cretaceous Strata (Undifferentiated Mesaverde Formation [Collins,
1976]; Upper Williams Fork Formation [McFall and others, 1986; Lorenz, 1989]; Lance
Formation [Tyler and others, 1994])

Upper Cretaceous strata consist of lithologically variable sediments (conglomerate,
sandstone, siltstone, shale, coal) that range from 2,000 to 4,000 ft (610 to 1,220 m) in thickness.
Lenticular sandstones and thin-bedded coals are common. Regionally, we have correlated the
undifferentiated Upper Cretaceous strata in the Piceance Basin with the Lance Formation in
the Sand Wash Basin.

Thin, minor coal beds are present in the upper strata, but they are commonly
discontinuous and grade into carbonaceous shales interbedded with mudstones and lenticular
sandstones (fig. 6). Thickest coal beds (as much as 3 ft [1 m] thick) occur in the east part of the
basin (Horn and Gere, 1959). Upper Cretaceous coal beds were deposited in stable floodplains
between laterally restricted, anastomosing rivers (Payne and Scott, 1982) or in unstable,

restricted floodplains between meandering streams (Lorenz, 1983a).

REGIONAL GENETIC STRATIGRAPHY, COAL OCCURRENCE, AND CROSS SECTION OF THE
UPPER CRETACEOUS MESAVERDE GROUP, WILLIAMS FORK FORMATION

Tyler and others (1994) and Kaiser and others (1994) proposed a regional genetic
stratigraphic framework for the Piceance and Sand Wash Basins. The Mesaverde Group, as
defined in the Sand Wash Basin (Hamilton, 1993, 1994), was traced southward in the subsurface
into the Piceance Basin. Tyler and others (1994) divided the Mesaverde Group in the Piceance

Basin into the Iles and Williams Fork Formations and the undifferentiated Upper Cretaceous
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strata (fig. 9). The Williams Fork Formation is the most important coal-bearing formation and can
be divided into several genetic depositional sequences, each bounded by marine shales that
define flooding surfaces (fig. 9). The base of the Williams Fork Formation is readily identified by
a characteristic high-conductivity kick on geophysical logs at the base of the Mancos Tongue
(Rollins-Trout Creek shale and sandstone progradational sequence) (fig. 9). This marker
represents a marine maximum flooding surface and is a regional genetic sequence boundary.
Coal-bearing strata extend upsection above the Rollins-Trout Creek sandstone for
approximately 1,500 to 2,000 ft (450 to 600 m) and can be divided into at least three genetic
sequences (coal zones or packages) (Cameo-Wheeler-Fairfield, South Canyon, and Coal Ridge
coal zones) by Mancos tongues/marine flooding surfaces and progradational shoreline
sequences. These genetic sequences correspond regionally to progradational shoreline
sequences of genetic units 1, 2, and 3/4, Sand Wash Basin (Hamilton, 1993, 1994) (figs. 9 and
10). In the absence of the Lewis Shale, the top of the Williams Fork Formation is placed above
genetic sequence 3 (coal package 3) and is associated with a high-conductivity interval, below a
sequence of thick fluvial sandstones (undifferentiated Upper Cretaceous strata) (fig. 9). This
operationally defined boundary separates sand-poor rocks below from sand-rich rocks above and
has been assigned Lewis/Lance Formation status in the Piceance Basin (fig. 1; Tyler and others,
1994). The undifferentiated Upper Cretaceous strata above the Williams Fork Formation are
approximately 1,500 ft (460 m) thick and are characterized by aggradational, sandstone- and
mudstone-rich bed-load to mixed-load fluvial systems. In the southeastern Piceance Basin, the
undifferentiated Cretaceous strata form a clastic wedge that extended shoreline and coastal

plain deposits much farther basinward than genetic units 1, 2, and 3.

Regional Correlation of the Williams Fork Genetic Depositional Sequences in the Piceance and
Sand Wash Basins

Using the genetic stratigraphic framework established in previous studies of the Sand Wash

Basin (Hamilton, 1993, 1994), we readily correlated the Williams Fork Formation and its coal-
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bearing units southward into the Piceance Basin. Identifying the principal bounding surfaces of
the Iles and Williams Fork genetic sequences on the basis of log character, including the
occurrence of Mancos Shale flooding surfaces, bentonite beds (Yampa), and Foraminifera, is
relatively straightforward in the Sand Wash and Piceance Basins (figs. 9 and 10). The Sand Wash
and Piceance Basins occupied a marginal marine setting along the western edge of the Western
Interior Seaway during Mesaverde deposition; the successive clastic wedges are bracketed by
transgressive marine flooding surfaces. Defining genetic bounding surfaces in the
continental/alluvial plain facies to the west of the coastal plains in these basins was more
problematic but still regionally possible (Tyler and others, 1994).

In the Piceance and Sand Wash Basins, the Williams Fork Formation is divided into at least
three to four genetic depositional sequences (coal zones or packages), each bounded by
regionally extensive low-resistivity shale markers (Mancos tongues/marine flooding surfaces).
Each genetic unit is a progradational-aggradational couplet characterized by fluvial-deltaic
sedimentation where a progradational strandplain/delta plain system is flanked landward by a
coastal plain system, which is traversed by a fluvial system feeding the advancing shoreline. In
the southeastern Piceance Basin, the shale markers are easily recognizable, separating
aggradational coal-bearing coastal plain facies of one depositional episode from the overlying
upward-coarsening progradational sequence of the next. In a landward direction (westward),

identification of the shale markers is less precise.

Comparison with Traditional Stratigraphy

In the Piceance Basin the Williams Fork Formation, as operationally defined herein, varies
from the traditional stratigraphy in three main ways:

1. The Rollins-Trout Creek shale and overlying sandstone member, which are traditionally
assigned to the uppermost part of the underlying Iles Formation (Johnson, 1987, 1989, and
references therein; Siepman, 1985), are in this study included with the Williams Fork

Formation. Depositionally, the Rollins-Trout Creek shale/sandstone couplet records an episode
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of marine transgression and subsequent progradation and served as a platform for peat
accumulation. Thus, the progradational Rollins-Trout Creek sequence belongs genetically with
the overlying aggradational Williams Fork Formation (figs. 9 and 10).

2. The operationally defined Williams Fork Formation is made distinct or is separated from
the undifferentiated Upper Cretaceous strata by mapping variations in sandstone and coal
stacking patterns. In his published cross sections, Johnson (1989) showed the upper part of the
Williams Fork Formation as partly equivalent to the Mesaverde Formation. The upper Williams
Fork Formation, as traditionally defined by Johnson (1989) and others, is herein separated into
a distinct genetic sequence; that is, it is a prominent aggradational sequence of interbedded
bed-load and mixed-load fluvial sandstones, together with minor siltstones and coals (figs. 9 and
10). We also correlate the undifferentiated Upper Cretaceous strata as equivalent to the
Lance/Lewis depositional sequence. In the Meeker area the associated rocks contain
arenaceous Foraminifera (Newman, 1965). The presence of Foraminifera indicates that
nearshore marine deposits of the undifferentiated Upper Cretaceous strata are part of the
Lewis transgression and regression (Lewis Shale of the Craig area; Newman, 1964, 1965). Hence,
the traditionally defined thick Williams Fork Formation at Meeker can be split into units that
are time equivalents of the Williams Fork, Lewis, and Lance Formations of the Craig area
(Newman, 1964). Moreover, the coaly sequence above the Lion Canyon Sandstone (the Lion
Canyon Sandstone Member is stratigraphically equivalent to the Fox Hills Sandstone; Gill and
Cobban, 1966) and below the Fort Union Formation contain the gastropod Tulotomopos
Thompsoni, which is restricted to the Lance and equivalent formations (Pipiringos and
Rosenlund, 1977).

3. The genetic depositional sequences of the Williams Fork Formation (genetic units 1, 2,
and 3) cut across many of the traditionally defined lithological boundaries. For example, the
Cameo coal group in the southwestern part of the basin is not genetically related or
stratigraphically equivalent to the South Canyon and Coal Ridge coal groups (fig. 7), as

illustrated in Reinecke and others (1991), but is a coal zone that is found directly above Rollins-
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Trout Creek progradational shoreline sequences. The Cameo-Wheeler-Fairfield, South Canyon,
and Coal Ridge coal zones are genetically separated by progradational/aggradational couplets,

bounded by regional flooding surfaces (retrogradational sequences).

Regionally Correlatable Williams Fork Genetic Sequences

Genetic Unit 1 (Coal Package 1)

The regionally correlatable, lowermost depositional sequence of the Williams Fork
Formation, genetic unit 1, is a clastic wedge bounded by regionally extensive, low-resistivity
shale markers. The lower bounding surface occurs near the base of the Rollins shale member
(Mancos Tongue), where the sequence is characterized by the upward-coarsening,
progradational Rollins sandstone member and overlying aggradational coal-bearing rocks (fig. 9).
The Rollins shale and sandstone member is depositionally equivalent and homotaxial to the
Trout Creek shale and sandstone member in the Sand Wash Basin. The Rollins-Trout Creek
shale and sandstone genetic unit is characterized by seaward-stepping progradational
sequences, extending, in a depositional-dip direction, for over 60 mi (>100 km) into the basin
and containing the thickest and widest linear shoreline (strandplain/delta plain) system in the
entire Mesaverde Group. This stacking pattern is best displayed in a regional cross section
through T9S and T10S, R97W to R89W in the southern Piceance Basin (plate 1), where at least
seven correlatable progradational Rollins-Trout Creek shoreline sequences are recognized (PS-1
to PS-7). Each sequence is bounded by low-resistivity Mancos shale tongues that represent
marine flooding surfaces and consist of upward-coarsening, progradational shoreline sandstones
(plate 1). The youngest regionally correlatable sequences, PS-7 and PS-8, are progradational
shoreline sandstones that extended coal-bearing coastal plain deposits beyond the present-day
basin margin.

Above each progradational sequence, log facies change into aggradational blocky channel-

fill sandstones, interbedded with mudstones and relatively continuous coal beds (Cameo-
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Wheeler-Fairfield coal zone). The basin’s thickest and areally most extensive coals occur in this
zone (fig. 11). Maximum thickness of individual Cameo-Wheeler-Fairfield coal beds is 20 to 35 ft
(6 to 11 m), and net coal thickness ranges from less than 20 ft (<6 m) to more than 80 ft (>24
m). The most continuous coal beds form just landward (westward) of each Rollins-Trout Creek
progradational shoreline sequence. Less continuous, fluvial Williams Fork coal beds occur up the
paleoslope to the west, the western limit of coal occurrence being controlled by the transition
from coastal plain to alluvial plain deposition. To the east, coal beds pinch out against and/or
override the progradational Rollin-Trout Creek shoreline sequences; their ultimate lateral

extent is limited by the final shoreline position beyond which marine conditions prevail.

Genetic Unit 2 (Coal Package 2)

The second regionally correlatable, genetic depositional sequence, unit 2, is a clastic wedge
similar to that of unit 1, except that it did not prograde as far basinward as unit 1. In the
southeastern Piceance Basin, unit 2 is subdivided into two genetic units, units 2a and 2b (fig. 9).
Unit 2a is bounded by regionally extensive, low-resistivity shale markers. The lower boundary is
a flooding surface that terminates the coal-forming conditions of unit 1 (fig. 9). The upper
bounding surface is a minor transgressive event (flooding surface), and the log-pattern change
above this marker is subtle. Unit 2a is characterized by the upward-coarsening, progradational
log patterns of the lower member of the Middle Sandstone (Collins, 1976; Reinecke and others,
1991) in the southeastern parts of the basin and by overlying minor aggradational coal-bearing
rocks. Log facies change to the northwest into aggradational blocky channel-fill sandstones,
interbedded with mudstones and discontinuous coal beds.

The third regionally correlatable genetic depositional sequence of the Williams Fork
Formation, unit 2b, is a clastic wedge that possibly extended shoreline and coastal plain
deposits farther basinward than unit 2a, but not as far as unit 1. Unit 2b is also bounded by
regionally extensive, low-resistivity shale markers (fig. 9). The flooding event that defines the

base of unit 2b is minor when compared to other flooding surfaces that punctuate the Williams
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Fork Formation. Thus, the facies offset from underlying mudstone-rich coal-bearing rocks of unit
2a is subtle. The lower boundary is the maximum flooding surface that precedes the upper
member of the Middle Sandstone progradation and the overlying aggradational coal-bearing
rocks (South Canyon coal zone). Log facies change to the northwest into aggradational blocky
channel-fill sandstones, interbedded with mudstones and discontinuous coal beds. The upper
boundary represents another transgressive event, a flooding surface at the base of unit 3.
Recognition of genetic units 2a and 2b is limited to the central and eastern parts of the
Piceance Basin (fig. 12), east of R97W. Confident correlation of the maximum flooding surface is
possible east of ROSW. To the west of R9SW, genetic sequence correlation becomes difficult but

is still possible.

Genetic Unit 3 (Coal Package 3)

The uppermost regionally correlatable genetic depositional sequence of the Williams Fork
Formation is genetic unit 3. It is characterized by progradational and aggradational sandstone-
and mudstone-rich deposits with minor coal-bearing (Coal Ridge coal zone) horizons. In the
southeastern Piceance Basin, unit 3 is dominated by the upward-coarsening and blocky log
profiles of the Upper Sandstone progradation (fig. 9), which extended shoreline and coastal
plain deposits farther basinward than unit 1. To the northwest, the log facies change to mud-
rich aggradational patterns. The upper bounding surface that operationally separates the
Williams Fork Formation from the overlying undifferentiated Upper Cretaceous strata is defined
on geophysical logs as a change in stacking pattern to blocky, thick fluvial sandstones and
accompanying high-conductivity kicks. Coal-bearing strata of genetic unit 3 are limited to the

eastern part of the Piceance Basin, east of R9SW (fig. 13).
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Coal Occurrence of the Williams Fork Formation

Coal Identification and Mapping

Coals are identified on geophysical logs by low bulk density, low natural gamma response,
very high resistivity, high neutron and density porosities, low sonic velocity, and/or low
neutron count. Combinations of these criteria were used because no uniform well log suite was
available. Bulk density or sonic logs were run in most wells, and these are the most reliable logs
for coal identification. However, natural gamma response was consistently low for all coal beds
and was used in conjunction with very high resistivity and shalelike SP response to
operationally define coal in some wells.

Regional net coal mapping was undertaken throughout the Piceance Basin. In some areas
net coal thickness is inferred because of the lack of data or because of the assimilation of coals
by Tertiary intrusive sills. Caution in net coal mapping is advised where thrusting has resulted in
the duplication of the coal-bearing section, especially along the Grand Hogback, Divide Creek
Anticline, and the Danforth Hills/Wilson Creek area. Unusually thick net coal, in excess of 120
ft (>36 m), may indicate duplication of the coal section. Confirmation of the thrust duplication
of the coal-bearing section will be addressed once regional seismic data have been obtained and
interpreted. Furthermore, the following discussion of coal depositional systems inferred from
coal orientation is undertaken using a net coal map that is an aggregate or average of several

genetic sequences and as such is appropriate for regional interpretation.

Net Coal Occurrence

In the Piceance and Sand Wash Basins, conditions for peat accumulation and preservation
occur on the coastal plain immediately landward of shoreline (strandplain/delta plain)
sandstones (Hamilton, 1993, 1994; Tyler and others, 1994). Bypassing of coarse clastic sediment,

maintenance of high water tables, and optimum subsidence combine in this setting to favor
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peat accumulation. Gradual westward thinning of coals toward the coastal plain/alluvial plain
transition is explained by a lowering water table associated with the rise in surface gradient of
the alluvial plain (Hamilton, 1993, 1994; Tyler and others, 1994). Coals also thin to the east as
they pinch out against and override the shoreline sandstones. Marine conditions ultimately
limit coal distribution to the east.

In the Piceance Basin coals are thickest in a north-trending belt (fig. 14). Net coal
thickness of the Williams Fork Formation is at a maximum thickness in the eastern Piceance
Basin, where it is as much as 150 ft (45 m), averaging between 80 to 120 ft (24 to 36 m) (fig.
14). In the southeastern Piceance Basin, coals are thickest in the vicinity of the Divide Creek
Anticline. Data are scarce on Williams Fork Formation coal distribution between TS5S-T1N,
R92W-R97W, north of the Colorado River and approximately 24 mi (38 km) west of the Grand
Hogback. North of the White River and east of R98W, net coals of the Williams Fork are
oriented northeastward and exceed 150 ft (>45 m) in thickness. Generally the net coal
thicknesses average between 80 and 150 ft (24 and 45 m). The thick net coal values may reflect
structural duplication of section. Net coal thickness decreases westward to less than 50 ft (<15
m) west of R97W. Thinning also occurs in the southeasternmost part of the basin, where net
coal thickness is less than 30 to 40 ft (<9 to 12 m). The thickest and most laterally extensive
coals occur in Williams Fork genetic unit 1, the lowermost genetic unit. These coals are
generally concentrated in the eastern half of the basin, southeast of the Colorado River and

northeast of the White River.

Coal Seam Continuity

Continuity of the Williams Fork coals is highly variable. Some individual coal beds were
correlatable in the subsurface throughout the eastern half of the Piceance Basin for up to 30 mi
(48 km); however, some coal beds only partially extended to the southern and northeastern
outcrop belts. Coal seam continuity is critical to coal gas production and water production

because (1) coal seams with considerable continuity provide pathways for diffusion and long-
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distance migration of coal gases and (2) continuous coals act as major aquifers. Any lack of
communication between outcrop and subsurface will influence the hydrodynamics and
producibility of coal gases within the basin.

Variability in coal continuity is demonstrated in detailed regional and local genetic
stratigraphic cross sections (plate 1). Although some coal seams could be traced by their
characteristic density and gamma-ray log profiles over most of the southeastern half of the
basin, others could be correlated only when grouped within coal packages. Genetic unit 1 coals
are somewhat continuous from the subsurface to the outcrop belts in the south and southeast
and are thus potential conduits for basinward flow of ground water (plate 1). However, where
genetic unit 1 coals reach outcrop, they are reduced in number and total thickness relative to
the area immediately basinward in R9OW-R93W (plate 1). Thus, not all coal beds are positioned
to receive recharge and their ability to transmit water basinward is reduced.

In the southern Piceance Basin, genetic unit 2 coals are less continuous in the subsurface
than genetic unit 1 coals and most do not extend to outcrop because their platform of
accumulation does not prograde far enough to the east. Genetic unit 2 coals are unlikely to
provide potential for interconnected aquifer systems. Genetic unit 3 coals increase in

abundance and thickness toward outcrop but have limited westward extent into the basin.

Depositional Systems

Three major depositional systems are identified in the coal-bearing Williams Fork
Formation from the geometry of framework sandstones and coals and from log facies. A linear
shoreline (strandplain/delta plain) system dominates the southeastern part of the basin and is
backed landward by a coastal plain system that grades westward into a predominantly fluvial
system. Numerous strike-oriented (north to north-northwest) sandstone trends are apparent in
the shoreline system. This, coupled with the strong upward-coarsening log motifs, provides
evidence of shoreline progradation. The coastal plain was largely an area of sediment bypass,

and the aggradational log patterns that characterize this system reflect thick coals and
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interbedded mudrocks. The coastal plain passes landward (westward) into alluvial plain and
fluvial systems. Log patterns are aggradational and assoclated with thick, stacked channel

sandstones with interbedded floodplain muds.

Geologic Controls on Coal Seam Occurrence

Peat accumulation, metamorphism, and preservation as coal depend on three critical
factors: (1) substantial growth of vegetation, (2) maintenance of the water table near the
sediment surface, and (3) nondeposition of clastic sediment during peat accumulation.
Substantial vegetation growth is determined mostly by climate, and the second two critical
factors are controlled by the depositional systems, basin subsidence, and hydrology (Hamilton,
1993, 1994; Tyler and others, 1994). The depositional systems provide the framework within
which the peat swamps are established and, combined with subsidence and hydrologic regime,
are important in maintaining optimum water table levels for peat preservation,

The ideal location for preservation of the peat is immediately behind the shoreline
system, a regional discharge area where water tables are maintained at optimum levels. Basin
subsidence is also an important undetlying control on coal occurrence. It determines the
location of clastic sedimentation and accommodation space for peat accumulation and
preservation. The Williams Fork coals are oriented north to northeast, which parallels the basin
subsidence trend. The coals thin to the east and southeast and are ultimately limited by the
final position of the shoreline, beyond which marine conditions existed. The western limit of
Williams Fork coal-bearing horizons is controlled by the transition from coastal plain to alluvial

plain deposition.

CONCLUSIONS

1. The Williams Fork Formation is defined on the basis of correlation with the Williams

Fork of the Sand Wash Basin. The Williams Fork Formation has a single major coal-bearing

34



horizon, the Cameo-Wheeler-Fairfield coal zone, that ranges from 300 to 600 ft (91 to 183 m)
thick and lies at an average depth of approximately 6,000 ft (~1,800 m). The most continuous
and thickest coal beds (individual seams from 20 to 35 ft [6 to 11 m] thick) formed in coastal
plain environments landward (westward) of the progradational strandplain/delta plain deposits
of the Rollins-Trout Creek sandstone.

2. The Williams Fork Formation can be divided into several genetic depositional sequences.
These sequences were deposited during discrete episodes of shoreline advance and retreat and
are bounded by regionally extensive, low-resistivity shale markers that represent marine
flooding surfaces in the basinward direction and hiatal, nondepositional surfaces in terrestrial
facies.

3. The stratigraphically lowest regionally correlatable genetic depositional sequence, unit
1, is a clastic wedge that extended coal-bearing coastal plain deposits beyond the present-day
basin margin. Three depositional systems are recognized in the genetic unit. A north- to
northeast-oriented linear shoreline system dominated the easternmost part of the basin and
was backed landward by a coastal plain system, which in turn graded westward into an alluvial
plain system. Genetic units 2 and 3 are clastic wedges displaying a similar arrangement of
depositional systems to unit 1, but genetic unit 2 did not prograde as far basinward as unit 1,
whereas unit 3 prograded farther basinward than both units 1 and 2.

4. Genetic unit 1 contains the thickest, most laterally extensive coals. Coal occurrence in
all units is concentrated in the southeastern and northeastern parts of the basin, landward of
linear shoreline systems. Genetic units 1, 2, and 3 coals are concentrated in the eastern half of
the basin and are thickest in a north-south-trending belt west of the Divide Creek Anticline. In
the southern Piceance Basin, net coal thickness of the Williams Fork Formation averages 80 to
120 ft (24 to 36 m). Data are scarce on Williams Fork Formation coal distribution between TS5S-
TIN and R97W-R92W, north of the Colorado River, and for approximately 24 mi (39 km) west

of the Grand Hogback. North of the White River and east of R98W, net coals of the Williams
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Fork exceed 150 ft (>45 m) thick but generally average between 80 and 150 ft (24 and 45 m)
thick.

5. Coal occurrence in all units is intimately related to the depositional systems. The coastal
plain immediately landward of the shoreline (strandplain/delta plain) system was the optimum
site for peat accumulation and preservation in Williams Fork genetic units 1 through 3. Coal
beds pinch out against and/or override the shoreline sandstone to the east, and their ultimate
lateral extent is limited by the final shoreline position beyond which marine conditions
prevailed. In a landward direction, they are limited by rising surface gradient and falling water
table, controlled by the transition from coastal plain to alluvial plain.

6. Continuity of the Williams Fork coals is variable. Some individual seams, particularly in
genetic unit 1, are correlatable for up to 30 mi (48 km) in the southeastern half of the basin on
the basis of their density and gamma-ray profiles. Other seams could be correlated only when
grouped within coal packages. The coals of unit 1 are only moderately continuous from the
subsurface to the southern, southeastern, and northeastern outcrop belts.

7. Limited recharge may have implications for the producibility of coal gas. In the absence
of dynamic ground-water flow, less gas is dissolved and swept basinward for eventual resorption
and conventional trapping along potential no-flow boundaries. At the same time, the
generation of secondary biogenic gases is minimized. Thus, without additional sources of gas
beyond that sorbed on the coal surface, high coal-gas productivity may be precluded. Perhaps
the parts of the basin with the best potential for coal-gas production lie in conventional traps

basinward of areas where outcrop and subsurface are in good hydraulic communication.
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