

College of Agricultural Sciences

Department of Horticulture and Landscape Architecture Department of Soil and Crop Sciences Extension

Arkansas Valley Research Center 2009 Reports

COLORADO STATE UNIVERSITY

Agricultural Experiment Station

Arkansas Valley Research Center – 2009 Reports

Editor: Michael Bartolo, Manager, Arkansas Valley Research Center

Funding Provided by the Colorado Agricultural Experiment Station

Acknowledgements:

The projects described in this report would have not been possible without the hard work and dedication of Kevin Tanabe, Lane Simmons, and Jeff Davidson. We also would like to thank Ray Muniz and the student hourly workers for their efforts. We appreciate the support of numerous growers, community members, on-campus faculty and staff, and graduate students who have contributed greatly to the operation of the Research Center.

Disclaimer:

Mention of a trademark or proprietary product does not constitute endorsement by the Colorado Agricultural Experiment Station.

Colorado State University is an equal opportunity/affirmative action institution and complies with all Federal and Colorado State laws, regulations, and executive orders regarding affirmative action requirements in all programs. The Office of Equal Opportunity is located in 101 Student Services. In order to assist Colorado State University in meeting its affirmative action responsibilities, ethnic minorities, women, and other protected class members are encouraged to apply and to so identify themselves.

Cover: Cantaloupe grown in drip irrigation trials.

Arkansas Valley Research Center Rocky Ford, Colorado

Staff

Michael Bartolo Lane Simmons Kevin Tanabe Manager, (Horticulture) Research Associate Research Associate

Cooperators

Lee Sommers, Director, CSU Agricultural Experiment Station Frank Johnson, Associate Director, CSU Agricultural Experiment Station Gary Peterson, Department Head, Soil and Crop Sciences Steve Wallner, Department Head, Horticulture and Landscape Architecture Ardell Halvorson, Soil Scientist, USDA-ARS Jerry Johnson, Crop Scientist, C.S.U., Department of Soil and Crop Sciences Scott Haley, Wheat Breeder, C.S.U., Department of Soil and Crop Sciences Kevin Larson, Crop Scientist, C.S.U., Plainsman Research Center Jim Hain, Research Associate, C.S.U., Department of Soil and Crop Sciences Curtis Reule, Soil Scientist, USDA-ARS Howard Schwartz, Plant Pathologist, C.S.U., Dept. of BSPM Lorenz Sutherland, Soil Scientist, USDA-NRCS Whitney Cranshaw, Entomologist, C.S.U., Dept. of BSPM Dale Straw, Colorado Division of Water Resources Tom Ley, Colorado Division of Water Resources Jim Valliant, CSU Extension and Agricultural Experiment Station

2009 Advisory Council Members ARKANSAS VALLEY RESEARCH CENTER

<u>County</u>	Term Expires	Name and Address
Bent	2011 2009 2010	Bill Elder, 13500 Hwy. 50, Las Animas, CO 81054 *Kim Siefkas, 32470 CO Rd 10, Las Animas, CO 81054 Ed Blackburn, 6619 Hwy. 194, Las Animas, CO 81054
Crowley	2011 2009 2010	*John Tomky, 4413 Ln 8.5, Olney Springs, CO 81062 Matt Heimerich, 5325 Ln. 9 ½ , Olney Springs, CO 81062 Gary Gibson, 8323 Co. Ln 10, Olney Springs, CO 81062
El Paso	2011	Jay Frost, 18350 Hanover Rd., Pueblo, CO 81008
Huerfano		
Las Animas	s 2011 2009 2010	Allen Nicol, Box 63, Hoehne, CO 81046 *Paul E. Philpott, Box 3, Hoehne, CO 81046
Otero	2011 2009 2010	Glenn Hirakata, 26250 Rd 22, Rocky Ford, CO 81067 Hans Hansen, 36606 Rd JJ, La Junta, CO 81050 *Dennis Caldwell, 25026 Rd 19, Rocky Ford, CO 81067
Prowers	2011 2009 2010	Vacant Leonard Rink, 21971 Hwy. 196, Bristol, CO 81028 Jim Ellenberger, 36101 Rd 11½, Lamar, CO 81052
Pueblo	2011 200 2010	*Robert Wiley, 52699 Olson Rd., Boone, CO 81025 Clay Fitzsimmons, 36038 South Rd, Pueblo, CO 81006 Dan Genova, 33200 South Rd, Pueblo, CO 81006
El Paso Otero Las Animas Prowers Pueblo Regional NRCS	5	Extension Personnel and Other Cooperators Jonathan Vrabec, 305 S. Union, Colo Springs, CO 80910 Natalie Edmundson, Rocky Ford, CO 81089 Dean Oatman, 200 E. 1 st , Rm. 101, Trinidad, CO 81082 Scott Brase, 1001 S. Main, Lamar, CO 81052 Frank Sobolik, Courthouse, Pueblo, CO 81003 Joel Plath, 2200 Bonforte Blvd, Pueblo, CO 81001-4901 John Knapp, 29563 Road 18, Rocky Ford, CO 81067 Lorenz Sutherland, 318 Lacy, La Junta, CO 81050

TABLE OF CONTENTS

FIELD CROPS

Field Crop Variety Performance Trials	
Alfalfa	1
Winter Wheat	2
Field Corn	3
Corn Glyphosate Antagonism Trial	4
Corn Fallow Trial	6

VEGETABLE CROPS

Onion Variety Trial	8
Onion Thrips Tolerance Trial	11
Effect of Water Quality on Cantaloupe Yield and Quality	14
Effect of Water Quality on Watermelon Yield and Quality	18
Organic Seed Production Trial	22
Cantaloupe Foliar Nutrient and Growth Regulator Trial	25

Alfalfa Variety Performance Test at Rocky Ford - 2009

Michael E. Bartolo¹

Summary

The 2009 results of Colorado State University's alfalfa variety test at Rocky Ford are presented below in Table 1. Plots were planted on August 10, 2007 and data for 2009 are for the second year of a three-year testing period. The field is furrow-irrigated and appropriate measures were taken to maintain the plots in a pest-free condition. The summer of 2009 was fairly normal and harvest conditions were generally good for all cuttings.

Table 1. Forage yields of 15 alfalfa varieties at the Arkansas Valley Research Center at Rocky Ford in 2009.

Variety	Source	1 st	2 nd	3 rd	4 th		_
		Cut	Cut	Cut	Cut	Tatal	2-yr
		June 4	July 15	Aug 25	Oct 5	Total	Total
		-	13	20	J		
					tons pe	r acre	
Magnum VI	Dairyland Seed Co.	2.95	2.75	2.01	1.01	8.74	15.23
Medalist	Intermountain Farmers	2.84	2.45	2.19	1.09	8.59	15.00
Masterpiece	JR Simplot Co	2.79	2.42	2.14	1.15	8.51	14.95
WL 363HQ	W-L Research	2.80	2.37	2.17	1.22	8.58	14.92
FSG 5285F	Allied Seed	2.61	2.25	2.09	1.14	8.09	14.89
LegenDairy 5.0	Croplan Genetics	2.64	2.41	2.21	1.10	8.37	14.74
5454	Pioneer	2.66	2.34	1.98	1.02	8.02	14.63
Integra 8400	Wilbur-Ellis Co.	2.76	2.24	2.19	1.14	8.34	14.56
Oneida	Cornell University	2.59	2.50	2.03	1.06	8.20	14.54
Vernal	USDA-WI AES	2.88	2.36	2.09	1.08	8.41	14.51
Lariat	JR Simplot Co	2.65	2.42	1.99	1.10	8.18	14.40
CW 500	Producer's Choice	2.58	2.58	1.98	1.15	8.30	14.47
PGI 424	Producer's Choice	2.54	2.40	1.90	1.08	7.93	14.27
Ameristand	America's Alfalfa	2.76	2.10	2.07	1.09	8.03	14.25
407TQ							
WL 343 HQ	W-L Research	2.58	2.18	1.89	1.11	7.76	13.79
Average		2.71	2.40	2.06	1.10	8.27	14.61
CV (%)		12.05	10.29	8.74	5.42	6.18	
LSD (0.1)		0.39	0.29	0.21	0.07	0.61	

*Yields were calculated on an air-dry basis.

Site Information:

Elevation 4178 ft Soil: Rocky Ford Silty Clay Loam

Precipitation - April 1, 2009 to Sept 30, 2009 = 7.81 inches

Last Spring Frost - April 8, 2009 / First Fall Frost - October 2, 2009

2009 Research Reports

Winter Wheat

Variety Trial

Jerry Johnson, Scott Haley, Kevin Larson and Michael Bartolo Colorado State University

Variety	Yield	Test Weight	Height	Lodging	BYDV
				<u>scale 1-</u>	<u>scale 1-</u>
	<u>bu/ac</u>	<u>lb/bu</u>	<u>in</u>	<u>9*</u> 2	9**
Aspen	107.0	55.5	35		4
Settler CL	106.2	58.5	36	1	1
Thunder CL	105.9	56.1	37	4	2
CO04393	105.7	59.0	37	5	3
TAM 111	101.9	59.3	38	4	3
Keota	100.7	58.2	40	4	1
Jagalene	100.5	58.0	38	3	4
CO04499	95.8	58.6	40	6	2
Hitch	94.1	56.4	36	4	4
Prairie Red	91.6	56.6	34	8	1
Ripper	91.1	54.5	35	6	3
NuDakota	90.5	55.3	36	3	6
Bond CL	89.2	56.1	38	5	3
Armour	88.3	55.6	32	5	2
Anton	85.9	58.7	38	4	4
Danby	85.6	57.7	38	9	3
OK Rising	81.7	56.7	36	1	3
Fuller	80.3	55.7	35	6	4
Yuma	79.5	55.7	36	5	6
CO03W054-2	79.0	56.3	37	8	3
TAM 112	78.7	58.1	36	8	2
AP00x0100-51	78.4	54.9	36	3	4
Ankor	77.3	54.5	37	7	3
Mace	76.4	55.9	37	2	5
Bill Brown	76.2	56.7	34	7	6
Hawken	70.9	54.3	31	6	5
Hatcher	62.3	54.9	34	8	3
CO03064-2	61.7	54.9	37	6	7
Trial					
Average	87.2	56.5	36	5	4
LSD _(0.30)	4.7				
Harvest date:	7/13/2009		Planting date:	10/7/08	

2009 Irrigated Corn Variety Performance Trial at Rocky Ford

Jerry Johnson, Michael E. Bartolo, and Jim Hain

		Grain	Test	Plant	Plant	
Hybrid	Yield	Moisture	Weight	Height	Population	Lodging
	bu/ac	%	lb/bu	in	plants/ac	%
Croplan 6168	297.6	17.5	58.9	93.3	34848	3.7
Triumph 1536 H	267.4	16.6	58.6	90.7	32670	1.3
Mycogen 2T789	274.6	16.4	58.6	92.3	32670	3.3
Mycogen 2T804	296.2	16.6	58.9	91.3	34122	2.3
LG Seeds 2V732	288.6	16.2	58.0	89.7	36300	1.3
Triumph 7514X	278.2	16.9	57.7	87.7	34848	1.7
LG Seeds 2619VT3	291.1	16.7	57.5	93.0	36000	0.3
LG Seeds 2642VT3	297.2	17.0	57.2	91.3	35574	0.7
Syngenta NK N72K-GT/CB/LL	296.2	17.6	56.7	95.0	34848	3.7
Syngenta NK N74C-3000GT	286.2	17.1	57.9	93.7	34848	0.0
Triumph 1305X	259.8	16.0	58.0	89.0	35574	2.0
Average	284.8	16.8	58.0	91.5	34755	1.8
LSD _{0.30}	16.5					
LSD _{.05}	32.3					

 $LSD_{0.30}$ is the most useful for producers using these results to select a variety but some collaborators find $LSD_{0.05}$ useful.

Experimental Design: randomized complete block, 3 replications.

Harvested Plot size: 5' x 30'

Site Information

Collaborator:	Arkansas Valley Research Center (Mike Bartolo)
Soil type:	Rocky Ford silty clay
Previous Crop:	Alfalfa

Planting Date:	4/30/2009
Irrigation:	furrow
Fertilization:	N-P-K (202-104-0) lb/ac
Herbicide:	Dicamba
Insecticide:	Comite II

2009 Research Reports

Michael Bartolo and Jeff Davidson Arkansas Valley Research Center Colorado State University

Corn used for grain or silage is an important crop in the Arkansas Valley and other regions of the state. The majority of the corn grown in the Arkansas Valley is genetically-modified and often contains resistance to the herbicide glyphosate. Glyphosate-resistant or "Round-up Ready" corn has proven to be an important component of a successful weed control program. Although glyphosate is a valuable tool in corn production, there has been some concern that, under certain circumstances, glyphosate applications may depress yields. Because of this potential, this study was conducted to determine the effect of glyphostate applications on corn grain yield on two different corn hybrids. In addition, the effects of a commercially available foliar fertilizer, sprayed in conjunction with glyphosate, were also assessed.

Overall, there was not a significant (p=0.1) decrease in grain yield by the application of glyphosate compared to an unsprayed control. Conversely, the unsprayed controls had lower yields in both varieties. The addition of a commercially available foliar fertilizer did not improve yields when applied in combination with glyphosate. However, when sprayed alone, the foliar fertilizer did improve yield above the unsprayed control.

METHODS

This study was conducted with conventional tilled, furrow-irrigated corn on a calcareous Rocky Ford silty clay loam soil at Colorado State University's Arkansas Valley Research Center (AVRC) in 2009. The Center is located near Rocky Ford, Colorado. The plot area had previously been in alfalfa during 2008. The corn hybrid CROPLAN 6818 (114 days) was planted on April 30, 2009 at a seeding rate of about 32,000 seeds per acre. A single line of corn was planted on top of the bed with a 30 inch row spacing (furrow to furrow). Conventional corn production practices were used throughout the course of the season. Irrigation was by gravity-flow furrows with water being applied to every other furrow (every 60 inches). One or two spray treatments were applied depending on the treatment, occurring on June 12 and June 24 at the V3 and V7 stage of corn development, respectively. All materials were applied with a hand-held sprayer (2 gal. capacity) in water (30 gal per acre). A randomized complete block design with 4 replications was used. Each plot was 4 beds wide (10 feet) and 36 feet long. The corn was harvested at full black layer maturity on October 31.

<u>Table 1</u>: Yield (bu/acre) of corn grown for grain following applications of glyphosate and foliar fertilizers. All yields were adjusted to a grain moisture content of 15.5%.

Treatment	Rate	Yield bu/acre (adjusted to 15.5 % moisture and a bu. weight of 58.8 lbs)
Unsprayed Control (Conventional)	-	276.6
Roundup Weather Max +	22 fl oz/a	287.8
Class Act NG	2.5% v/v	
AGM 07027 (Conventional)	1 qt/a	274.2
Roundup Weather Max +	22 fl oz/a	282.7
Class Act NG +	2.5% v/v	
AGM 07027	1 qt/a	
Roundup Weather Max +	22 fl oz/a	272.2
Class Act NG +	2.5% v/v	
AGM 07027 +	1 qt/a	
AGM 08005	3.2 fl oz/a	
Roundup Weather Max +	22 fl oz/a	286.1
Class Act NG	2.5% v/v	
12 Days Later		
Roundup Weather Max +	22 fl oz/a	
Class Act NG +	2.5% v/v	
AGM 07027	1 qt/a	
Roundup Weather Max +	66 fl oz/a	301.8
Class Act NG	2.5% v/v	
Roundup Weather Max +	66 fl oz/a	284.6
Class Act NG +	2.5% v/v	
AGM 07027	1 qt/a	
Roundup Weather Max +	22 fl oz/a	275.9
Class Act NG	2.5% v/v	
12 Days Later		
Roundup Weather Max +	66 fl oz/a	
Class Act NG +	2.5% v/v	
AGM 07027	1 qt/a	
lsd(0.1)		11.6

Isd(0.1)

11.6

This work was generously supported by Winfield Solutions under the direction of Mr. Joe Bush.

2009 Research Reports

Jim Valliant and Mike Bartolo Arkansas Valley Research Center Colorado State University

Water sales in the Arkansas River Valley of Colorado have been on a "buy and dry" basis for many years. Agricultural water rights have been sold to cities on the front range and the previously irrigated land removed from production. These lands revert to dry land production and, in the arid environment of Southeastern Colorado, have limited agricultural productivity. In many instances, these lands have serious erosion and weed problems.

An alternative to water sales is the temporary leasing of agricultural waters to the cities, particularly in times of drought. Water leases give the shareholders a new crop, "water", and provide additional revenue. In a leasing program, land is not permanently dried up but is fallowed or set aside from irrigation for a number of years, depending on the conditions of the lease.

Leasing of agricultural waters could improve the economic stability of the agricultural-dependent communities of the Arkansas Valley. Growers could keep much of their land under production, fallowing only the necessary acres to meet the needs of the leasing agreements. Several ditch companies have already leased water and others are looking at the possibility of leasing water collectively as a group (Super Ditch). At this time, however, it is not clear how fallowing will affect yields, nutrients needs, ability to come back into production, and overall economics. This study attempts to address those issues.

Methods

This study was conducted with conventional tilled, furrow-irrigated corn on a calcareous Rocky Ford silty clay loam soil at Colorado State University's Arkansas Valley Research Center (AVRC) starting in 2007. The Center is located near Rocky Ford, Colorado. The plot area had previously been in corn during 2006. The corn hybrid RX752RR/YGPL (Dekalb) was planted in late April in each year. The crop was seeded at a rate of about 32,000 seeds per acre. A single line of corn was planted on top of a bed with a 30 inch row spacing (furrow to furrow). Conventional corn production practices were used throughout the course of the season. Irrigation was by gravity-flow furrows with water being applied to every other furrow (every 60 inches). The trial was

arranged in a complete block design with four replications. Starting in 2007, one treatment was planted to corn and the remaining three treatments were fallowed. In each subsequent year, one additional treatment was planted to corn. Fallowed treatments were managed to maintain low weed growth and prevent soil erosion. The sequence of treatments are described in the table below:

Treatment	2007	2008	2009	2010
1.	corn	corn	corn	corn
2.	fallow	corn	corn	corn
3.	fallow	fallow	corn	corn
4.	fallow	fallow	fallow	corn

Grain yields were collected in October or November of each season. Yield samples were taken within each treatment plot and assessed for total weight, moisture content, and grain bushel weight. In addition to yield, soil nutrient status was monitored via soil samples taken at depths of 0-8", 8-16", and 16-24". All production practices, including the practices and costs necessary to maintain the fallowed lands, were recorded.

Results

<u>Table 1</u>: Yield (bu/acre) of corn grown for grain following different fallowing periods. All vields were adjusted to a grain moisture content of 15.5%.

Treatment	2007	2008	2009	2010
		Yield Bu/acre		
1.	187.1	232.8	204.4	corn
2.	fallow	233.0	205.1	corn
3.	fallow	fallow	204.7	corn
4.	fallow	fallow	fallow	corn
lsd(0.1)		38.72	14.3	

a(0,1)

Discussion

Through the 2009 season, no significant yield differences have been realized as a result of either one or two years of fallowing compared to a continuously cropped treatment. After two years of fallowing, fertilizer applied during the 2007 season was still available for a crop grown in 2009.

Specific fertility and production costs data will be presented in subsequent reports.

2009 Vegetable Crop Reports

PRODUCTION INFORMATION

Colorado State University

Plots - Planted 20' long X 2 rows on beds spaced 30" on centers. Rows were spaced 10" apart on top of the bed. Plants were hand-thinned to an in-row spacing ~3". Yield was determined from an 8' bed section (8' X 2 rows) of the plot. Each plot was replicated four times in the trial.

Planted - March 16th, 2009

Fertilizer - 104 lbs. P_2O_5/A and 22 lbs N/A as 11-52-0 - preplant. ~ 100 lbs. N/A residual (in top 18") and 34 lbs N as 46-0-0 supplied via irrigation water.

Weed Control - Roundup on April 8th; Goaltender, Trigger, and Prowl-H₂0 on May 6th; Goal 2E, Starane Ultra, and Outlook on May 20th; Trigger and Crop Oil on June 1st; Goal 2E, Prowl-H₂0, Dual Magnum on June 16th; Dual and Goaltender on July 13th; Hand weeded 2 times

Insect Control – Movento on June 27th; Azadirect on July 13th; Azadirect on July 24th **Disease Control**- Dithane and Champ on July 24th

Irrigation – The plots were irrigated multiple (12) times via gravity-flow furrows. The amount of irrigation water (consumptive use) was approximately 30" and seasonal precipitation was 7.95".

Harvest – September 14th Grade – October 23rd

Comments

The 2009 season was good for onion production with ample irrigation water and relatively normal growing conditions. No disease problems were detected. Specifically, there was no Iris Yellow Spot Virus or Xanthomonas detected in the plots. The plots escaped any significant storm damage. Thrips populations were moderate and were fairly easy to control. Please contact Mike Bartolo at the Arkansas Valley Research Center (phone: 719-254-6312; e-mail: michael.bartolo@colostate.edu) for additional information.

ONION VARIETY TRIAL

Arkansas Valley Research Center, Colorado State University, Rocky Ford, Colorado, 2009

Variety	Source	Maturity (% tops down) 9-1	Colossals > 4'' %	Jumbos 3"-4" %	Medium 2.25"-3" %	Pre-Pack 1.75"-2.25" %	Total Market. CWT/A	Culls %	Total Weight CWT/A
X-Y201	Waldow	22	18.1	61.7	12.3	0.9	737.7	7.1	797.7
X-Y202	Waldow	12	17.2	69.8	8.2	0.7	736.2	4.1	766.7
Mesquite	D. Palmer	15	16.1	65.8	10.6	0.1	723.1	7.3	778.1
Tequila	D. Palmer	20	16.0	67.8	10.5	0.7	712.8	5.0	749.2
Maverick	Вејо	55	6.1	68.5	17.5	1.4	700.2	6.4	747.1
T-433	Takii	10	6.1	80.2	7.9	0.8	696.9	4.9	734.0
Cometa (W)	Nunhems	22	6.1	76.4	15.8	0.7	674.6	1.1	682.3
Oracle (03-207)	Crookham	32	1.1	82.3	13.6	0.5	667.6	2.5	683.3
Morpheus (03-209)	Crookham	30	10.8	72.3	12.2	0.6	665.3	4.1	694.8
Colorado 6	Burrell	10	7.9	62.8	16.5	2.5	648.0	10.3	723.1
Legend	Вејо	25	2.1	70.3	20.7	1.0	645.2	5.9	684.4
Advantage (05-N5)	Crookham	10	7.7	70.9	12.9	0.6	640.3	7.8	695.3
Arcero	Nunhems	12	0	79.5	18.0	1.5	637.6	1.0	644.1
White Cloud (W)	Crookham	60	1.1	69.5	17.3	1.8	630.5	10.3	703.0
OLYX06-25	Crookham	10	8.7	71.1	14.7	0.8	630.0	4.7	661.0
Pandero	Nunhems	25	16.8	73.3	5.0	0.8	620.2	4.1	646.9
The Rock	Crookham	17	7.3	78.3	11.0	0.2	613.1	3.2	633.3
Joaquin	Nunhems	10	14.4	72.5	6.7	0.2	610.4	6.2	654.5
Delgado	Вејо	25	2.4	78.1	14.0	1.4	603.8	4.1	630.0
NUN7606ON	Nunhems	45	2.7	75.4	19.6	1.0	598.4	1.4	606.6

Variety	Source	Maturity (% tops down) 9-13	Colossals > 4" %	Jumbos 3"-4" %	Medium 2.25"-3" %	Pre-Pack 1.75"- 2.25" %	Total Market. CWT/A	Culls %	Total Weight CWT/A
OLYX00-23	Crookham	45	0	69.1	25.4	2.7	588.0	2.8	604.9
Ranchero	Nunhems	42	4.8	74.6	10.7	1.5	579.3	8.3	633.3
Western Giant	Sakata	87	3.3	42.1	34.7	5.0	556.5	14.8	651.8
Vaquero	Nunhems	57	1.3	65.0	25.4	2.2	553.8	6.1	589.1
Granero	Nunhems	55	0	75.2	22.6	0.8	548.3	1.4	554.8
Calibra	Вејо	67	0	66.3	25.0	2.2	539.0	6.4	576.1
Crockett	Вејо	10	0	63.6	29.8	1.3	535.8	5.3	566.3
X-Y441	Waldow	42	0	62.1	25.3	3.8	518.4	8.7	567.9
DPS2052 (W)	D. Palmer	30	0	56.9	30.5	2.8	485.7	9.9	538.0
Sarape Café	D. Palmer	42	0	58.2	32.2	0.9	484.6	8.7	531.4
Gunnison	Вејо	65	0	37.0	56.4	5.1	433.4	1.2	440.0
Talon	Вејо	55	0	31.2	59.4	3.7	432.9	5.7	460.0
OLRH06-91 (R)	Crookham	20	1.9	41.1	40.2	1.9	388.2	15.0	459.0

lsd (0.1) =

89.7

W) = white-skinned, (R) = red-skinned, all other yellows

2009 VEGETABLE CROP REPORTS

Whitney Cranshaw Mike Bartolo Colorado State University

Trials were conducted at the Arkansas Valley Research Center in Rocky Ford, CO. Individual plots consisted of 50-row ft of seeded onions in 4-row beds at 5-ft centers. Each cultivar was replicated four times in a randomized complete block design. Subplots were established within each plot, so that one half of the area was treated to control thrips, the other half remaining untreated. Thrips treatments consisted of a mixture of fipronil (Regent) and spirometrastat (Movento), which had been identified as the most effective treatments at that site in previous season. Applications were made 12 June, repeated 3 July. Excellent control (>5 thrips/plant) was maintained on these treated plots through the end of July when last observations were made (July 24).

Two counts of thrips were made (table below), each by counting the number of thrips on 10 plants in the center of untreated areas.

		503.	
	19 June*	10 July*	
1. Cometa	133.5 ab	243.5 abc*	Original means presented
2. White Wing	132.0 ab	202.3 abcd	Analysis used log transformation
3. Salsa	136.5 a	339.25 ab	
4. Red Bull	120.0 ab	303.5 abc	
5. Red Wing	138.0 a	316.75 ab	
6. Talon	104.0 abc	353.75 a	
7. Tioga	91.0 abc	206.75 abcd	
8. Gunnison	100.0 abc	259.0 abcd	
9. Arcero	99.5 abc	153.0 abcde	
10. Ranchero	105.0 abc	166.50 abcd	
11. Calibra	127.0 ab	126.25 abce	
12. X-202 (Tequila)	103.5 abc	103.75 bcde	
13. Sedona	135.3 a	234.75 abc	
14. OLYSOS5N5	100.3 abc	64.25 de	
15. Colorado 6	114.3 ab	51.25 e	
16. T-433	64.5 bc	78.25 de	
17. Tamara	63.0 c	91.00 cde	
18. Granero	129.3 ab	155.25 abcde	
19. Oro Blanco	140.5 a	47.25 e	
20. Vaquero	106.0 abc	101.0 bcde	

Yield and market class distribution of onion receiving full (sprayed) or no thrips control in 2009.

Variety	Spray Treatment	Colossals ∃ 4" %	Jumbos 3"-4" %	Medium 23"-3" %	Pre-Pack 1:"-23" %	Total Market. Weight 50 lb. bags/A	Culls %	Total Weight 50 lb. bags/A	Percent Yield Increase Due to Spray Control
Colorado 6	Spray	4.1	74.0	17.5	1.3	1457.0	2.9	1499.5	4.5
	None	13.0	69.8	11.9	0.7	1393.9	4.3	1455.9	
Red Bull	Spray	0	82.6	5.1	0.2	782.9	11.9	889.7	36.7
	None	0	30.6	49.4	0.4	572.8	19.3	708.9	
Granero	Spray	8.2	64.4	22.7	0.7	1306.8	3.7	1359.0	1.6
	None	0	57.8	38.9	1.2	1286.1	1.9	1308.9	
Cometa	Spray	2.9	82.0	8.5	0.6	1601.9	5.8	1706.4	16.5
	None	3.2	82.0	13.9	0.3	1375.4	0.4	1381.9	
Gunnison	Spray	0	45.3	48.8	2.2	1089.0	3.5	1128.2	16.0
	None	0	11.0	81.9	4.0	938.7	2.8	967.0	
Mesquite (X-202)	Spray	14.2	65.0	17.2	1.2	1542.0	2.2	1577.9	0.2
	None	9.1	82.7	5.5	0.3	1538.7	2.1	1574.6	
OLYS 05-N5	Spray	0	83.0	15.4	0.5	1742.4	0.9	1758.7	20.5
	None	1.1	71.7	21.8	0.3	1446.1	4.8	1521.3	
Arcero	Spray	4.3	64.9	27.7	0.7	1347.0	2.2	1379.7	20.5
	None	0	62.6	32.9	0.6	1117.3	3.7	1163.0	

Onion yield response to full (sprayed) or no thrips control in 2008 and 2009.

Variety	Spray Treatment	Total Market. Weight 50 lb. bags/A 2008	Total Market. Weight 50 lb. bags/A 2009	Percent Yield Increase Due to Spray Control 2008	Percent Yield Increase Due to Spray Control 2009	Percent Yield Increase Due to Spray Control 2 year Ave .
Colorado 6	Spray	1265.4	1457.0	(-2.1)	4.5	2.4%
	None	1292.6	1393.9			
Red Bull	Spray	708.8	782.9	28.4	36.7	32.5%
	None	552.0	572.8			
Granero	Spray	1396.0	1306.8	38.4	1.6	20.0%
	None	1008.4	1286.1			
Cometa	Spray	971.2	1601.9	18.4	16.5	17.4%
	None	820.0	1375.4			
Gunnison	Spray	855.8	1089.0	39.8	16.0	27.8%
	None	612.0	938.7			
Mesquite (X-202)	Spray	1325.2	1542.0	(-3.3)	0.2	(-1.5)%
	None	1371.0	1538.7			
OLYS 05-N5	Spray	1474.4	1742.4	9.0	20.5	14.7%
	None	1352.4	1446.1			
Arcero	Spray	1030.0	1347.0	0.6	20.5	10.5%
	None	1023.6	1117.3			

2009 Vegetable Crop Reports

Effect of Water Quality on Cantaloupe Yield and Quality

Mike Bartolo Arkansas Valley Research Center Colorado State University

antaloupe is an important vegetable crop grown in the Arkansas Valley of Colorado. Starting in the early 1990's, cantaloupes were increasingly produced using intensive production methods like drip irrigation and plastic mulches. Today, the majority of cantaloupes are grown with these two components of plasticulture. To facilitate the use of drip irrigation, growers have relied upon ground water pumped from shallow alluvial wells as the source of irrigation water. Unlike surface waters, ground water is relatively free of particulates and is available on a more timely and reliable basis. Unfortunately, ground waters also contain much higher amounts of dissolved salts making the electrical conductivity (EC_w) of ground water approximately 3 times higher than that of surface waters.

The purpose of this study was to determine how the use of ground water affects the yield and quality of cantaloupe grown with intensive production practices. Crop, water, and soil characteristics were monitored in treatment irrigated with both surface and ground waters.

Methods

This study was conducted at the

Arkansas Valley Research Center (AVRC) in Rocky Ford. Beds, 45 inches wide and 60 inches between centers, were shaped in early April. Drip lines were placed 1-2 inches from the center of the bed at a depth of 3 inches. The beds were covered with black embossed plastic mulch (Mechanical Transplanter) on May 5th using a one-bed mulch layer.

The study was designed as a randomized complete block with four replications. The test site irrigation system was plumbed so that four plots would receive water derived from a surface source (Rocky Ford Ditch) and four plots would receive water from a shallow alluvial well located at the AVRC. Throughout the experiment, both water sources were delivered to the test site in equal quantities and the timing of each application was identical (Table 1). Soil water potential was monitored with Watermark sensors placed at depths of 9 and 18 inches. An irrigation event was initiated when soil water potential reached 30 cb at both depths.

On May 19th, the cantaloupe variety *"Athena"* was sown in holes in the plastic mulch down the center of the bed at an in-row spacing of 18 inches. Melons were harvested starting on August 17th. At harvest, the soluble solid content (% brix) of six randomly selected melons was sampled from each plot using a digital refractometer. Melons were considered marketable if they weighed over 3 lbs. and were free of any physical defects.

In addition to fruit and water characteristics, changes in soil salinity were monitored in the treatments. Soil samples were taken at depths of 0-6", 6-12", 1-2', 2-3', and 3-4' before irrigation commenced and after harvest. Samples were taken in two locations in the bed; in the middle of the bed (seedrow) and outside of the production bed (furrow). Salinity of the saturated paste extract was estimated using a 1:1 (w:w) extract of the soil using distilled water. Specifically, 50 g of soil was mixed with with 50 g of distilled water. The mixture was placed on a rotary shaker overnight and filtered the next day (Whatman 1). The conductivity of the resulting filtrate (EC_f) was measured and converted to the conductivity of the saturated paste extract (EC_e) using the following predetermined equation: [EC_e = (EC_f)(2.104) + 0.0039].

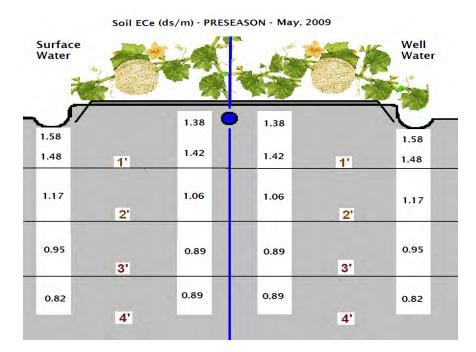
Results and Discussion

Irrigation water from the shallow alluvial well had 2-3 times higher electrical conductivity and individual chemical components than irrigation water derived from a surface source (Table 2). Despite these differences, there was not a significant difference in yield or fruit quality (as measured by percent brix) between cantaloupes that were irrigated with the two different water sources (Table 3). Although, average fruit size and number were slightly greater in cantaloupes irrigated with the surface water, these differences were not statistically significant (P>.05). As anticipated, soil salinity (EC_e) was greater in the treatment irrigated with well water (Figures 1 and 2). Salinity was generally greater in the

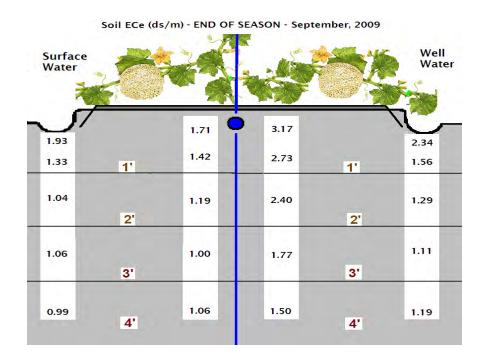
Table 1: Timings and amounts of irrigation water delivered to treatments. Plots irrigated with surface and well waters were irrigated at the same time and received the same volumes.

surface layers.

DATE	gals/acre	ACRE-IN Applied	DATE	gals/acre	ACRE-IN Applied
25-May	11559.32	0.425	13-Jul	13752	0.506
17-Jun	15906.48	0.585	15-Jul	7181.6	0.264
23-Jun	16578.8	0.610	17-Jul	22194.2	0.817
26-Jun	17350.44	0.638	20-Jul	21048.2	0.775
29-Jun	19405.6	0.714	24-Jul	20505.76	0.755
1-Jul	14531.28	0.535	31-Jul	21850.4	0.804
4-Jul	18824.96	0.693	4-Aug	6715.56	0.247
7-Jul	9550	0.351	10-Aug	7082.28	0.260
10-Jul	9550	0.351			
			SEASON TO	OTAL	9.338


Table 2: Chemical characteristics of ground and surface waters.* Analysis at AVRC, ** EPA analysis at Arkansas River.

Component	Groundwater*	Surface**
Calcium	283 ppm	111 ppm
Sodium	133 ppm	64 ppm
Hardness - CaCO3	1022 ppm	420 ppm
Sulfate	1053 ppm	365 ppm
Specific Conductance	2.77 ds/m	1.00 ds/m
TDS	1764 ppm	720 ppm


Table 3: Yield, yield components, and quality (%brix) of cantaloupe grown with surface and ground water.

Treatment Water Source	% Brix	Fruit Number per acre	Average Fruit Weight	Marketable Yield (Ibs/acre)
Surface	11.37	10,527	4.89	51,499
Well	11.16	10,164	4.75	48,361
lsd(.05)	ns	ns	ns	ns

Figure 1: Estimated salinity of the saturated paste extract (EC_e) prior to the initiation of irrigation (May, 2009). Soil samples were taken at depths of 0-6", 6-12", 1-2", 2-3', 3-4'. Samples were taken in the center of the production bed adjacent to the drip line and at the edge of the plastic mulch near the bed furrow

Figure 2: Estimated salinity of the saturated paste extract (EC_e) at the end of the growing season (September, 2009). Soil samples were taken at depths of 0-6", 6-12", 1-2", 2-3', 3-4'. Samples were taken in the center of the production bed adjacent to the drip line and at the edge of the plastic mulch near the bed furrow

2009 Vegetable Crop Reports

Effect of Water Quality on Watermelon Yield and Quality

Mike Bartolo Arkansas Valley Research Center Colorado State University

atermelon is an important vegetable crop grown in the Arkansas Valley of Colorado. In the past decade, much of the watermelons produced in the Valley have been grown with intensive production practices like drip irrigation and plastic mulches. To facilitate the use of drip irrigation, growers have relied upon ground water pumped from shallow alluvial wells as the source of irrigation water. Unlike surface waters, ground water is relatively free of particulates and is available on a more timely and reliable basis. Unfortunately, ground waters also contain much higher amounts of dissolved salts making the electrical conductivity (EC_w) of ground water approximately 3 times higher than that of surface waters.

The purpose of this study was to determine how the use of ground water affects the yield and quality of watermelon grown with intensive production practices. Crop, water, and soil characteristics were monitored in treatments irrigated with both surface and ground waters.

Methods

This study was conducted at the Arkansas Valley Research Center (AVRC) in Rocky Ford. Beds, 45 inches

wide and 60 inches between centers, were shaped in early April. Drip lines were placed 1-2 inches from the center of the bed at a depth of 3 inches. The beds were covered with black embossed plastic mulch (Mechanical Transplanter) on May 5th using a one-bed mulch layer.

The study was designed as a randomized complete block with four replications. The test site irrigation system was plumbed so that four plots would receive water derived from a surface source (Rocky Ford Ditch) and four plots would receive water from a shallow alluvial well located at the AVRC. Throughout the experiment, both water sources were delivered to the test site in equal quantities and the timing of each application was identical (Table 1). Soil water potential was monitored with Watermark sensors placed at depths of 9 and 18 inches. An irrigation event was initiated when soil water potential reached 30 cb at both depths.

On May 19th, the watermelon variety *Stars and Stripes*, an elongated seeded type, was sown in holes in the plastic mulch down the center of the bed at an in-row spacing of 3 feet. Watermelons were harvested starting on August 17th. At harvest, the soluble solid content (% brix) of four randomly selected watermelons was sampled from each plot using a digital refractometer. Watermelons were considered marketable if they weighed over 12 lbs and were free of any physical defects.

In addition to fruit and water characteristics, changes in soil salinity were monitored in the treatments. Soil samples were taken at depths of 0-6", 6-12", 1-2', 2-3', and 3-4' before irrigation commenced and after harvest. Samples were taken in two locations in the bed; in the middle of the bed (seed-row) and outside of the production bed (furrow).

Results and Discussion

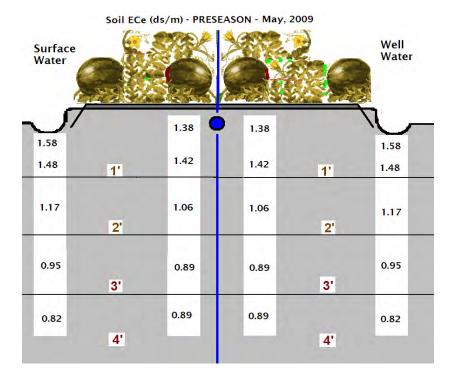
Irrigation water from the shallow alluvial well had 2-3 times higher electrical conductivity and individual chemical components than irrigation water derived from a surface source (Table 2). Despite these differences, there was not a significant difference in yield or fruit quality (as measured by percent brix) between watermelons that were irrigated with the two different Salinity of the saturated paste extract was estimated using a 1:1 (w:w) extract of the soil using distilled water. Specifically, 50 g of soil was mixed with with 50 g of distilled water. The mixture was placed on a rotary shaker overnight and filtered the next day (Whatman 1). The conductivity of the resulting filtrate (EC_f) was measured and converted to the conductivity of the saturated paste extract (EC_e) using the following predetermined equation:

 $[EC_e = (EC_f)(2.104) + 0.0039$

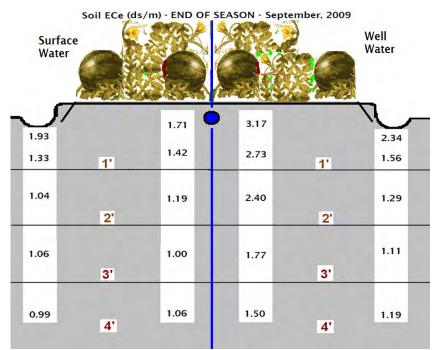
water sources (Table 3). Although, average fruit size and number were slightly greater in watermelons irrigated with the surface water, these differences were not statistically significant (P>.05).

As anticipated, soil salinity (EC_e) was greater in the treatment irrigated with well water (Figures 1 and 2). Salinity was generally greater in the surface layers. **Table 1:** Timings and amounts of irrigation water delivered to treatments. Plots irrigated with surface and well waters were irrigated at the same time and received the same volumes.

DATE	gals/acre	ACRE-IN Applied	DATE	gals/acre	ACRE-IN Applied
25-May	11559.32	0.425	13-Jul	13752	0.506
17-Jun	15906.48	0.585	15-Jul	7181.6	0.264
23-Jun	16578.8	0.610	17-Jul	22194.2	0.817
26-Jun	17350.44	0.638	20-Jul	21048.2	0.775
29-Jun	19405.6	0.714	24-Jul	20505.76	0.755
1-Jul	14531.28	0.535	31-Jul	21850.4	0.804
4-Jul	18824.96	0.693	4-Aug	6715.56	0.247
7-Jul	9550	0.351	10-Aug	7082.28	0.260
10-Jul	9550	0.351			
			SEASON 1	OTAL	9.338


Table 2: Chemical characteristics of ground and surface waters.* Analysis at AVRC, ** EPA analysis at Arkansas River.

Component	Groundwater*	Surface**
Calcium	283 ppm	111 ppm
Sodium	133 ppm	64 ppm
Hardness - CaCO3	1022 ppm	420 ppm
Sulfate	1053 ppm	365 ppm
Specific Conductance	2.77 ds/m	1.00 ds/m
TDS	1764 ppm	720 ppm


Table 3: Yield, yield components, and quality (%brix) of watermelon grown with surface and ground water.

Treatment Water Source	% Brix	Fruit Number per acre	Average Fruit Weight	Marketable Yield (Ibs/acre)
Surface	10.22	4257	17.03	54,237
Well	10.22	3943	16.82	52,310
lsd(.05)	ns	ns	ns	ns

Figure 1: Estimated salinity of the saturated paste extract (EC_e) prior to the initiation of irrigation (May, 2009). Soil samples were taken at depths of 0-6", 6-12", 1-2", 2-3', 3-4'. Samples were taken in the center of the production bed adjacent to the drip line and at the edge of the plastic mulch near the bed furrow

Figure 2: Estimated salinity of the saturated paste extract (EC_e) at the end of the growing season (September, 2009). Soil samples were taken at depths of 0-6", 6-12", 1-2", 2-3', 3-4'. Samples were taken in the center of the production bed adjacent to the drip line and at the edge of the plastic mulch near the bed furrow

2009 Vegetable Crop Reports

Mike Bartolo Arkansas Vallev Research Center Colorado State University

he Arkansas Valley has a long and successful history of vegetable seed production and at one time, provided a significant portion of the cucurbit seeds used in the United States. Although seed production has diminished from its historical levels, there is still a sizable amount of conventional seed production in the Valley. In recent years, there has been a dramatic increase in organic vegetable production. Accordingly, demand for organic vegetable seed is growing rapidly as the USDA National Organic Program requires organic farmers to use certified organic seed when available. With this potential, there is the opportunity to reestablish the seed production industry in the Arkansas Valley.

This project had three main objectives:

- 1. Identify optimum cultural techniques and varieties for the production of high quality organic watermelon, melon, and pepper seed.
- 2. Identify potential yields of organically produced watermelon, melon, and pepper seed.
- 3. Assist and educate growers on how to adopt and comply with organic production methods and requirements.

Methods

This study was conducted at the Arkansas Valley Research Center (AVRC) in Rocky Ford. The Center has a four acre site that has completed the transition into organic production. In late April, one acre of the organic field was furrowed into 30 inch beds (on center). The remainder of the field was seeded to buckwheat as a cover crop. Three test plots were direct seeded: a mixed melon trial containing 10 varieties and three replications, a watermelon trial containing 15 varieties and two replications, and a pepper trial containing 19 varieties with two replications.

Irrigation was supplied by gravity-flow furrows during the course of the season. Pest control and other management practices were implemented as needed. Cost analyses of all production practices will be outlined in a subsequent report. At harvest, vield estimates were taken from each trial. A representative sample of seed was extracted from a crop subsample to determine estimated seed yields.

Outreach Activities

A field day was conducted at the Arkansas Valley Research Center on August 31, 2009. Over 40 participants (photo to the right) learned about production practices and other issues related to organic seed production. Participants included growers, seed company representatives, and staff from the Organic Seed Alliance.

Results

Variety	Source	Ave Melon Weight (lbs)	Average Seed Yield per Melon (g)	Fresh Yield per Acre (lbs)	Raw* Seed Yield per Acre (Ibs)
Orange Flesh	В	2.93	15.22	28,810	332
Sharlyn	SOC	2.79	21.37	28,047	478
Sharlyn Melon	SS	2.80	24.79	21,780	427
Eel River	SOC	3.79	22.35	21,096	275
Eindor	SOS	2.82	22.19	24,339	426
Huerfano Bliss	DH	3.52	19.84	43,596	533
Golden Honeymoon	В	4.05	25.44	31,175	432
Burrell's Jumbo	В	1.77	11.60	15,514	227
PMR 45	В	1.78	10.52	15,615	208
Hale's Jumbo	В	2.04	13.52	16,383	233
lsd(0.1)		0.80	2.64	10,002	113

Fresh and raw seed yield of 10 mixed melon varieties grown with organic production methods at CSU's Arkansas Valley Research Center.

B= Burrell's Seeds, SOS= Seeds of Change, SS= Siskiyou Seeds, DH= Dan Hobbs

*Raw seed was washed and dried but not milled or tested for germination.

This project would like to acknowledge the generous support of CSU Specialty Crops Program, Organic Seed Alliance, Natural Resource Conservation Service, and CSU Agricultural Experiment Station.

Fresh and raw seed yield^{**} of 15 watermelon varieties grown with organic production methods at CSU's Arkansas Valley Research Center.

Variety	Source	Ave Melon Weight (lbs)	Average Seed Yield per Melon (g)	Fresh Yield per Acre (lbs)	Raw* Seed Yield per Acre (Ibs)
Legacy	В	10.90	65.07	24,927	510
Desert King	SOC	11.76	73.26	30,753	620
W909-4	OSA	13.10	77.46	27,818	730
Wilson Sweet	OSA	8.76	35.66	28,640	225
W909-1	OSA	13.86	58.80	38,507	587
W909-3	OSA	15.66	70.80	43,505	798
Navajo Red	NMOCC	5.96	33.50	21,442	143
Sweet Dakota Rose	SOC	7.33	28.76	25,155	151
Blacktail	OSA	7.50	29.60	23,277	159
Monticello Gold	NMOCC	9.80	34.03	32,016	240
W909-2	OSA	13.23	65.00	43,233	619
W912	OSA	6.50	47.50	19,111	222
Charleston Grey- #133	В	13.10	45.93	40,657	433
Crimson Sweet	В	7.96	20.60	20,821	118
Sugar Baby	В	6.46	20.90	23,239	97

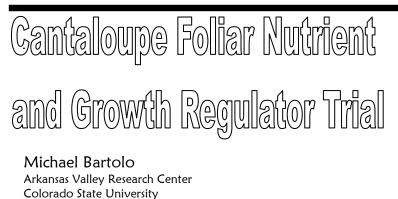
B= Burrell's Seeds, SOS= Seeds of Change, NM= State of New Mexico Organic Commodity Commission, OSA= Organic Seed Alliance

*Raw seed was washed and dried but not milled or tested for germination.

**Values are an average of two replicates. No statistical analysis was conducted.

Fresh and raw seed yield** of 9*** pepper varieties grown with organic production	
methods at CSU's Arkansas Valley Research Center.	

Variety	Source	Fresh Yield per Acre (lbs)	Raw* Seed Yield per Acre (lbs)
Santa Fe Grande	В	22,052	826
Big Jim	В	19,602	468
Sandia	В	18,676	733
Isleta	NMOCC	13,068	890
Joe Parker	В	32,071	229
Corno Di Toro	SOC	28,640	607
Mosco	CSU	21,997	536
California Wonder	В	23,086	104
Sweet Tangerine	SOC	21,780	404


B= Burrell's Seeds, SOS= Seeds of Change, NM= State of New Mexico Organic Commodity Commission, CSU=Colorado State University

*Raw seed was washed and dried but not milled or tested for germination.

**Values are an average of two replicates. No statistical analysis was conducted.

*** Ten other varieties (CSU experimental lines) were included in the trial but not evaluated for yield.

2009 VEGETABLE CROP REPORTS

Cantaloupe is an important vegetable crop in the Arkansas Valley grown on over 2,000 acres. Cantaloupes grown in the Valley are renowned for their high quality. Nonetheless, improving the yield and sugar content is a constant goal of producers. This study was conducted to examine the response of cantaloupe to several commercially available fertilizers and growth regulators applied to the foliage starting at the time of first bloom. A late infestation of powdery mildew severely reduced the functional leaf area at start of harvest. Although fruit number and size did not seem to be affected, fruit sugar content (% brix) was dramatically reduced in all treatments. As result, sugar levels are not reported in this document.

Several products, alone or in combination, significantly improved yields compared to an untreated control.

MATERIALS AND METHODS

This study was conducted at the Arkansas Valley Research Center (AVRC) in Rocky Ford. Beds, 45 inches wide and 60 inches between centers, were shaped in early April. Drip lines were placed 1-2 inches from the center of the bed at a depth of 3 inches. The beds were covered with black embossed plastic mulch on April 29th using a one-bed mulch layer.

The study was designed as a randomized complete block with four replications. On June 1st, the cantaloupe variety *Athena*, a slightly sutured eastern shipping type, was sown in holes in the plastic mulch down the center of the bed at an in-row spacing of 18 inches. Foliarly-applied fertilizers were applied initial at the first bloom stage (July 18). All products were delivered with a hand-held sprayer. Cantaloupes were harvested starting on September 1st. Cantaloupes were considered marketable if they weighed over 3 lbs and were free of any physical defects.

This work was generously supported by Winfield Solutions under the direction of Mr. Joe Bush.

Treatment combinations and timing of applications for foliarly-applied fertilizers and growth regulators

#	Treatment	Rate Per Acre	Stage First Bloom July 18,	Stage First Bloom + 14 days July 31,	Stage First Bloom + 28 days Aug. 13,
			2009	2009	2009
1.	Untreated Control	-			
2.	МКР	5 lbs	Yes	Yes	No
3.	MI ZMB	1 qt	Yes	No	No
4.	MKP	5 lbs	Yes	No	No
	MIVC	1 qt	Yes	No	No
5.	MKP	5 lbs	Yes	Yes	Yes
	MIVC	1 qt	Yes	Yes	Yes
	Ascend	3.2 oz	Yes	Yes	No
6.	MIZMB	1 qt	Yes	Yes	Yes
	Ascend	3.2 oz	Yes	Yes	No
	MKP	5 lbs	No	No	Yes
7.	MIVC	1 qt	Yes	Yes	No

RESULTS

#	Treatment	Fruit Number	Average Fruit	Yield per Acre
		per Acre	weight (lbs)	(lbs)
1.	Untreated Control	13,068 ab	3.23 ab	42,587 bc
2.	МКР	12,487 b	3.29 ab	40,852 c
3.	MI ZMB	13,576 ab	3.28 ab	44,438 bc
4.	MKP MI VC	14,737 a	3.51 a	51,458 a
5.	MKP MI VC Ascend	14,084 ab	3.35 ab	47,298 ab
6.	MI ZMB Ascend MKP	14.084 ab	3.38 ab	47,712 ab
7.	MIVC	14,592 a	3.17 b	46,253 abc
	lsd (0.1)	1,789	0.32	6,073